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Abstract
A comprehensive assessment and bias corrections of two gridded daily precipitation products, based on gauge-only and multi-
satellite observations, are undertaken in this study using independent rain gauge data in and around the Kabini River (KR) basin
in South India. The KR basin, with complex terrain, highly variable precipitation and heterogeneous land use poses challenges in
the development of accurate gridded precipitation products. The gauge-only gridded precipitation data from the India
Meteorological Department (IMD) and multi-satellite gridded precipitation product from the Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)-3B42 are evaluated at daily and monthly scales in this study.
Both gridded precipitation products available at 0.25° spatial resolution are assessed using independent 57 rain gauge observa-
tions for the period of 2009–2016. Multiple visual and statistical metrics have been utilized to assess the error characteristics and
capability of these gridded precipitation estimates in replicating extremes. Results indicate that gauge-only gridded product is
generally better than the multi-satellite precipitation product. The multi-satellite product notably overestimates light precipitation
and underestimates extreme precipitation over the study region. To mitigate the overestimation of dry days in the TMPA-3B42
estimates, a dry-day correction method is developed and is applied using nearby rain gauge observations. Furthermore, a
quantile-based correction is also applied to both gridded precipitation products after confirming the stationarity of the data,
which substantially improved both precipitation estimates for distributed hydrological modelling studies in the KR basin.

Keywords Gridded precipitation product . Rain gauges . Earth-observation satellites . TRMM . Bias correction . Dry-day
correction . Kabini River basin . Hydrological modelling

1 Introduction

Gridded precipitation products, developed using spatial inter-
polation methods with data frommultiple sources such as rain
gauges, weather radars and Earth-observation satellites, are
vital for distributed hydrologic modelling studies (Hossain
and Huffman 2008; Wu et al. 2014; Shah and Mishra 2016;
Sun et al. 2018). Evaluation and bias correction of gridded
precipitation data are two critical tasks that precede the use
of these datasets in distributed hydrologic modelling applica-
tions. Several studies were conducted in the last decade to
validate satellite rainfall estimates (SREs) across the globe
through various approaches, such as grid to grid comparison
(Dinku et al. 2007; AghaKouchak et al. 2012; Gosset et al.
2013; Prakash et al. 2015a, b), grid to point comparison
(Scheel et al. 2011) and comparison at watershed or regional
scales (Bitew and Gebremichael 2011; Thiemig et al. 2012;
Beria et al. 2017). Dinku et al. (2007) investigated the chal-
lenges posed in SREs over two climatic regions, the
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mountainous and arid regions of East Africa, and noticed that
the satellite products underestimated rainfall in the
mountainous regions and overestimated rainfall in the arid
region. Maggioni et al. (2016) presented a synthesis of find-
ings of validation studies of contemporary SREs from differ-
ent multi-satellite precipitation products during the TRMM
era (1998–2015) across various regions in the world, and re-
ported that TMPA-3B42, due to gauge adjustment over the
land, is generally superior to other concurrent SREs in terms
of continuous and categorical error metrics over the tropics.

Prakash et al. (2015b) performed an error characterization
of near-real-time (3B42RT) and research product (3B42V7) of
the TMPA precipitation estimates over India using gauge-
based gridded precipi ta t ion data from the India
Meteorological Department (IMD) for a period of 13 years
(2001–2013) and found that both datasets represent the mean
seasonal rainfall characteristics reasonably well. However,
both products overestimate rainfall over most parts of the
country except over the orographic regions with 3B42V7 hav-
ing rather less error. Although the primary source of gauge-
based gridded precipitation data in India is IMD, a few studies
have also assessed the secondary sources of precipitation es-
timates from satellites (e.g. TRMM and Global Precipitation
Measurement (GPM)) in complex terrain due to their easy
accessibility and uniform spatial coverage (Bharti and Singh
2015; Bhardwaj et al. 2017). There are primarily two ap-
proaches used in the assessment of satellite rainfall products,
and they are (i) evaluation using a reference dataset through a
wide range of statistical scores and (ii) evaluation through
their use in any specific application. The second approach of
evaluating the SREs has also been investigated in India for
applications in crop modelling for simulation of biophysical
parameters like leaf area index (LAI) and biomass, estimation
of crop yield with comparison to using the gauge data
(Sreelash et al. 2013), vertical soil moisture profile simulation
using HYDRUS 1D (Gupta et al. 2014) and found to be prom-
ising. Beria et al. (2017) evaluated TMPA-3B42V7 and the
global precipitation measurement (GPM)-based multi-satellite
precipitation product (e.g. IMERG) at daily scale over 86 ba-
sins in India and found that IMERG was performing better
than 3B42V7 over most of the basins with overestimation in
semi-arid regions. However, the improvement of IMERGover
3B42V7 did not translate into runoff simulation. A detailed
review of the various evaluation studies of multi-satellite pre-
cipitation products over India was recently provided by
Prakash et al. (2018).

