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Abstract
The present study reports a thorough information theory–based investigation of the time series of rainfall in seasonal scale as well
as yearly scale in the Himalayas during the summer monsoon (June–September). In this paper, the inbred uncertainty of rainfall
series has been evaluated through Shannon entropy by fitting a probability distribution. The entropy has been measured for
seasonal scales as well as yearly scales. A few parameters relating to the summer monsoon rainfall series over parts of North
Mountainous India (NMI) from 1844 to 2005 are considered for computing entropy. Maximization of Shannon entropy is done to
examine the parallel contributions of these parameters in this meteorological phenomenon. Finally, we have shown how entropy
is affected by the fluctuation of mean rainfall in seasonal scale as well as yearly scale. We have also computed the decade-wise
intrinsic uncertainty of rainfall series as rainfall is the most important parameter for climate risk. Besides, we also fitted the
probability distribution curve generated by rainfall series.

1 Introduction

The average rate of stochastic source of data produced infor-
mation is called entropy. In 1850, the modern ergodic theory
has begun with the evolution of the concept of entropy of a
stochastic variable by Rudolf Clausius, and in 1870 Ludwig
Boltzmann showed it statistically. In that subsequent time pe-
riod, the idea of entropy was developed by J. Willard Gibbs in
thermodynamics and Von Neumann in quantum mechanics.
Then, in 1948, it was reintroduced by Claude Shannon to find
fundamental limits on signal processing and communication
operations in a paper titled “A Mathematical Theory of
Communication.” A developmental approach from informa-
tion is the measurement in pursuance of information in stuff
l ike events, random variables, and distributions.
Quantification of the load of info signal is the procedure of
probabilities. This relates information theory to probability. In
his information theory, Claude Shannon defined “entropy” as
a measure of uncertainty with respect to some event or vari-
able. The higher value of Shannon entropy is the maximum
quantitative recognition of uncertainty with respect to the

system. On the basis of maximum entropy, we can evaluate
geophysical processes consistently. Then, it has also been
asserted in the paper that the forecasts might be improved by
the larger amount of information involved in a probabilistic
forecast than in a deterministic forecast (Palmer 2000;
Richardson 2000). Roulston and Smith (2002) entrenched a
convenient analytical groundwork of information theory for
foretelling realization and quantifying weather and climate.
For further analysis on the Shannon entropy, we can refer to
Gray (1990). For mutual information, the perception of entro-
py is

I X ; Yð Þ ¼ H Xð Þ þ H Yð Þ−H X ; Yð Þ
where X and Y are respective random variables.
The consisted information in one process subtracting the

consisted information in the other process when it is well-
known is the mutual collective information. In spite of the pres-
ence of another perception of conditional entropy, the fore (I) has
been concentrated by the information logicians as it does not need
any interpretation of what conditional entropy signifies and is
more well-formed than the definition of conditional.
Mathematicians and statisticians have elongated the principle of
Shannon entropy in the models of information sources, coding
structures, and performance measures. Xu (2007) conferred a
precise study on the diversity of relative entropy and Shannon
entropy in estimating contained information and dropping infor-
mation and deduced that the difference of Shannon entropy com-
putes only the part of variability and the relative entropy
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computes both the signal and variability parts of the contained
information from observations. An important application of infor-
mation theory to the study of rainfall has been reported in
Brunsell (2010). In another study, Kawachi et al. (2001) demon-
strated an application of Shannon entropy to rainfall over Japan.
Liu et al. (2011) reviewed the application of Shannon entropy to
meteorology and allied areas. Nebot et al. (2008) reported a
Fuzzy-based methodology in combination with Shannon entropy
in the study of uncertainty.
Uncertain time series (Radzuan et al. 2013; Kalamaras et al.

