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Abstract
Ensemble Prediction Systems (EPSs) are increasingly applied for rainfall forecasts and flooding warning systems. In this paper,
these forecasts and their skills are evaluated through relevant criteria, particularly by considering forecast performances for
different lead times. Furthermore, to enhance their performance, we propose to preprocess the EPS forecasts’ output using bias
correction methods. For this aim, forecasts for different ranges of precipitation as well as various climatic conditions are
evaluated, which is particularly important for extreme events that can lead to flooding. The Karun River basin in Iran is used
as case study, a large area including various climate conditions. The results showed that the performance of European Center for
Medium-Range Weather Forecasts (ECMWF) forecasts vary with sub-basin properties, e.g., area and skewness of daily precip-
itation, and vary across dry to humid regions, between flooding and non-flooding seasons, and different lead times and show the
effect of different methods for bias correction on the forecast skill. The forecast skill is decreasing from wet regions towards dry
regions and the bias correction was more effective in the flooding season, for which the skill was increased by 40% based on
continuous ranked probability skill score (CRPSS).When the precipitation thresholds were increased towards extreme values, the
forecast performance of ECMWF became better.

1 Introduction

One of the main components of flood warning systems
is “precipitation forecasts.” For this purpose, often de-
terministic numerical weather prediction (NWP) models
are considered. However, such models highly depend on
the initial atmospheric conditions and do not take

uncertainties into account (Gourley and Vieux 2005;
Ye et al. 2014). To overcome this limitation, the use
of meteorological Ensemble Prediction Systems (EPSs)
is an alternative that is increasingly considered for flood
warning systems (Hamill et al. 2000; Goswami et al.
2007; Verkade et al. 2013). EPSs are numerical weather
prediction systems which make it possible to estimate
the uncertainty in a weather forecast using probability
distribution functions of the atmospheric conditions and
also provide the most likely outcome (WMO 2015). The
European Center for Medium-Range Weather Forecasts’
Ensemble Prediction System (ECMWF-EPS) is one of
the well-known EPSs in this regard (Woods 2006).
The short to medium range (1–15 days forecast lead
time) ensemble weather forecasts of this center are
available since November 1992. ECMWF forecasts in-
clude 50 members which are derived from different ini-
tial atmospheric conditions.

In spite of positive reports about ECMWF-EPS, the evalu-
ation of its forecasts is still under investigation. Operational
challenges are false warnings, particularly as the lead times
increase. The consequences of errors can be costly and dam-
age the reputation of forecasting institutions (Ye et al. 2014).
To assess the performance of ECMWF forecasts, different
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skill and accuracy criteria are suggested (Liu et al. 2014). For
instance, ECMWF forecasts’ skills were evaluated in the
Danube bas in us ing the Brier ski l l score (BSS)
(Pappenberger and Buizza 2009). Monhart et al. (2018) eval-
uated ECMWFmodel skill against 1000 precipitation stations
for Europe using the continuous ranked probability skill score
(CRPSS), ranked probability skill score (RPSS), and receiver
operating characteristic (ROC). Thirel et al. (2008) compared
ECMWF andMétéo-France Prévision d’Ensemble ARPEGE-
EPS precipitation over France using BSS and CRPSS. To
improve the performance of EPSs, post-processing of the out-
put information is also considered, especially bias correction.
Due to the limitations of the NWPmodels and their associated
data, the forecasts may contain biases in moments of the
forecast distribution. Verkade et al. (2013) evaluated
ECMWF precipitation ensemble forecasts for biases in the
mean, variance, and forecast probabilities. They applied
quantile-to-quantile transformation (QM) and a linear regres-
sion method as bias correction methods.

In addition to general evaluation of the ECMWF
forecasts, there are a number of studies that considered
other criteria such as physical conditions in basins. For
example, Pappenberger and Buizza (2009) evaluated the
skill of ECMWF forecasts in the upper, middle, and
lower basin of the Danube. Their results showed that
the surface area of the sub-basin affects the skill of
forecasts, where larger sub-basins show better results
in the verification. In another study, Ye et al. (2014)
considered the performance of ECMWF for different
basin sizes during flooding and non-flooding seasons.
They used the continuous ranked probability score
(CRPS), CRPSS, and reduction continuous ranked prob-
ability score (RCRPS). Their results showed that the
forecast performance vary with sub-basin properties,
e.g., area and skewness of daily precipitation and dif-
ference between the flooding and non-flooding seasons.