Recently, several studies (Nastos et al. 2013; Lockhoff
et al. 2014; Mehran and AghaKouchak 2014) have focused
on assessing the capability of SREs in identifying extreme
precipitation. Likewise, the studies over India for extreme
precipitation estimates using corresponding extreme precipi-
tation indices are rarely reported in the literature (e.g. Prakash
et al. 2016). Such studies are critical to understand the

applicability of SREs as inputs to simulation models dealing
with flash floods, streamflow and groundwater. Furthermore,
most of the studies have recommended two approaches to
alleviate the problems in SREs before their use in hydrological
applications. One approach is the local calibration using the
local meteorological and physical conditions (topography) of
the region and second approach is a suitable region-specific
and season-dependent bias-correction. However, the local cal-
ibration for satellite precipitation products is quite cumber-
some, and the only alternative is the bias correction of the
satellite rainfall (Dinku et al. 2007; AghaKouchak et al.
2012). Therefore, many studies (Bitew et al. 2012; Yong
et al. 2012; Habib et al. 2014; Yang et al. 2016; Yuan et al.
2017) had adopted bias correction of SREs to make them
suitable for hydrological applications. In this paper, the term
“rainfal l” is used interchangeably with the term
“precipitation.”

The SREs were improved by developing an empirical re-
lationship between the SREs and rain gauges, and further
incorporating the geographic location and topographic vari-
ables (Yin et al. 2008; Cheema and Bastiaanssen 2012). Abera
et al. (2016) evaluated and bias-corrected five daily satellite
rainfall products using quantile matching in the Upper Blue
Nile basin, Italy, and found the bias has decreased.
Vernimmen et al. (2012) used a power-law based bias correc-
tion of TMPA-3B42RT for its application in drought monitor-
ing in Indonesia. Woldemeskel et al. (2013) developed a com-
bined rain gauge and SREs product over Australia using a
linearised weighting procedure considering error variances
of each dataset. Mitra et al. (2009) developed a TMPA–
3B42V7 merged precipitation product with the daily rain
gauge data, to generate a 1° × 1° gridded rainfall product over
the Indian region for verification of large-scale monsoon pre-
cipitation features in numerical weather forecast models.
However, the approach only corrects the mean bias in the
SREs. Several studies reported that the distribution-based bias
correction techniques which have gained prominence are con-
sistently better than the mean-based methods for climate pro-
jections and hydrological simulations (Chen et al. 2013;
Teutschbein and Seibert 2013). Bias adjustment of satellite
rainfall has been carried out considering both frequency and
intensity bias in the rainfall. Tobin and Bennett (2010) devel-
oped a methodology to adjust the false alarm and missed rain-
fall in the SREs and found encouraging results in the simula-
tion of streamflow at daily time scale.

The Kabini River (KR) basin is characterized by highly
heterogeneous topography and land use/land cover coupled
with large-scale hydro-climatological variability that essen-
tially depends on precipitation as a source of hydrological
input. It is an ideal testbed for diverse research studies related
to agro-hydrological, remote sensing and hydrological inves-
tigations (Kumar et al. 2009). Several studies in the above
themes have been carried out in the KR basin and sub-basins
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of KR (Soumya et al. 2013). The basin is prone to high flood
risk due to depleting forest cover and also medium to high
groundwater risk due to excessive pumping in the down-
stream of the basin. The large-scale spatial and temporal var-
iation of precipitation over the KR basin is often not well
represented by ground-based measurements of hydro-
climatological variables, particularly because of the lack of
dense monitoring networks and thick forest cover. Remote
sensing of rainfall has immense potential to improve the
modelling of the spatio-temporal variability of hydrological
variables in the KR basin.

The IMD gridded rainfall data (Rajeevan et al. 2006; Pai
et al. 2014), developed using rain gauge observations from a
countrywide network of gauges, is used as a standard
benchmark for evaluation of satellite-based precipitation
products in India. However, the distributions of gauges are
not uniform across the country. In addition to IMD gauges,
there is a rather dense network of independent gauges main-
tained by local agencies in and around the KR basin. It is to
be noted that these gauge observations were not used in the
IMD gauge-only gridded precipitation product as well as in
TMPA-3B42. Hence, the TMPA-3B42 and IMD gauge-only
gridded precipitation products were validated against the
local rain gauges across the KR basin in this study.
Although several studies have been carried out to evaluate
precipitation products over India using the gridded IMD
rainfall as a reference, this study is a more comprehensive
evaluation of both IMD and TRMM gridded precipitation
products at basin scale with a suitable bias correction pro-
cedure using an independent basin-specific gauge network.

