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Abstract
The authors present a novel self-organized climate regionalization (CR) method that obtains a spatial clustering of
regions, based on the explained variance of physical measurements in their coverage. This method enables a microscopic
characterization of the probabilistic spatial extent of climate regions, using the statistics of the obtained clusters. It also
allows for the study of the macroscopic behaviour of climate regions through time by using the dissimilarity among different
cluster size probability histograms. The main advantages of the presented method, based on the Second-Order Data-Coupled
Clustering (SODCC) algorithm, are that SODCC is robust to the selection of tunable parameters and that it does not require a
regular or homogeneous grid to be applied. Moreover, the SODCC method has higher spatial resolution, lower computational
complexity, and allows for a more direct physical interpretation of the outputs than other existing CR methods, such as
Empirical Orthogonal Function (EOF) or Rotated Empirical Orthogonal Function (REOF). These facts are illustrated with
an example of winter wind speed regionalization in the Iberian Peninsula through the period (1979 − 2014). This study also
reveals that the North Atlantic Oscillation (NAO) has a high influence over the wind distribution in the Iberian Peninsula in
a subset of years in the considered period.

1 Introduction

Climate regionalization (CR) is defined as the process of
dividing a given area into smaller regions, in such a way that
they are somehow homogeneous with respect to a specified
climatic variable (Badr et al. 2015). CR is a key point
in climate studies, since it allows explaining small-scale
climate events in terms of the spatio-temporal mechanisms
which produce them. CR has been specifically applied to
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palaeo-climatic problems (Knapp et al. 2002), precipitation
trends, floods and drought events (Comrie and Glenn 1998;
Baeriswyl and Rebetez 1997; Burn 1989), numerical models
improvement for climate studies (Argüeso et al. 2011;
Regonda et al. 2016), or climate change studies (Önol and
Semazzi 2009), among others.

There are a number of well-known linear analysis tech-
niques for obtaining high-quality CR. Empirical Orthogonal
Function (EOF) analysis, also known as Principal Compo-
nent Analysis (PCA), is one of the most standard techniques
in climatology with direct application in CR. EOF anal-
ysis tries to identify natural spatio-temporal variability of
observations (Jolliffe 2002). The idea behind EOF analy-
sis is to identify a set of orthogonal eigenfunctions which
accounts for most of the system’s total variance (von Storch
and Zwiers 1999). Thus, EOF analysis tries to obtain the
dominant modes of variability, in turn reducing the data
space by only considering those EOFs which cover a large
percentage of the total variance. EOF analysis has been
intensely used in CR (White et al. 1991; Comrie and Glenn
1998; Baeriswyl and Rebetez 1997). The basic idea is to use
EOF or Rotated Empirical Orthogonal Function (REOF) to
define and interpret clusters of different climatic variables,
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at different spatial resolutions of the grid. However, differ-
ent studies have pointed out some issues in the use of EOF
analysis (Dommenget and Latif 2002). For example, in Kim
et al. (2015), it is shown that EOF analysis usually consid-
ers stationarity in the covariance of the data, when some of
the most important climatic variables show cyclic compo-
nents. This could lead to misleading results, and the authors
propose the use of cyclostationary EOF analysis in these
cases. Another important problem when applying EOF anal-
ysis is due to the orthogonality constraint of the procedure.
It is shown that unphysical modes may appear due to this
constraint (Lian and Chen 2012), producing results difficult
to explain. Different works have shown that this issue may
be alleviated by using REOF analysis, a method which has
been shown to perform much better than the classical EOF
approach in many particular cases. In fact, previous studies
have shown how REOF analysis is able to avoid unphysi-
cal modes of EOFs while keeping the important and robust
spatio-temporal patterns of the data (Richman 1986). On
the other hand, REOF analysis has its own set of problems:
(1) the database size necessary to obtain a good calculation
of the REOFs, (2) the selection of the number of modes
involved in their calculation and last, but not least, (3) the
selection of the rotation criteria (Jolliffe 2002, p. 271) all
of which make the results highly dependent on subjective
decisions.