2017) treated to be an expanded group of actualizations of a
respective accustomed random variable and recorded by a time
appearing normally in environment, meteorology, economics,
and other study areas. The uncertain chronological time series
has been manifested in literatures: Lykoudis et al. (2010), Cloke
and Pappenberger (2009), Efstathiou and Varotsos (2010),
Varotsos et al. (2013, Varotsos et al. 2015), and Radzuan et al.
(2013). The maximum entropy explains the distributional proper-
ties and endurance in the hydrological processes. Hydrological
examples with respect to this include Koutsoyiannis (2005),
Singh (1997, 2011), Kawachi et al. (2001), Mukhopadhyay and
Khan (2015), da Silva et al. (2016), and Agarwal et al. (2016). In
the paper of Chattopadhyay et al. (2018), there is the theory of
Shannon entropy maximization in discussing the relative contri-
bution of different surface parameters in the genesis of a severe
weather system over a part of India. Plethora of literatures have
explored the complexity associated with meteorological process-
es and related prediction. Examples include Bandyopadhyay et al.
(2016); Chattopadhyay (2007); Chattopadhyay and
Bandyopadhyay (2008); Chaudhuri (2006); Chaudhuri (2008);
Chaudhuri and Chattopadhyay (2005); Dallachiesa et al. (2011);
Dash et al. (2007); De et al. (2011a, b); Gardner and Dorling
(1998); Gutierrez-Coreaa et al. (2016); Hontoria et al. (2005);
Hsieh and Tang (1998), Varotsos et al. (2014) and Cracknell
and Varotsos (2007)
Meteorological conditions over India and the subcontinent as

well are significantly influenced by the Himalayas that act an
extraordinary climatic separation. The course of air as well as
water of the said region depends heavily upon it toward the south
and in the Central Asian good countries toward the north. As per
prudence of the area and its marvelous tallness, the Higher
Himalayas blocks the entry of chill mainland air from the northern
part into India in wintertime and furthermore powers the storm
toward South-West (downpour bearing) breeze to surrender a
large portion of their dampness before entering the northern area.
The outcome is overwhelming rain and day of downfall precipi-
tation in the Indian side yet bone-dry environment in Tibet. The
normal yearly precipitation on the south inclines fluctuates be-
tween 60 in. (1530 mm) at Shimla, Himachal Pradesh, and
Mussoorie, Uttarakhand, in the western half of the Himalayas
and 120 in. (3050 mm) at Darjeeling, West Bengal, in the eastern
half of Himalayas. North of the Great Himalayas, at spots, for
example, Skardu, Gilgit, and Leh in the Kashmir segment of the
Indus river valley, just 3 to 6 in. (75 to 150 mm) of downfall
happens.

The period of summermonsoon (June to September) contributes
the maximum to the annual rainfall over entire India. Interactions
of a number of complex meteorological processes at different
scales lead to the Indian summer monsoon rainfall (ISMR). The
amount of ISMR is characterized by huge degree of spatial vari-
ability ranging from 160 to 1800mm/year (Kishore et al. 2016). It
has been demonstrated in Kishore et al. (2016) that the highest
amount of annual ISMR is received by the northeast, west coast,
western Himalayas, and north central parts of India.
The Himalayan range, a highly elevated land area, has a ma-

jor role to play in the climate and is regarded as one of the most
important mountainous regions in the world. The significance
of the Himalayan region and the adjacent Tibetan Plateau in the
modulation of regional monsoon climate is well discussed in
the literatures (Bhatt and Nakamura 2005). The processes of
atmospheric circulation including monsoon depression and
westerly disturbances are significantly influenced by the
Himalayan range. During the period of summer monsoon, the
said region is affected by abundant rainfall and episodes of
flood. In particular, the slopes that are facing south and the
Gangetic plains fall under this climatic condition. Landslides
connote the most perennial feature of the Himalayas during the
summer monsoon. On the other hand, it should also be noted
that the rainfall has substantial importance in the agricultural
practices over this region. Plethora of literature have empha-
sized upon the role of convection in the Tibetan Plateau and its
adjacent region in the process of monsoon circulation through
the release of latent heat. Studies on the summer monsoon over
the Himalayas mostly include the techniques of ground of
satellite-based investigations. In a recent study, Vellore et al.
(2016) have demonstrated a rigorous study to understand the
evolution of the monsoon-extratropical circulation features
through reanalysis of circulation products pertaining to some
extreme events of precipitation over the western Himalayas.
In the theory of time series analysis, there are two fundamental