The present study is formulated with an objective of a
comprehensive evaluation of the IMD gauge-only and
TMPA-3B42 precipitation products over an environmentally
sensitive region of the KR basin with a focus on the compu-
tation of extreme precipitation indices using predominantly
independent gauge network. To alleviate the overestimation
of dry days in the TMPA-3B42 estimates, a dry-day correction
procedure is applied using gauge observations. Furthermore, a
quantile-based correction is also applied to both IMD and
TMPA gridded precipitation products. The contents of the
paper are organized as follows. The description of the study
area and details of the precipitation datasets are provided in
Section 2. The evaluation metrics and methods for bias cor-
rection are presented in Section 3. Results are presented and
discussed in Section 4 followed by conclusions in Section 5.

2 Study area and precipitation datasets

2.1 Kabini River basin

The Kabini River (KR) basin is located on the leeward
side of the Western Ghats of the southern Peninsular India

and lies between 11° 30′ 9′′ N to 12° 21′ 22.68′′ N latitude
and 75° 47′ 25.44″ E to 76° 54′ 37.44″ E longitude with a
distinct climate and geomorphologic gradient (Fig. 1).
The west-east geomorphologic gradient is due to the cli-
matic gradient induced by the Western Ghats, which run
parallel to the west coast and act as a barrier to the south-
west monsoon winds. Due to its unique characteristics,
the KR basin has been designated as a critical zone ob-
servatory (CZO), which facilitates multidisciplinary stud-
ies related to hydrology, geochemistry, soil science,
agronomy, remote sensing and ecology are being conduct-
ed (Sekhar et al. 2016). The area of the basin is approx-
imately 7000 km2, and the elevation ranges from 500 to
2000 m above the mean sea level. There is a high gradient
in the annual precipitation varying from 800 mm in the
east to 5000 mm to the west of the KR basin. The tem-
poral variability in precipitation is also quite large over
the KR basin. The basin falls into two different climatic
zones: tropical monsoon and tropical savannah according
to Köppen-Geiger classification (Kottek et al. 2006) inter-
spersed with forest cover (refer to Fig. 1a). The major
crops in the region are plantations such as tea, coffee,
pepper, cardamom in the low hills while the valleys are
predominantly paddy fields. High rainfall in humid zone
reduces the dependency on groundwater, and hence there
is almost no pumping. Conjunctive usage of surface and
groundwater in sub-humid zone demands pumping of
groundwater eventually. Hence, downstream areas of the
two major dams—Kabini dam and Krishna Raja Sagara
dam are prone to more pumping than rest of the sub-
humid zone. Groundwater pumping is mainly used for
irrigation of crops in the southern parts of both sub-
humid and semi-arid zones. Traditionally, crops are grown
during Kharif season (i.e. southwest monsoon season) in
most of these zones. However, these crops are irrigated
using groundwater during the last decade. Parts of these
zones cultivate either a second crop in the non-monsoon
season (i.e. Rabi season) or year-long crops such as sug-
arcane and turmeric. Paddy is grown in the command
areas of tanks and canals.

2.2 Rain gauge data

Precipitation data for the study is based on telemetric rain
gauges (TRGs) data available at Hobli (i.e. a cluster of
villages formed by an area of approximately 250 km2)
level over Karnataka state by the Karnataka State
Natural Disaster Monitoring Centre (KSNDMC), an au-
tonomous body affiliated to the Department of Science
and Technology (DST) of the Government of Karnataka.
The TRGs are operational since 2009. The rainfall data
are collected at every 15-min frequency. There are 57
gauges in and around the KR basin with 53 TRGs from
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Fig. 1 a Kabini river basin with the land use land cover map overlaid with the TRMM grids and spatial assignment of grids numbers. b elevation
map with Köppen-Geiger climate classses and superimposed rain gauge network
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KSNDMC in Karnataka state and four manual rain gauges
operated by the IMD in Kerala state (refer to Fig. 1b). The
gauge identification numbers of TRGs as shown in
Fig. 1b are issued by the KSNDMC.

2.3 Gridded precipitation data

Two gridded precipitation datasets based on gauge-only observa-
tions and satellite-based gridded data are used and evaluated in
this study. The gridded precipitation dataset based on gauge-only
observations is from the IMD. This gauge-only daily gridded
precipitation product available at 0.25° spatial resolution has been
generated over the Indian land area from 1901 to 2016 using a
varying rain gauge network of 6995 stations by applying
Shepard’s interpolation method (Pai et al. 2014). This dataset
has been widely used as a reference precipitation data for the
evaluation of satellite-derived and numerical models’ precipita-
tion, and various hydro-meteorological applications in India.
Although the density of rain gauges is quite dense over southern
peninsular India, there seems to be a drastic decrease in the num-
ber of rain gauges from 2009 onwards (Pai et al. 2014; Beria et al.
2017). The IMD reports daily rainfall as the total rainfall accumu-
lated for the preceding 24 h ending at 08:30 a.m. Indian Standard
Time (IST) (e.g. 03:00 UTC) on the recording date of the
measurement.