According to the previous studies, ECMWF has
turned out to be the best model among those in TIGGE
(THORPEX Interactive Grand Global Ensemble) due to
the high forecast skill (Zhao et al. 2011; Zhi et al. 2011;
Su et al. 2014). However, the influence of climate con-
ditions on the skill of this model is still unknown.
Therefore, this study aims to evaluate the skill of
ECMWF’s ensemble forecasts across dry to humid re-
gions. Moreover, in this study, specific attention is paid
to forecasting of precipitation thresholds (as percentage).
The forecasts are evaluated at certain thresholds derived
from observed precipitation. Since this study focuses on
high flow forecasts, the thresholds chosen in this study
are exceedances of 0, 25%, 75%, 95%, and 98%. Such
evaluation is highly imperative since in case of showing
high skill at extreme thresholds, this model can be ap-
plied in flood warning systems for predicting floods.

2 Material and methods

2.1 Study area and data

The Karun River basin is located in the middle Zagros moun-
tains in Iran and extends over geographical coordinates of 48–
52° E and 30–34° N. The basin is relatively large with an area
of 67,297 km2, elevations ranging from 0 to 4400 m above
mean sea level (Fig. 1a), and a spatial variation of annual
precipitation from 50 to 1800 mm. This basin is one of the
most important basins of Iran in terms of water resources and
discharges to the Persian Gulf and Oman Sea. The basin in-
cludes three large dams that are constructed for flood manage-
ment and irrigation of the large agriculture areas of Karun
plain. There is a dense precipitation gauge network in this
region, but for this research, the statistics and time series of
21 stations were available. Location and characteristics of
these stations are given in Fig. 1b and Table 1. All data were
adopted from the National Weather Organization of Iran.

2.2 Climatic regions in Karun basin

Using the de-Matron method, Karun basin can be classified
into six climatic regions, namely very humid, humid, semi-
humid, Mediterranean, semi-arid, and arid. Climate in this
region is mainly influenced by altitude that varies between
the lowland plains (0 m.a.s.l1at the outlet of Karun River to
the Persian Gulf) and elevations over 4000 m.a.s.l at the
Koohrang elevations. The annual precipitation in the basin is
as low as 150 mm in the lowland plains and reaches 1800 mm
in the highlands (Table 2).

2.3 ECMWF data

THORPEX is the Global Project andWorldWeather Research
Programme project (Bougeault et al. 2010) that was set up by
the World Meteorological Organization (WMO) to improve
mid-term (1 day to 2 weeks) forecasts (Clock et al. 2009). In
this project, TIGGE was a major database which began using
the forecast data from October 2006 from 10 global numerical
weather prediction models. All TIGGE models have a resolu-
tion of 1 × 1 degree or coarser, except for ECMWF and CMA
(China Meteorological Administration) with a resolution of
0.5 × 0.5 degrees (Louvet et al., 2015). Researchers have paid
a lot of attention to ECMWF as one of the leading global
modeling centers in the world, due to its larger number of
members in the ensemble forecasts and its higher spatial ac-
curacy compared to other models (Woods 2006). This data
center has been producing ensemble forecasts since 1992
(Pappenberger and Buizza 2009). In recent decades,
ECMWF forecasts have reached high standards and its

1 Meters above sea level

M. Abedi et al.62



analyses have been extended to provide real-time forecasts of
floods around the world.

The forecasts of the ECMWF model are only available at a
resolution of 0.5 × 0.5 degrees, and therefore, interpolation
has been carried out using inverse distance weighting (IDW)

to provide forecasts at the locations of the observation stations
with lead times of 24, 72, and 120 hr from September 24,
2010, to September 23, 2014. To calculate the amount of
rainfall in each climate region, the Thiessen polygon method
was used within ArcGIS. Figure 1 shows the distribution of

Table 1 Description of rainfall stations in Karun basin

Climate ID Station Longitude
(decimal degree)

Latitude
(decimal degree)

Elevation (m) Mean daily rainfall
(mm/day)

Skewness of daily
rainfall (%)