Non-linear clustering techniques have also been applied
to CR problems. These include methods such as hierarchical
clustering (Ward 1963; Unal et al. 2003; Badr et al. 2014,
2015, Nojarov 2017), k-means (Cassou et al. 2004; Carvalho
et al. 2016; Zhang et al. 2016), multivariate statistical
techniques (Shahriar et al. 2015), or fuzzy clustering (Sarma
and Hazarika 2014; Irwin 2015). The main advantages
of these methods are that they allow a very high spatial
resolution of the grid in climate problems, with a tunable
similarity criterion (different from the variance as in
EOFs). However, there are some issues related to clustering
techniques in CR, such as a more difficult interpretation that
can lead to different conclusions due to the use of different
similarity criteria or schemes (Cassou et al. 2004). Also, the
need for tuning some specific parameters of the methods
(for example the number k of clusters in the k-means
approach) might be an issue.

In this paper, a novel self-organized heuristic clustering
technique is proposed for CR problems. Specifically,
the Second-Order Data-Coupled Clustering (SODCC)
algorithm is used (Chidean et al. 2015a), a self-organized
clustering approach that uses statistical characteristics of
the measured data to geographically group similar nodes.
To this end, the proposed algorithm uses signal subspace
dimension to determine the minimum amount of linearly
independent components in each cluster, i.e. the number
of eigenvalues that explain most of the variance in the

data. It approaches the clustering problem from a bottom-
up perspective, in which neighbouring nodes are initially
grouped and, solely based on the signal subspace dimension
of the covariance matrix, it decides whether to fuse to other
cluster or not. This procedure is repeated until there is
no free node left in the system. This procedure is robust
to the selection of specific tuning parameters, apart from
those that define the statistical distribution of eigenvalues in
covariance matrices.

The proposed SODCC algorithm builds a bridge
between linear (EOFs and REOFs) and non-linear analysis
techniques (hierarchical, k-means... clustering) as it uses
characteristics from the latter to build spatial structures
comparable with the former. Moreover, by using SODCC,
it is also possible to analyze the temporal and spatial
structures of the dataset, with a higher spatial resolution
of the grid. This analysis permits a direct comparison with
climate patterns such as the North Atlantic Oscillation
(NAO).

The rest of the paper is structured as follows: Section 2
includes a detailed description of the SODCC algorithm
and its analysis from a theoretical point of view. Section 3
covers the case study considered in this work, where the
regionalization and spatio-temporal analysis of wind speed
data in the Iberian Peninsula is carried out using the
SODCC algorithm and robustness to the selection of tunable
parameters is demonstrated. Finally, Section 4 closes the
article by giving some concluding remarks.

2Methods

In this section, the clustering algorithm proposed in
this work is detailed for CR. First, the system model
is described, providing mathematical definitions for the
network and dataset. Next, the SODCC algorithm is
described and the procedure to analyze climatological data
using the aforementioned algorithm. In the following, the
operation of SODCC is analyzed from a theoretical point of
view.

2.1 Systemmodel

Consider a set of N geographical locations determined by
their corresponding latitude and longitude coordinates to be
the measuring stations (or grid nodes) for a given climate
variable, i.e. wind speed. Let Ts be the uniform sampling
interval, namely the time interval between two consecutive
data measurements. Each measuring station can be modeled
as an element of a network with N nodes and C connections
among them.

Let MT be the total number of data measurements per
node and xm ∈R

N, with xm = [xm(1), xm(2), . . . , xm(N)]�,
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be the vector1 of data measurements for all nodes in a
specific time instant m = 1, 2, . . . , MT . By assembling
the MT data vectors in a data matrix, we obtain X =
[x1, . . . , xMT

], which is the dataset measured by the entire
network. The covariance matrix of a data matrix X is
defined as � = MXMX

�/MT , being MX the centered data
matrix.