Another gridded precipitation product used and evaluated in
this study is the TMPA-3B42 version 7 research product, which is
a gauge-adjusted multi-satellite precipitation estimate (Huffman
et al. 2007, 2010). This three-hourly multi-satellite precipitation
product provides quasi-global quantitative precipitation estimates
at 0.25° spatial resolution from 50° N to 50° S. The TMPA-3B42
precipitation estimates are produced in four stages (Huffman et al.
2010): (i) themicrowave precipitation estimates are calibrated and
combined, (ii) the infrared precipitation estimates are created
using the calibrated microwave precipitation, (iii) the microwave
and infrared estimates are combined and (iv) rescaling to monthly
data is applied. The rescaling or bias correction is carried out with
the Global Precipitation Climatology Centre (GPCC) gauge anal-
yses to enhance calibration. Over India, the number of gauges
used in bias adjustment of the TMPA is about 260 (Prakash
et al. 2015a). After the degradation of TRMM precipitation radar
in October 2014, a climatological calibration procedure has been
used. TMPA-3B42 estimates are proven to be superior to other
contemporary multi-satellite precipitation estimates across India
as well as over the globe (Maggioni et al. 2016; Prakash et al.
2018). We used three-hourly precipitation estimates from TMPA-
3B42 for 2009 to 2016 in this study. Even though theGPM-based
multi-satellite precipitation product (e.g. IMERG) is available
from March 2014 at a better spatial resolution of 0.1°, however
we have used TMPA product in this study due to its longer
temporal record and its availability from the time the TRGs are
operational in KR basin.

3 Methodology

3.1 Metrics for evaluation

As TRGs and IMD accumulate daily rainfall ending at 0300
UTC, the same convention for the computation of daily accu-
mulation from three-hourly TMPA product is utilized for the
assessment. The grid centres of TRMM and IMD do not
match. There is a shift of 0.125° between the grid centres.
To maintain the spatial homogeneity between the datasets,
the IMD gridded rainfall is re-sampled to match TRMM grid
centres using the linear interpolation technique. The grid to
point comparison is done with the co-located rain gauges in
the grid, and when more than one gauge is available a mean
value of all available observed rainfall values is used. The
evaluation is done from 2009 to 2016 due to the availability
of TRGs since 2009. Gebremichael (2010) and Teegavarapu
et al. (2017) have put forth a standard framework for the as-
sessment of radar-based precipitation and SREs, respectively,
using ground-truth data (e.g. rain gauge data) as a reference.
The framework utilizes three types of analyses, and they are (i)
categorical verification statistics, (ii) continuous verification
statistics and (iii) extreme indices. Apart from these three ma-
jor analyses, visual verification methods can also help in the
validation exercise of precipitation products.

(i) Categorical verification statistics
The categorical metrics are used in this study to mea-

sure the correspondence between the observed and the
gridded (i.e. satellite-based or gauge-based) precipitation.
Also, the volumetric indices, which are an extension to
categorical indices proposed by AghaKouchak and
Mehran (2013), were also computed. IMD uses a thresh-
old of 2.5 mm to define a rainy day, and this threshold
was adopted in this study. The verification measures are
described in Table 1.

(ii) Continuous verification statistics
The continuous verification statistics measure the ac-

curacy of gridded precipitation products vis-à-vis precip-
itation amount or intensity. Standard measures such as
Pearson’s correlation coefficient (r), root mean squared
error (RMSE), bias (β), mean absolute error (MAE) de-
fined in Table 2 are used to quantify the errors and per-
formance measures calculated based on gridded rainfall
estimates and rain gauge observations.

(iii) Extreme precipitation indices
The categorical verification statistics and continuous

verification statistics do not evaluate how well the SREs
resolve extreme event-related precipitation magnitudes.
To appraise howwell the TMPA and IMD gridded prod-
ucts estimate the extreme values as observed by gauge-
based observed precipitation, 12 standard extreme indi-
ces introduced by the World Climate Research Program
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(WRCP) on Climate and Ocean: Variabil i ty,
Predictability and Change (CLIVAR) are used (Karl
et al. 1999) in this study. Table 3 provides details of
the twelve extreme precipitation indices used in this
study.

3.2 Bias corrections

The bias in the TMPA-based product after the evaluation has
been corrected for two components: (i) dry-day correction and
(ii) frequency and magnitude correction using the quantile-
based approach. The details of these approaches are as de-
scribed in the following sub-sections.

3.2.1 Method for dry-day correction

Teegavarapu et al. (2009) proposed a correction technique for
the lower end extremes of precipitation data by using the
nearest gauge as the best estimator (referred to as single best
estimator) to set it as a dry day in spatial interpolation esti-
mate. In this study, a variant was used to correct the dry days
wrongly constructed in the gridded data using the rainfall re-
corded in the grid or multiple grids around the grid by one or
more rain gauges. The hypothesis is that if all the stations
report zero rainfall, then observation in the grid in contention
can be equated to zero rain in any given time interval (i.e.
day). Dry-day corrections are implemented whenever a spe-
cific gridded product is known to be underestimating the num-
ber of dry days. The threshold used for dry is 0 mm of precip-
itation on any given day. Dry-day correction for any data value
from a specific grid (referred to as base grid) is implemented
using information from a nearby rain gauge or a set of rain

gauges from the centre of the grid or information of rainfall
magnitudes from one or more grids surrounding the base grid.
Precipitation information for the surrounding grids is obtained
using a separate gridded precipitation product available for
these grids. The revised value for the base grid magnitude in
any given time interval t using dry-day correction is given by
Eq. 1. The variable θm, t is the revised value of the base grid
(m) and θn, t is the magnitude of precipitation at the gauge
nearest to the centre of the base grid.