1 1 Sisakht 33.74 48.87 1496.9 1.6 5

2 1 Ab Barik 33.45 49.41 1871.8 2.4 5.2

3 2 Sepiddasht 33.21 48.89 1021 1.7 5.43

4 2 Tange Panj 33.19 49.18 1591 1.3 6.9

5 2 Dorud 33.52 49 1522.3 1.9 6.4

6 2 Fereidunshahr 32.94 50.13 2490 1.4 6.72

7 3 Azna 31.25 48.55 12 0.53 6.3

8 3 Dehdez 31.71 50.28 1457 1.3 6

9 3 Aligudarz 33.41 49.7 2022.1 0.88 6.84

10 3 Borujerd 33.92 48.76 1629 1.1 6.2

11 3 Samirom 31.42 51.55 2459.9 1.3 6.64

12 4 Lali 32.34 49.1 365 1.1 7.5

13 4 Izeh 31.85 49.85 767 1.5 6.9

14 5 Hoseyniyeh 32.67 48.25 354 0.45 9.8

15 5 Dezful 32.4 48.38 143 0.5 9

16 5 Gotvand 32.22 48.81 70 0.6 10

17 5 Ahvaz 31.34 48.74 22.5 0.48 9.4

18 5 Masjed Soleyman 31.98 49.24 320.5 0.45 8.6

19 6 Safiabad 32.25 48.43 82.9 0.37 11.35

20 6 Shush 32.19 48.24 65 0.5 10.36

21 6 Abadan 30.38 48.21 6.6 0.27 13.28

Fig. 1 a Elevation range and b ECMWF grids, rainfall stations and dams shown on the climatic zones in Karun River basin
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ECMWF grid points in the Karun basin. In this study, the
ECMWF mid-term skill was evaluated using two bias correc-
tion methods, i.e., linear mapping (LM) and quantile
mapping (QM) for three lead times.

2.4 Bias correction methods

Linear mapping and quantile mapping bias correction
methods were used in order to identify and correct the possible
systematic differences between observed and forecasted data.
In the LM), the average of the observations and forecasts is
considered. This method aims to correct the mean forecasts
based on the difference between the mean of observed and
forecasted values (Crochemore et al. 2016). In the QM meth-
od, observations and forecasts are matched based on probabil-
ity distributions or quantiles. In this method, the cumulative
distribution function (CDF) is first calculated for the forecasts,
then the CDF for the observed data is mapped, the value of
each member and its probability will be determined, and fi-
nally, for each probability, the observed value will be estimat-
ed and replaced by the forecasted value (Crochemore et al.
2016). To compare the effectiveness of these methods, a com-
parison of the bias correction methods for mid-term ECMWF
data was investigated.

2.5 Evaluation indices

2.5.1 Continuous ranked probability score

The continuous ranked probability score (CRPS) index shows
the rate of consistency between the CDFs of the observed and
probabilistic predictions. This index assesses the accuracy by
comparing probability distributions of ensemble forecasts
with observed values (Liu and Xie 2014):

CRPS ¼ 1

n
∑
n

i¼1
∫þ∞
−∞ Fi xð Þ−oi xð Þ½ �2dx

¼ 1

n
∑
n

i¼1
∫þ∞
−∞ Fi xð Þ−H x−xo:ið Þ½ �2dx ð1Þ

where n is the number of predictions, F(x) denotes the cumu-
lative distribution function of predictions, o(x) is the observed
cumulative distribution function, and H(x − xo.i) is the

Heaviside function for observed values, which equals 0 if
H(x − xo. i),P(x)= is less than zero and is one if H is greater
than one (Hersbach 2000). The ideal value for CRPS is zero.

A critical issue when using probabilistic skill scores is the
lack of attention to dispersion and the number of examined
parameters. To circumvent this issue, the reduction continuous
ranked probability score (RCRPS) was used. This is the nor-
malized form of the CRPS using the standard deviation that
was introduced by Trinh et al. (2013):

RCRPS ¼ CRPS
σ

ð2Þ

where σ is the standard deviation of the observed values for
each study area or time period.

2.5.2 Continuous ranked probability skill score

This index is another normalized form of CRPS (Trinh et al.
2013). Continuous ranked probability skill score (CRPSS) is
used to quantify the skill of ensemble forecasting compared to
a reference forecast. The value of CRPSS ranges between −∞
and 1 and its ideal value is 1 (Ye et al. 2014).

CRPSS ¼ 1−
CRPSforecast
CRPSreference

ð3Þ

where CRPSforecast is the CRPS related to the forecast and
CRPSreference refers to the CRPS determining the forecast over
a reference period. In this paper, the reference forecast was
considered as climatology in the form of rainy and non-rainy
months for each climatic region from December 2010 to
December 2014 (see, e.g., Benninga et al. 2017).

3 Results and discussion

This section is divided into three parts: the first part examines
the skill of forecasts of raw ECMWF data in flooding and non-
flooding seasons. The flooding season is from October to
March and the non-flooding season is from May to
September. The second part examines the effect of bias cor-
rection on the predictive skill in these seasons and across all
climatic regions. The third part assesses the model skill in the

Table 2 Characteristics of
climatic regions in Karun basin Climate ID Climatic region Area (1000 km2) Mean daily rainfall (mm/day) Mean elevation (m)

1 Very humid 3.5 1.8 3350

2 Humid 19.8 1.05 2200

3 Sub-humid 8.5 0.88 1660

4 Mediterranean 10.5 0.85 1500

5 Semi-arid 13.2 0.8 1180

6 Arid 11.3 0.6 710
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flooding region over a 4-year period. The precipitation fore-
cast skill of ECMWF is investigated using the three indices
CRPS, CRPSS, and RCRPS in the study area for different lead
times, climatic regions, and flooding and non-flooding
seasons.