approaches, namely time domain and frequency domain. The two
processes are distinct in implementation procedures and are com-
plementary to each other. In the time domain approach, a data
series is characterized in the same terms in which they have been
observed. In the present work, we have implemented the entire
methodology to the data in the form which they have been report-
ed by the Indian Institute of Tropical Meteorology (IITM), Pune,
because of the title which contains the term “time domain.” Here,
we are going to explore the intrinsic complexity of the ISMR over
the Himalayan region through probabilistic information theory.
At this juncture, we explain the motivation behind the study. It
is more difficult to study the pattern of the monsoon rainfall over
the Himalayan region than that in the remaining parts of India.
This difficulty is attributed to the complex topography of the
Himalayas. The terrain induces waves such as the lee-wave and
seeder-feeder mechanism and as a consequence severe modifica-
tions happen to the precipitation process. Furthermore, the nature
of convection, altitudinal variation, and slope-wise variation con-
tributes to the complexity of the pattern of monsoon rainfall over
this zone (Shrestha et al. 2000). The details of the methodology to
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be adopted in the present studywith themaximization of Shannon
entropy is presented in the subsequent sections. The rest of the
paper is organized as follows: in Section 2, we have fitted normal
and log-normal distributions to the rainfall data. In a subsection of
Section 2, we have presented the methodology of deriving the
maximum entropy probability distribution. In Section 3, we have
demonstrated the computation of Shannon entropy and maximum
entropy probability distribution. We have the conclusion in
Section 4.

2 Methodology

2.1 Data and source

In this present work, our adoptive methodology is entropy based.
The observational data on rainfall over the Himalayan Mountain

Region for the period 1844 to 2005 were collected from the India
Meteorological Department (IMD). At first, these discrete data
have been classified into continuous distribution by the exclusive
method of classification with a class interval of 50. The calculated
mean was 1123.765, and standard deviation was 227.164. We
have tested the data in various scales for normal and log-normal
distributions. In this connection, it may be stated that a positive
random variable X follows log-normal if the logarithm of X fol-
lows normal distribution, i.e., lnX~N(μ, σ2). In order to check the
data for these two distributions, we have considered the null hy-
pothesis that the distribution is a good fit to the data. The alterna-
tive is the negation. After carrying out χ2 test, it has been ob-
served that the JJAS rainfall data over the study zone satisfies
both the probability distributions. The outcomes have been picto-
rially presented in Figs. 1 and 2.
Therefore, most rainfall data are close to the mean 1123.765

(mm). Small differences between an individual rainfall data and
the mean were obtained more frequently than substantial

Fig. 2 The pictorial presentation
of the probability densities
corresponding to the classified
rainfall data fitted with log-
normal distribution with parame-
ters μ = 7.003 and σ = 0.212

Fig. 1 The pictorial presentation
of the probability densities
corresponding to the classified
rainfall data fitted with normal
distribution with parameters μ =
1123.765 and σ = 227.164
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deviations from the mean. The standard deviation is 227.164
(mm), which indicates the typical behavior that individual data
tend to fall from the mean rainfall. The distribution is symmetric.
The number of rainfall data lower than average equals the number
of rainfall data greater than average. In both tails of the distribu-
tion, extremely low rainfall data occur as infrequently as extreme-
ly high rainfall data.
In Fig. 2, we fitted log-normal distribution to seasonal summer

monsoon rainfall data by converting it into continuous exclusive
method of classification from 1844 to 2005 over the Himalayan
Mountain Region. Here, the larger values tend to be farther away
from the mean than the smaller values; therefore, it has skew
distribution to the right, which is positive skewness.