θm;t ¼ θn;t i f θn;t ¼ 0 ∀m; n; t ∧mϵn ð1Þ

Dry-day correction based on surrounding grids, rook
neighbourhood (Lloyd 2010) is given by Eq. 2 and Eq. 3.
The variable Sm, t is the accumulated value of rainfall based
on the nearby ith grid values θi, t.

Sm;t ¼ ∑NG
i¼1θi;t∀i;∀t ð2Þ

where NG be the number of surrounding grids. θm, t is the
revised rainfall estimate for base grid.

θm;t ¼ Sm;t if Smt ¼ 0f g ∀i;∀t ð3Þ

A schematic illustrating different dry-day corrections is
shown in Fig. 2. However, in the variant proposed, as the
interpolated rainfall is based on neighbourhood, this might
lead to overcorrection of the dry days in few cases.
Therefore, another variant is also proposed in this study using
the gridded precipitation data. Figure 2b shows the schematic
for dry-day correction at the boundary (or corner) of the study
region where there might not be surrounding grids existing in
all directions. Figure 2c demonstrates the correction for the
grids in the centre of the study region, which has eight sur-
rounding grids that can be of aid in dry-day correction.

Table 1 Categorical verification statistics

Performance Measure Formula

Probability of detection (POD) POD ¼ H
HþM

False alarm ratio (FAR) FAR ¼ F
HþF

Miss ratio (MR) MR ¼ M
HþM

Critical success index (CSI) CSI ¼ H
HþMþF

Volumetric hit index (VHI) VHI ¼ ∑n
i¼1 GRDij GRDi>t&OBSi>tð Þð Þ

∑n
i¼1 GRDi j GRDi>t&OBSi>tð Þð Þþ∑n

i¼1 OBSij GRDi ≤ t&OBSi>tð Þð Þ

Volumetric false alarm ratio (VFAR) VFAR ¼ ∑n
i¼1 GRDij GRDi>t&OBSi ≤ tð Þð Þ

∑n
i¼1 GRDij GRDi>t&OBSi>tð Þð Þþ∑n

i¼1 OBSi j GRDi>t&OBSi ≤ tð Þð Þ

Volumetric miss index (VMI) VMI ¼ ∑n
i¼1 OBSi j GRDi ≤ t&OBSi>tð Þð Þ

∑n
i¼1 GRDi j GRDi>t&OBSi>tð Þð Þþ∑n

i¼1 OBSij GRDi ≤ t&OBSi>tð Þð Þ

Volumetric critical success index (VCSI)
VCSI ¼ ∑n

i¼1 GRDi j GRDi>t&OBSi>tð Þð Þ
∑n
i¼1 GRDi j GRDi>t&OBSi>tð Þð Þþ∑n

i¼1 OBSi j GRDi ≤ t&OBSi>tð Þð Þþ∑n
i¼1 GRDij GRDi>t&OBSi ≤ tð Þð Þ

H, M and F are the number of hits, misses and false alarms respectively

OBS and GRD is the observed reference rainfall and estimated gridded rainfall; t is the threshold
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3.2.2 Bias corrections using quantile matching

The quantile-based mapping (QM) method used for correcting
the biases in downscaled precipitation datasets obtained from
the general circulationmodel simulations is used in this study to
correct biases in the gridded precipitation data (Panofsky and
Brier 1968; Maurer and Hidalgo 2008). The QM method ad-
justs all the moments of the estimated data. The availability of
stationary precipitation time series from rain gauges is required
for bias corrections. The method uses the observed cumulative
distribution function (CDF) of data from rain gauges to correct
gridded precipitation data with an assumption that the distribu-
tion characteristics of data do not change in the period of con-
sideration. The bias correction is given by Eq. 4.

βc
i ¼ F−1

ob Fgd βgd
i

� �� �
∀i ð4Þ

where Fob is the CDF of the observed precipitation data
derived from rain gauge and Fgd is the CDF derived from
the gridded precipitation data. The variable βc

i is the bias-
corrected gridded precipitation value for any time interval
i obtained in two steps: (a) gridded precipitation are used

to develop a CDF and the non-exceedance probability Fgd

βgd
i

� �
is obtained for each value of βgd

i and (b) corrected

estimate (βc
i ) obtained using the inverse of the observed

CDF for the value of non-exceedance probability obtained
in the first step. To correct the gridded precipitation, data
available from the collocated rain gauge or nearest rain
gauge from the grid centre is used. The accuracy of
gridded data precipitation corrections will depend on the
existence of serially complete chronological data from
rain gauges and evidence of stationarity of the precipita-
tion time series over the period under consideration. QM

method can be used for bias correction of both daily and
monthly gridded precipitation datasets.