With this system model, the spatio-temporal correlations
of the climate variable can be analyzed considering the
complete set of N nodes and using traditional climate
analysis such as EOFs or REOFs (Jolliffe 2002). However,
different approaches can be taken into account, such as
the recently proposed clustering algorithm SODCC that
we consider in this work. SODCC organizes the nodes
in groups in terms of the statistics of the measured data
(Chidean et al. 2015a). In the following, the details of the
SODCC operation and the procedure to apply it to climate
variables are further explained.

2.2 Clustering algorithm: SODCC

The SODCC algorithm has been previously proposed and
described in detail for wireless sensor network applications
(Chidean et al. 2015a).2 However, previous works have
shown that it is also suitable for climate data analysis, e.g. in
Chidean et al. (2015b), where the structure of temperature
field in Europe from more than 100 measuring stations was
studied using this approach. In this section, we focus on the
general description of the SODCC and its operation from
the climate application point of view.

The SODCC algorithm organizes the nodes of a network
in logical groups, also known as clusters, following a data-
driven criterion, i.e. uses data statistics to decide. The
outcome of SODCC is a set of clusters, each one containing
Ni nodes. Note that all N nodes of the network must belong
to one and only one cluster and that each cluster may
have a different cluster size Ni . The final cluster size is
determined by the minimum amount of nodes that explain
a minimum of 90% of the data variance of that region, by
means of the calculation of the corresponding eigenvalues.
For example, small cluster sizes appear in regions with high
data correlation and large cluster sizes appear in regions
with low data correlation.

The fact that it is possible to explain a minimum amount
of data variance for all the obtained clusters leads to a
more relevant characteristic of SODCC: the phase transition
of the data matrices of each cluster is achieved, i.e. it
is possible to properly perform the eigendecomposition

1A vector is a matrix consisting of a single column of elements and the
symbol (·)� indicates the transpose operation.
2Note that the algorithm source code can be found at https://github.
com/MihChi/SODCC.

within each cluster. For details about the phase transition of
correlation matrices with a finite number of samples, refer to
Appendix A.

The SODCC algorithm follows a bottom-up approxima-
tion, where the nodes start belonging to small clusters and,
by means of cluster fusion processes, they end up belong-
ing to larger clusters. The algorithm has two phases that are
different in both objective and operation:

1. Cluster initialization—random initialization of small
clusters that act as seeds for the final set of clusters.

2. Cluster growing—all non-final (or non-stable) clusters
take part in cluster fusion processes until a stopping
criterion is reached and the final set of clusters is
determined.

2.2.1 Cluster initialization

The objective of this phase is the random initialization of
the set of clusters, so that the second phase can use them,
perform its operation, and output the final set of clusters.

Given the N nodes that form the network, there are three
possible and exclusive status for any of them:

1. Cluster initialization (CH)—this is the first node of a
given cluster.

2. Normal node—the node belongs to a cluster and it is
not the CH of that cluster.

3. Role-free node—the node does not belong to any
cluster in any of the previous ways.

The first phase of the SODCC algorithm also requires
two preset parameters in order to form the first set of
clusters. Parameter P indicates the probability that a given
role-free node becomes CH and parameter N1st indicates
the maximum initial cluster size. These parameters are set
in order to obtain clusters that are small enough to act as
“seeds” of the final clusters and large enough to not interfere
with the operation of the second phase.

The results presented in this work are obtained consid-
ering P = 0.35 and N1st = 3, that were also considered
in previous works (Chidean et al. 2015a, b). However,
Section 3 includes a brief discussion regarding method
robustness with respect to these parameters.