2.2 Determining ignorance

It has already been demonstrated in the preceding sections that we
intend to quantify the intrinsic uncertainty associated with the
JJAS rainfall over the Himalayan mountainous region. This sec-
tion demonstrates a brief overview of the entropy function re-
quired for the said purpose. Details of this methodology are avail-
able in Klir and Folger (2009) and references therein. In the pro-
cess of entropy maximization, out of all probability distributions
that hold on to the evidence, the chosen distribution has to have
maximum uncertainty. So, the primary focus is to determine a
probability distribution that maximizes the entropy:

HP fð Þ ¼ − ∑
a∈A

P f ¼ að ÞlnP f ¼ að Þ ð1Þ

Here, f is a discrete random variable which is defined on the
probability space (Ω, B, P), where Ω denotes the sample
space, B denotes the set of events, and P is a function from
events to probabilities. The entropy can be safely regarded not
as a function of the particular outputs of f but as a function of
the partition that f induces on X. That means, Q is made up of
disjoint sets that group the points in Ω as per what output the
measurement f produces. Therefore, the entropy function can
be written as

HP Qð Þ ¼ −∑∥A∥
i¼1 P Qið ÞlnP Qið Þ ð2Þ

2.3 Entropy maximization

Here, we are about to present the methodology based on the
old principle of probability theory alternatively known as the
principle of insufficient reason. This principle calls for our
methodology to eliminate all probability distributions that is
not in line with the evidence in hand. Out of all the remaining
probability distributions, those are selected that fully validates
our ignorance. They ultimately provide for the maximum en-
tropy (Lesne 2014). Considering a probability distribution
function (PDF), defined by the vector f consisting of n com-
ponents (the ith component defining the happening of ith out-
come), then we can rewrite Eq. (2) as (Roulston and Smith

2002)

H pð Þ ¼ −∑n
i¼1pilnpi ð3Þ

We try to maximize H(p) as in Eq. (3) under the constra

pi≥0∀i ð4Þ
∑n

i¼1pi ¼ 1 ð5Þ
E xð Þ ¼ ∑n

i¼1pixi ð6Þ

Now, the following formed Lagrangian is

L ¼ −∑n
i¼1pilnpi−α ∑n

i¼1pi−1
� �

−β ∑n
i¼1pixi−E xð Þ� � ð7Þ

Here, α and β are Lagrange multipliers. The following
partial differential equations are derived from Eq. (7):

δL
δα

¼ 1−∑n
i¼1pi ð8Þ

δL
δβ

¼ E xð Þ−∑n
i¼1pixi ð9Þ

δL
δpi

¼ −lnpi−1−α−βxi ð10Þ

For optimization, we set δL
δα ¼ 0,δLδβ ¼ 0, δLδpi.Equation (10)

gives

pi ¼ exp −1−α−βxið Þ ð11Þ

From Eqs. (11) and (9), we arrive at

pi ¼ exp −1−α−βxið Þ ð12Þ

From Eq. (11),

pi ¼
exp βxið Þ

exp 1þ αð Þ ð13Þ

Using Eqs. (5) and (13), we get

pi ¼
exp −βxið Þ

∑n
k¼1exp −βxkð Þ ;

k ¼ 1; 2; 3;…:; n
ð14Þ

Using Eqs. (14) and (9), we finally have

E xð Þ ¼ ∑n
k¼1xkexp −βxkð Þ
∑n

k¼1exp −βxkð Þ or;

∑n
k¼1 xk−E xð Þ½ �exp −βxkð Þ ¼ 0

ð15Þ

We solve for β in Eq. (15) and substitute it in Eq. (14). We
get the maximum entropy probability distribution function
and thereby we get the maximum H(p).
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3 Results and discussion

3.1 Calculation of Shannon entropy

Here, in this present study, we are considering the summer
monsoon rainfall series of the North Mountainous India
(NMI) from 1844 to 2005. The mean (E[X]) of rainfall series
is 1123.765. The number of rainfall data considered in this
study is 26 as we transferred the collected discrete 162 years
of data in continuous distribution. Values of pre-assigned pa-
rameters before and after rainfall have been taken to our cal-
culation. Following Chaudhuri and Chattopadhyay (2003),
we have diversified n from 1 to 26 in Eq. (15) for each case
of parameters. The E[X] has been observed as the desired
changes (%) in the measurements of the parameters. By using
the Newton-Raphson method, the β in Eq. (15) has been
found. A maximum entropy probability distribution has been
allocated for each solution of β. Using these probability den-
sities in Eq. (3), we calculated entropies as predefined for each
equation and plotted in Fig. 3.