3.3 Evaluation of stationarity of precipitation time
series

The stationarity of rain gauge data is confirmed by the evi-
dence of lack of any statistically significant trends and chang-
es in the first two statistical moments. Two nonparametric
trend tests (viz. Spearman’s Rho and Mann-Kendall tests)
are used to evaluate monthly time series for confirmation of
any statistically significant trends in this study. As seasonality
was evident in the monthly time series based on visual evalu-
ation of time series, a seasonal Mann-Kendall test that ac-
counts for seasonality and autocorrelation was used. In addi-
tional to trend tests, augmented Dickey-Fuller (ADF) test
(Dickey and Fuller 1979) was also used to assess stationarity
of time precipitation time series. All the hypothesis tests were
conducted at 5% significance level.

4 Results and discussions

An exhaustive evaluation of two gridded precipitation prod-
ucts (i.e. IMD and TRMM) against independent gauge obser-
vations is carried out at two temporal scales (viz., daily and
monthly) with first the results of daily followed by monthly
scale analyses are discussed. Twenty grids in and around KR
basin are chosen for evaluation in the current study and are
numbered from 1 to 20 (Fig. 1a) with 18 grids having one or
more rain gauges. Rain gauge 2, which is exactly on the edge
of grid 11 and 12, is used as a common reference for both the
grids. Grids 16 and 20 are with no gauges, and therefore not
included in the evaluation. The IMD and TRMM are

Table 2 Continuous verification statistics with their respective equations and units

Error Measure Equation Unit

Bias (β) β ¼ ∑
n

i¼1
Y i−Oið Þ mm

Mean absolute error (MAE) MAE ¼ ∑
n

i¼1
Y i−Oij j mm

Rootmean square error (RMSE) RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

i¼1
Y i−Oið Þ

� �2
s

mm

Correlation (r)
r ¼ ∑n

i¼1 Y i−Yð Þ Oi−Oð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
i¼1 Y i−Yð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
i¼1 Oi−Oð Þ2

q –

O, Y is the observed rainfall and estimated gridded rainfall respectively

O, Y is the average of observed rainfall and average of estimated gridded rainfall respectively; n is the number of data points
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evaluated with the gauge rainfall as a reference. Also, the
TMPA was evaluated against IMD gridded rainfall data as a
reference.

4.1 Evaluation of daily datasets

The four statistical moments (viz., mean, variance, skewness
and kurtosis) of daily rainfall were compared against IMD and
3B42V7 rainfall at 18 grids. Table 4 shows the first and sec-
ond moments and their absolute differences for each grid. The
mean and variance in the 3B42V7 rainfall is high, with IMD
rainfall closely matching the median. However, the median
value of skewness and kurtosis of 3B42V7 are quite closely
matching the RG values. The third and fourthmoments are not
shown in the table.

4.1.1 Rainy days

IMD uses a threshold of 2.5 mm of precipitation to classify a
day as a rainy day. This threshold was used to compute the
number of rainy days in a month across each year for 8 years.
The number of rainy days is overestimated by TRMM in the
semi-arid region in the monsoon season (JJAS) and is
underestimated in the humid region of the KR basin. The
month of July has the maximum number of rainy days in a
year. In this month, the number of rainy days is
underestimated in grids close to the Western Ghats (see
Fig. 1b), and as we move eastwards, the number of rainy days
is overestimated by TRMM. Figure 3 shows the number of
rainy days in different months for two grids 6 and 15. There is
clear disagreement among the three datasets in the number of
rainy days in the monsoon season for the grids in the semi-arid
region. This overestimation of dry-day rainfall by TRMM in
June, July, August and September warrants a dry-day correc-
tion of TRMM.

4.1.2 Categorical verification statistics

Figure 4 shows the categorical statistics with both RG and
IMD as a reference. The average POD is around 0.63 with
RG as reference and 0.69 with IMD data as a reference. The
POD values are smaller in grids 12 and 18, around 0.46 to
0.54. The FAR and MR measures are in the range of 0.46 to
0.55. The CSI is found to be lower in the grids 12, 14, 18 and
19 using both gauges and IMD as a reference. The grids 12
and 18 are in the forested region. However, the grids 14 and 19
which have crops and in the semi-arid region have a low CSI.
The performance is lower for the grids 11 to 20. Figure 5
shows the volumetric metrics; the VHI values are high, with
values ranging from 0.48 to 0.89. The VMI and VFAR are
high in grid 18 with 0.51 and 0.42 respectively. Similar be-
haviour was also observed when the RG is used as a reference
for evaluating IMD rainfall.Ta
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Fig. 3 Number of rainy days at two locations