The operation of this first phase is summarized in
Algorithm 1. In short, role-free nodes independently decide
to become CH according to P. Next, the new CHs search for
role-free nodes in their neighbourhood and, if it is possible,
include up to N1st −1 role-free nodes into their own cluster.
“Neighbourhood” allows multiple definitions in a network;
however, in this work can be understood as nodes located
within a short distance of a given node, e.g. the eight
nearest nodes in a squared regular grid as the one sketched
in Fig. 1.
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Fig. 1 Example of clusters obtained by SODCC. The embedded
graphs schematize the sorted eigenvalues λi , highlighting the d̂

eigenvalues that explain a minimum of 90% of the variance in each
cluster

Due to chance, it is possible that there are still some
role-free nodes after this algorithm loop. For this case,
the SODCC algorithm allows the repetition of this cluster
initialization phase multiple times (up to Nrep times). Even-
tually, after a given number of repetitions, all remaining
role-free nodes turn into CH and, unable to find available
role-free nodes, their cluster is formed by a single node.

This random cluster initialization may affect the interpre-
tation of results. Therefore, in order to cancel its effect, the
SODCC algorithm has to be applied multiple times and the
results have to be analyzed in a probabilistic manner.

2.2.2 Cluster growing

The objective of this phase is to determine the final set
of clusters, by means of cluster fusions processes until
a stopping criterion is achieved. The SODCC stopping
criterion is independently evaluated for each non-final
cluster after each cluster fusion process and uses the
covariance matrix �i ∈ R

Ni×Ni of the data measured
by the Ni nodes that form the ith cluster. To ensure the
achievement of the stopping criterion, SODCC does not

consider cluster division processes. The detailed operation
of this second phase is summarized in Algorithm 2. At the
beginning, for the ith cluster, the minimum amount of data
per node Mi to achieve the phase transition is calculated,
that is, according to matrix perturbation theory (Nadler
2008), the minimum number of entries per node needed
for the successful construction of a covariance matrix of
a given size. Next, the covariance matrix �i is calculated,
and its eigenvalues are estimated. Following, the number
of eigenvalues d̂ (sorted in decreasing order) that account
for a minimum of 90% of explained variance of the dataset
measured by all the nodes forming ith cluster is determined.
In this work, the value of the d̂ is calculated by means of
the Fast Subspace Decomposition (FSD) algorithm (Xu and
Kailath 1994). For details about the FSD algorithm, please
refer to Appendix B.

Finally, based on the values of Ni and d̂ , the stopping
criterion is evaluated. More specifically, the ith cluster
fulfills the stopping criterion if d̂ < Ni and the SODCC
algorithm ends its operation for this cluster. Otherwise,
this cluster must fuse to a neighbouring cluster (minimum
euclidean distance) in order to grow in size and to span
a larger spatial region and fulfill the stopping criterion
in future algorithm iterations. Again, in the present work,
cluster fusion is based on distance between nodes and
a cluster can only fuse to those clusters located in the
neighbourhood of its nodes.

The relation between the stopping criterion of the
SODCC and the final cluster sizes has been shown in
Chidean et al. (2015a). In the following, we summarize the
main idea, also represented in Fig. 1. Given the final set of
clusters, the small clusters are expected to appear in areas
where there exists a high data correlation, as only data from
few nodes are needed to determine the d̂ eigenvalues with
90% of the explained variance. For example, in Fig. 1, the
cluster shaded in purple is final as the sum of the explained
variance of the first d̂ = 2 eigenvalues is greater than
90%, indicating that the Ni = 3 nodes of the cluster have
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high data correlation. On the other hand, large clusters are
expected to appear in areas where the cross-correlation of
the data among nodes is low. Therefore, the SODCC algo-
rithm ensures that closely correlated data series are clustered
together (more than 90% of the variance can be explained
with d̂ < Ni eigenvalues) and that the cluster configuration
reflects the underlying data spatio-temporal correlations.