It may be noted that while creating Tables 1 and 2 we have
followed continuous distribution method and in Table 3 the
discrete distribution method has been adopted. By continuous
distribution method, we mean that the entire data available in
array form are converted to frequency distribution with con-
tinuous classes and the mid points of the classes are

Fig. 3 Shannon entropy values obtained by varying the expected rainfall in yearly scale by considering the average rainfall during the summer monsoon
season (June–September)

Table 1 Tabular presentation of the Shannon entropy values obtained
by varying the expected rainfall in yearly scale, averaging 4 months of
JJAS data (by continuous distribution method)

Sample mean Value of β Shannon entropy

1348.518 0.09226632 0.05618569

1326.04270 0.0930480 0.05438944

1292.329750 0.09720767 0.04572784

1236.14150 − 0.000619156 3.231571840

1213.66620 − 0.00045538 3.24364258

1191.190900 − 0.00029362 3.25205654

1179.95325 − 0.00021327 3.25490446

1146.24030 0.00002674 3.25804628

1123.765432 0.00018674 3.2556482

1101.290123 0.00034756 3.24964611

1078.814815 0.00050991 3.24001374

1067.577160 0.0059189 3.23382354

1045.101852 0.00075795 3.21866035

1033.84197 0.00084224 3.20967003

1011.388889 0.00101392 3.18819497

988.913580 0.00119054 3.16056830

966.438272 0.00137324 3.13525841

955.200617 0.00146727 3.11929987

943.962963 0.00156332 3.102273487

921.487654 0.00176231 3.06491950

899.012345 0.00197206 3.02297608

876.537037 0.00219482 2.97617693

Table 2 Shannon entropy value obtained by the expected rainfall in a
10-year scale, averaging yearly JJAS data (by continuous distribution
method)

Sample mean Value of β Shannon entropy

1121.875 0.0002002 3.25528244942186
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considered as values realized by the random variable. On the
other hand, the discrete distribution actually pertains to a finite
set of values realized by the continuous random variable at
some discrete points.

3.2 Entropy as uncertainty

Entropy helps us making accurate statements and performing
computations concerning uncertainty about the outcome. We
can say that entropy is a measure of uncertainty, though it will
be an understatement. Based on some assumptions, entropy is

the measure of uncertainty. A bigger entropy value means a
greater level of uncertainty, suggesting lesser purity of the
distribution. By entropy, we are referring to the Shannon en-
tropy. In spite of several other entropies being there, we are
assuming that Shannon entropy is the most frequently used
entropy in our context.

We are splitting the data set into 16 data sets by taking
decade-wise serial discrete data. Then, we found out the mean
and standard deviations for each data set and we calculated
Shannon entropy for each case also.

We are taking decade-wise discrete data. The number of
rainfall data is 10 in each case. Following the previous meth-
od, we have varied n from 1 to 10 in Eq. (15). For each case,
the E(x) has been observed as the desired changes (%) in the
measurements of the parameters. By using the Newton-
Raphson method, the β in Eq. (15) has been found for each
decade-wise data set. Similarly, we calculated a maximum
entropy probability distribution for each solution of β. Using
these probability densities in Eq. (3), we calculated entropies
for each case.

4 Conclusion

In the study reported above, we have carried out a thorough
information theory–based investigation. Millions of people
depend on agriculture for a living. Precipitation, rain to be
precise, has a substantial effect on agriculture. Similarly, the
Himalayan range, a highly elevated land area, has a major role
to play in the climate. In this paper, at first, the discrete rainfall
data has been classified into continuous frequency distribution
and on checking it was found that normal (Fig. 1) and log-
normal (Fig. 2) distribution is the best fit for this continuous

Table 3 Tabular presentation of the Shannon entropy values obtained
by the expected rainfall in a 10-year scale, averaging yearly 4 months of
JJAS data (by discrete distribution method)