Fig. 2 Schematic of dry-day cor-
rection for TRMM data using the
neighbourhood. a Single grid-
based correction. bMultiple grid-
based corrections (case 1) with
the base grid at the corner of the
study area. c Multiple grid-based
corrections (case 2) with the base
grid at the centre of the study area
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Fig. 4 Spatial distribution of categorical verification statistics POD, FAR,
MR and CSI for daily time scale, with threshold of 2.5 mm for TMPA
with station rainfall as reference (left column), TMPA with IMD as

reference (centre column) and IMD with station rainfall as reference
(right column)
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Fig. 5 Spatial distribution of volumetric indices VHI, VFAR, VMI and
VCSI for daily time scale, with a threshold of 2.5 mm for TMPA with
station rainfall as a reference (left column), TMPA with IMD as a

reference (centre column) and IMD with station rainfall as a reference
(right column)
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4.1.3 Extreme indices at daily scale

The extreme precipitation indices for all the 18 grids
combined is shown in Fig. 6. The comparison is carried
out between the rain gauges, IMD and TRMM daily
rainfall. IMD is able to preserve the CDD and CWD
that were observed from the rain gauge data. In partic-
ular, the interquartile range (IQR) in TRMM is very
small as compared to the RG and TRMM rainfall.

4.2 Evaluation of monthly datasets

4.2.1 Autocorrelation

The monthly temporal autocorrelation was computed for lags
ranging from 1 to 20 for RG, IMD and TRMM to check the
persistence among the datasets. It was found that in most of
the grids, the temporal autocorrelation is well captured by both
the IMD and TRMM with the rain gauge values. The

Fig. 6 Extreme precipitation indices based on two different rainfall products and gauge

S. Yeggina et al.1506



autocorrelation value is close to 0.5 for lag 1 at almost all
of the grids. Figure 7 shows the autocorrelation at six grid
locations. General behaviour was observed as classified
based on the climate. In the grids closer to the Western
Ghats and are in the humid zone, there is a very good
agreement in the temporal autocorrelation, as seen in grid
grids 1, 6 and 11 (Fig. 7). The farther we move away from
the Ghats with a semi-arid type of climate, a clear dis-
agreement in the monthly correlation values is observed
as dominantly visible in grid 15 (Fig. 7f).

4.2.2 Comparison of cumulative density functions

The cumulative distribution function (CDF) comparison is
carried out using the rain gauge rainfall as a reference.
Figure 8 shows the CDFs based on IMD, satellite estimates
and from rain gauge. There is good agreement between the
CDFs of IMD and TRMM in the grids 4 and 6 with that of the
gauge. However, the CDF of IMD and TRMM show discrep-
ancy from the CDF of rain gauge in the grids 15 and 18, with
higher discrepancy observed in TRMM. The TRMM rainfall
is highly overestimated in these grids.

4.3 Bias corrections

The results from the application of two approaches of correc-
tion of the gridded products using dry-day correction and QM
are presented in this section.

4.3.1 Dry-day corrections

The hypothesis is that satellite has a wide swath and has a
synoptic view of the region, and the SREs are an average of
large area and therefore, should have more rainy days.

However, it is observed that satellite-based estimates in few
grids in the humid region of the KR basin have more non-
rainy days than as seen in the RG data. One of the likely
reasons could be due to low sampling frequency and missing
of low-intensity rainfall events. Therefore, in the present
study, a dry-day correction is proposed using the RG or
IMD data for correction of TRMM. On the other hand, the
IMD gridded data developed by spatial interpolation has a
general limitation that any spatial interpolation method over-
estimates lower-end values and underestimate higher-end ex-
treme values. As it is evident from the number of rainy days
comparison for each grid that the TRMM is overestimating the
dry-days, they are corrected using the gauges. The IMD rain-
fall is dry-day corrected using the RG data as a reference.
However, the TRMM data can be dry-day corrected using
either the rain gauges or the IMD gridded rainfall as a refer-
ence. Table 5 shows the results of number of dry-days as
observed in TRMM and IMD.

4.3.2 Quantile matching-based corrections

The results of QM correction using the complete and partial
RG data set are presented in experiment 1, 2 and 3.

Experiment # 1: complete RG data as reference Bias correc-
tions at a monthly scale are carried out using the QM approach
using data from the rain gauge that is collocated in a
particular grid. Rain gauge that is closest to the grid
centre whether it is within a grid of interest or outside,
is selected for bias correction. Both IMD and TRMM
datasets are corrected for 20 grids and the rain gauge
and gridded datasets before and after bias correction are
compared for distributional similarity using a two sam-
ple Kolmogorov-Smirnov test at 5% significance level.