3.1 Skill assessment for different lead times

3.1.1 CRPS

The evaluation results are shown in Fig. 2. As expected
(Liu et al. 2013; Benninga et al. 2017), with an increase
in lead time from 24 to 120 hr, the CRPS value has in-
creased which indicates a decrease in the forecast skill with
an increase in lead time. This situation can be observed for
all climatic zones. Ye et al. (2014) carried out a comparable
study for different catchment sizes and similar to one of
our climatic regions, they found cases where this trend was
not the same. Nevertheless, our results confirm the
findings by Tao et al. (2013) and Ye et al. (2014) in which

with an increase in the lead time, model performance was
weaker.

3.1.2 CRPSS

As mentioned above, the CRPS is not suitable for the purpose
of comparison, and thus, the CRPSS was used as well.
Evaluation of ECMWF forecasts is shown in Fig. 3. The fig-
ure shows the performance of the forecasts in 6 climatic re-
gions for flooding and non-flooding seasons. Observations
from the figures can be summarized as follows: (1) as before,
with the increase of the lead time, the skill of the forecast is
reduced as for instance also found by Benninga et al. (2017).
This reduction in performance in the wet area is significantly
different from the other areas. (2) The performance of fore-
casts in different regions is not the same for the flooding and
non-flooding seasons. For example, a similar performance
was observed for both seasons for the very humid area; how-
ever, for the humid region, the difference is larger between
forecasts for lead times of 24 and 120 hr. This finding is in

Fig. 2 CRPS values for three lead
times (24, 72, and 120 hr) and six
climatic regions for flooding
seasons (a) and non-flooding
seasons (b)
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line with Tao et al. (2014), who investigated the ECMWF skill
in Huai River basin over the period 2007–2011 during the
summer and fall seasons. Their results showed a decrease in
CRPSS with increasing lead time.

3.2 Comparison of CRPSS and RCRPS indices

Both CRPSS and RCRPS indices can be used for relative
comparison between the performance of different forecast
systems. Figure 4 shows the comparison between these
indices for the six climatic regions of the basin. Main
observations are as follows: (1) as before, the perfor-
mance of the forecast model for the flooding seasons is
better than for the non-flooding seasons, and its accuracy
decreases with increasing lead time; (2) the larger sensi-
tivity of CRPSS compared to RCRPS is noteworthy in the
results; and (3) the difference between the results of the
evaluation based on CRPS for flooding and non-flooding
seasons substantially increased from wet to arid climates.

This difference is well depicted in Fig. 4a for the “very
humid” and Fig. 4f for the “arid” areas.

3.3 Bias correction effects on model forecast skill

This section tends to identify and correct the possible system-
atic differences between observations and ECMWF data and
ultimately evaluate the feasibility of enhancement in the pre-
dictive skill. Figure 5 shows the results related to the bias
correction phase. It shows the improvement of CRPS,
CRPSS, and RCPRS after using the LM and QM methods
in different climatic regions.

3.3.1 CRPS

As shown in Fig. 5, the improvement in CRPS after bias
correction using the linear method was up to 16% in all cli-
matic regions and in the flooding season. Nevertheless, in
non-flooding seasons, the improvement was less than 10%.
In flooding seasons, the greatest impact was observed in

Fig. 3 CRPSS value for three
lead times (24, 72, and 120 hr)
and six climatic regions for
flooding seasons (a) and non-
flooding seasons (b)
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regions with very humid, humid, and Mediterranean climates,
and in non-flooding seasons, the largest improvements were in
regions with humid and semi-humid climates. The rate of
increase in performance by application of the QM method
was up to 35% across various climates.

3.3.2 Comparison between CRPSS and RCRPS

Comparison between CRPSS and RCRPS indices after bias
correction shows the following. (1) The bias correction has
improved the performance of the model forecast and indica-
tors. The higher values of CRPSS and RCRPS are due to the
bias correction as shown in the figures, the effect of bias cor-
rection on the performance enhancement of RCRPS was up to
15%, while this rate for CRPSS was up to 40%. Liu et al.
(2013) also found CRPSS values above zero when evaluating
the effect of the bias correction on this index, but the results in
winter (flooding season) were weaker than those in the other
three seasons. Comparing the results, it can be inferred that the

QM method shows a better performance for all climatic re-
gions and shows a better performance in the flooding seasons.
The CRPSS value decreased with increasing lead time, in line
with for instance Verkade et al. (2013). When increasing the
lead time from 24 to 120 hr, the impact of bias correction on
improving the performance of ECMWF forecasts becomes
smaller.