Year Sample mean Value of β Shannon entropy

1844–1854 986.95 −1.97 × 10−8 2.3026

1854–1864 1232.43 −2.48 × 10−8 2.3026

1864–1874 1047.05 1.80 × 10−8 2.3026

1874–1884 1146.61 2.30 × 10−8 2.3026

1884–1894 1268.97 −5.58 × 10−8 2.3026

1894–1904 1145.44 −2.60 × 10−8 2.3026

1904–1914 1064.63 −2.10 × 10−8 2.3026

1914–1924 1233.26 2.50 × 10−8 2.3026

1924–1934 1169.03 2.74 × 10−8 2.3026

1934–1944 1176.02 0 2.3026

1944–1954 1133.38 −4.83 × 10−8 2.3026

1954–1964 1262.54 1.94 × 10−8 2.3026

1964–1974 1178.7 −1.60 × 10−8 2.3026

1974–1984 1002.95 −4.95 × 10−8 2.3026

1984–1994 959.75 1.58 × 10−8 2.3026

1994–2005 991.43 3.30 × 10−3 2.7631

Fig. 4 Shannon entropy values obtained by varying expected decadal rainfall amount (June–September)
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random variable. Here, the inbred uncertainty of rainfall series
has been evaluated through Shannon-entropy by fitting a
probability distribution. The entropy has been measured for
seasonal scales as well as yearly scales. A few parameters
relating to the summer monsoon rainfall series over parts of
North Mountainous India (NMI) from 1844 to 2005 are con-
sidered for computing entropy. Maximization of Shannon en-
tropy is done to examine the parallel contributions of these
parameters in discovering this meteorological phenomenon. It
has been observed that most rainfall data are close to the mean
1123.765 (mm). Small differences between an individual rain-
fall data and the mean were obtained more frequently than
substantial deviations from the mean. The standard deviation
is 227.164 (mm), which indicates the typical behavior that
individual data tend to fall from the mean rainfall. The

distribution is symmetric. Also, we fitted log-normal distribu-
tion (Fig. 2) to seasonal summer monsoon rainfall data by
converting it into continuous exclusive method of classifica-
tion from 1844 to 2005 over the HimalayanMountain Region.
Here, the larger values tend to be farther away from the mean
than the smaller values; therefore, it has skew distribution to
the right, which is positive skewness. The number of rainfall
data lower than average equals the number of rainfall data
greater than average. In both tails of the distribution, extreme-
ly low rainfall data occur as infrequently as extremely high
rainfall data.

In the subsequent phase, taking decade-wise discrete data,
we have applied entropy maximization procedure and by
using the Newton-Raphson method the β in Eq. (15) has been
found for each decade-wise data set. Similarly, we calculated a

Fig. 5 Plot of maximum entropy probability (pi) against the mid-point (xi) of the ith class corresponding to JJAS rainfall

Fig. 6 Plot of maximum entropy probability (pi) (vertical axis) against the decadal (1994–2005) rainfall data (xi) (June–September) (horizontal axis)
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maximum entropy probability distribution for each solution of
β. Using these probability densities in Eq. (3), we calculated
entropies for each case. It has been observed that the Shannon
entropy values obtained by the expected rainfall in a 10-year
scale, averaged by yearly 4 months of JJAS data has main-
tained almost similar pattern (Fig. 3). This shows that the
ISMR over the study zone does not lead to significant change
in the intrinsic uncertainty in yearly scale. In decadal scale
also, the entropy (Fig. 4) does not exhibit significant changes
over time. The probability distributions corresponding to the
maximum entropies, computed through Eq. (14), are present-
ed in Figs. 5 and 6, where it is observed that the probabilities
corresponding to higher values of rainfall amount are less than
the lower values of the rainfall. This indicates that associated
uncertainty increases with the lowering of rainfall amount
during the season of Indian summer monsoon. Nevertheless,
the measures of uncertainty in both scenarios stay in the range
of (Nebot et al. 2008; Lesne 2014). This indicates that the
ISMR over the study zone maintains its complexity pattern
throughout the years. This quantitative measure of uncertainty
can be utilized for the development of predictive models for
future studies.
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