Fig. 7 Monthly autocorrelation for rain gauge, IMD and TRMM at six grids locations

Evaluation and bias corrections of gridded precipitation data for hydrologic modelling support in Kabini... 1507



The merged gauge timeseries data collected from
Department of Economics and Statistics (DES) for the
period 1998–2008 and the TRG data available from
2009 to 2016 is used for bias correction. Any year with
missing daily data is not used for calculation of month-
ly totals. Rain gauges have missing data in years 2000,
2002, 2005, 2009 -2010 and therefore monthly data
from these years are not used for bias correction.
Results indicate that 12 and 16 sites out of 20 fail the
KS test before correction for IMD and TRMM datasets
respectively. After the bias correction, 3 and 12 sites
fail the KS test. Substantial improvement in matching
the quantiles of the data is obtained for IMD data com-
pared to TRMM.

Stationarity checkMonthly rain gauge data available from
57 rain gages are evaluated for any statistically signifi-
cant trends using the Mann-Kendall test that considers
seasonality. The test was carried out at 5% significance
level. Data from 15 and 3 sites at 5% and 1% signifi-
cance levels respectively indicate decreasing trends. The
augmented Dickey-Fuller (ADF) test results at all the
sites indicated an alternative hypothesis at 5% signifi-
cance level suggesting stationarity of monthly time se-
ries. Figure 9 shows the results for two stations, one

TRG 227 where a negative trend is observed (Fig. 9a)
and other RG 3 where there is no trend (Fig. 9b).

Experiment # 2: partial RG data as reference In this experi-
ment, data from all the rain gauges that are located in a
specific grid are used for bias correction. If a grid does
not have a collocated rain gauge, a gauge nearest to the
grid centre is used. Also, rain gauge data from period
2009–2016 is used for correction of gridded datasets to
evaluate the bias correction improvement when data
from one specific temporal window which is part of
the entire time period is used. Since monthly time series
at almost all sites are proved to be stationary, such an
experiment of using only a part of the data for bias
correction is justified. Results indicate that 12 and 16
sites fail KS test before for IMD and TRMM datasets
respectively. After bias correction, 8 and 12 sites (grids)
fail the KS test for IMD and TRMM datasets. It is
noted that using the complete rain gauge data and par-
tial data for bias correction does vary the results.
Although for TRMM the number of grids using partial
or complete are the same, however there is a significant
difference in results for IMD using the partial or com-
plete rain gauge data for bias correction. Figure 10
shows the density plots at daily scale before and after bias

Fig. 8 Comparison of non-
exceedance probability of rain
gauge, IMD and TRMM rainfall
at four grids in the KR basin
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correction at three grid locations. A substantial improvement in
bias reduction is observed in grid 15, where the bias correction
density is matching with the rain gauge density. At others grid 12
and 3, we see a marginal improvement in the bias after
correction.

Experiment # 3: complete RG data as reference This experi-
ment is the same as experiment 1, except that the rain gauge
data from the entire period 1998–2016 is used for bias correc-
tion. Results indicate that 12 and 16 sites fail KS test before
the correction for IMD and TRMM datasets, respectively.

Fig. 9 Results from Mann Kendall tests and time series data for RG (a) 227 and (b) 3

S. Yeggina et al.1510



After bias correction, 8 and 14 sites fail the KS test for IMD
and TRMM datasets.

5 Conclusions

A comprehensive study aimed at evaluation and correc-
tion of biases in two gridded precipitation datasets from
an environmentally sensitive river basin, Kabini, in South
India is reported in this paper. Daily and monthly obser-
vations from the rain gauges in the basin are used to
evaluate the two gridded products. Results from the anal-
ysis indicate spatially varying biases for both the gridded
products with one of the products from the Indian mete-
orological department (IMD) was found to be better than
a spatially comparable satellite-based product. Biases
were more prevalent in daily precipitation compared to
those from a monthly temporal scale. Dry-day corrections
using two different methods based on nearest neighbour’s
concept and quantile matching approach have helped to
correct the biases. Further, the TRMM, IMD and bias-
corrected products can be used as inputs to surface and
ground water models to test the sensitivity of these
models in replicating observed surface and sub-surface
flow characteristics. Based on the analyses for the KR
basin, we recommend the IMD gridded rainfall data for
surface water modelling where there is day to day varia-
tions in rainfall are important. At monthly time scales,
both IMD and TRMM data are suitable for ground water
modelling or water budgeting. However, both at daily and
monthly timescales it is recommended that bias

corrections of the products are carried out before their
use in any hydrologic modelling exercise. There are two
limitations of the current work; one is the results present-
ed in this study could be biased as there is a dearth of
gauges in the humid region and other is the scale mis-
match. The gridded precipitation has been compared with
the station rainfall. To solve for the scale mismatch, a
gridded precipitation data at 0.25° could be generated
using Shepard’s method with modified neighbourhood se-
lection (Yeggina et al. 2019) using available rain gauge
observations. The density of the gauges can be improved
in the region where installation of weather radar sites is
difficult due to the topography of the KR basin or else
new approaches of using commercial cellular communica-
tion networks (Leijnse et al. 2007) to evaluate the satellite
rainfall can be tested as future research.
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