3.4 Effect of various precipitation thresholds
on ECMWF forecast skills in flooding climatic zones

Evaluation of ECMWF forecasts based on thresholds shows
its performance for different ranges of precipitation. This is
particularly important for extreme precipitation that can lead
to floods. Based on the characteristics of our study area, this
assessment was carried out only for very humid, humid, and
semi-humid climates. These regions are located upstream of
the dams (Fig. 1) and collectively constitute 48% of the basin

Fig. 4 a–f CRPSS in flooding seasons (black lines) and non-flooding seasons (black dashed) and RCRPS in flooding seasons (blue line) and non-
flooding seasons (blue dashed) for six climatic regions. X-axis indicates lead time and Y-axis covers the range of CRPSS and RCRPS values
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area. The influence of precipitation thresholds ranging from
25 to 98% on the forecast skill was investigated.

For a better comparison of the results, the evaluation
was performed based on CRPSS and RCRPS. As can be
seen in Fig. 6, across all three regions, the CRPSS trend
is descending with increasing thresholds and lead times,
and the opposite results are observed for RCRPS. Both
of these trends demonstrate a decline in the forecast
skill as the threshold increases. Since the percentage
of rainy days is less than 20% over the entire year,
the amount of precipitation in most days is almost zero.
Also, in humid and very humid regions for thresholds
above 90%, the performance decreases sharply which
can be due to the skewness of the precipitation in these
areas.

4 Conclusions

This paper evaluated the skill of ECMWF’s ensemble fore-
casts in the Karun River basin in Iran. The entire study period
was divided into flooding seasons (October to March) and
non-flooding seasons (May to September). The investigation
was carried out for 6 climatic zones (very humid, humid,
semi-humid, Mediterranean, semi-arid, and dry desert), which
directly and indirectly include the influence of temperature,
altitude, and precipitation of the basin. Also, forecasts were
made for lead times varying from 24 to 120 hr based on the
intended applications of the outcomes of this study in flooding
and real-time water depletion management to irrigate down-
stream fields. The general outcomes of this investigation are
as follows:

Fig. 5 Improvement in CRPSS,
CRPS, and RCRPS: CRPSS (a
flooding season LM, b flooding
season QM, c non-flooding
season LM, d non-flooding
season QM), CRPS (e flooding
season LM, f flooding season
QM, g non-flooding season LM,
h non-flooding season QM),
RCRPS (i flooding season LM, j
flooding season QM, k non-
flooding season LM, l non-
flooding season QM)
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1. Assessing the forecasting skill in climatic regions showed
that typically, the performance of forecasts is decreasing
from wet regions towards dry regions. The very humid
region, however, was an exception that could be attributed
to its small area (3500 km2 ~ 1% of basin area). The weak
forecasting skill in small areas was also reported by, for
example, Ye et al. (2014).

2. The ECMWF forecast skill decreases with an increase in
lead time. However, its performance for the flooding and
non-flooding seasons and based on CRPSS is lower in
regions with dry climates and higher in wet areas.
Nevertheless, using the RCRPS, these differences are
more tangible for different climatic regions.

3. Bias correction of the ECMWF data was performed using
the QM and LM and showed that it can significantly im-
prove the forecasts, particularly when using QM. The bias
correction was more effective in the flooding season and
the skill in this season was increased by up to 40% based
on the CRPSS.

4. To evaluate the forecast performance of the model in our
study area, precipitation thresholds are among the most
important features that should be considered. Since the
percentage of rainy days is less than 20% over the entire
year, the amount of precipitation in most days is almost
zero. When the precipitation thresholds were increased
towards extreme values, the forecast performance of

Fig. 6 RCRPS variations (linear charts) and CRPSS (column charts) in very humid, humid, and semi-humid climates for 24, 72, and 120 hr lead times for
various precipitation thresholds
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ECMWF became worse. It should be noted that this eval-
uation was carried out for only three climatic zones, i.e.,
very humid, humid, and semi-humid, which form the
main precipitation input for the basin and dams. The better
performance of CRPSS and RCRPS across humid and
semi-humid regions could be presumably attributed to
the existence of skewness in the observed precipitation.
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