2.3 Theoretical analysis of SODCC

In the previous subsection, we have described an algorithm
that drives the clustering in the different stages. The cluster
fusion processes can be directly assimilated with diffusion-
limited aggregation processes (in terms of the cluster border
interaction) for irreversible clusters (i.e. once they form,
they do not diminish in size). This assimilation provides
us with the means to propose a theoretical analysis of
the cluster size probability (CSP) theoretical distribution
obtained for the final set of clusters.

An initial formulation for this distribution can be
proposed following a dynamic scaling function (Vicsek and
Family 1984):

n(t, Ni) ∼ t−wN−τ
i f

(
Ni

tz

)
(1)

where t is the time throughout the clustering process until
the final distribution is achieved and Ni is the number of
nodes that form the ith cluster. The importance of time in
the present theoretical formulation lies on its scaling depen-
dence, independent from that of the cluster size. Equation 1
is formed by three terms that describe the cluster fusion pro-
cesses through a power-law (with w > 0), the final CSP
theoretical distribution through a different power-law (with
0 < τ < 2), and the characteristic cluster size (with z > 1),
respectively. Function f (x) has power-law behaviour for
small x, i.e. x2−τ for x � 1 and f (x) � 1 for x � 1. In the
context of climatology, the scaling functions for cluster size
distribution are related to stable spatio-temporal character-
istics that exponentially relate the spatial extent of physical
phenomena to their temporal stability. In the present case,
the cluster second-order statistics features define both rela-
tions. In climatology, the extensive study of the EOF and
their is the closest relative to the present approach. Gene-
rally, EOF is used to characterize global sets of data. In the
present study, a possible interpretation would be the local
determination of EOF and their temporal stability.

The CSP theoretical distribution for the final set of
clusters (the equilibrium condition of the fusion processes)
can be approximated by

n(t, Ni) ∼ tτ−2N−τ
i (2)

Equation 2 provides us with a power-law dependence
on the cluster size from the smallest cluster size possible

(Ni = 3 in our case) to infinity. A normalization
condition is necessary in order to define a proper probability
distribution, i.e.

N∑
Ni=3

n(t, Ni) = 1 (3)

The time dynamics of the formation of the final set of
clusters (governed by the second phase of the SODCC)
are quantized at the characteristic times, when the phase
transition condition for the covariance matrix is fulfilled
(see Appendix A) and the FSD statistic is computed. Then,
a fraction of the clusters with size Ni will grow in size, as
they are fused to other clusters.

In a CR problem, where spatial correlations are studied,
the minimum meaningful cluster size of the final set of
clusters is Nmin

i = 3, where the SODCC determines two
signal eigenvalues (d̂min = 2) that account for a minimum
of 90% of explained variance and one noise eigenvalue.
Therefore, the CSP theoretical distribution includes an
exponential decay of the cluster size from Ni = 3 onwards.

On the other hand, the theoretical maximum resolvable
signal subspace dimension d̂max is limited by the temporal
size of the data MT . For the final set of clusters, the
condition for phase transition holds for all clusters. As the
minimum amount of data required to properly calculate the
data covariance matrix, Mi can be set to Mi = 4×Nmax

i and
as at least one noise eigenvalue is determined, the maximum
value for d̂max is Nmax

i − 1 (Chidean et al. 2015a). Clusters

where the signal subspace dimension is d̂max (the maximum
obtained value considering the complete set of grid points
and all time instants) will be the largest clusters in the grid
with FSD convergence. In statistical terms, these clusters
will be the largest connected structures in the grid that are
bound with the 90% explained variance. The larger clusters
(where Ni > d̂max + 2) are not bestowed with such tight
relation and, therefore, are bound to be ephemeral through
the different realizations of the SODCC algorithm, thus
changing their shape, size, and even their location. That is
the main reason for their exponentially decaying sizes in the
CSP distribution.

Thus, the CSP theoretical distribution includes an
exponential decay between cluster sizes d̂min + 1 and d̂max,
a sharp probability rise in Ni = d̂max + 1, followed
by an exponential decay with the same exponent. These
behaviours are universal in clustering processes with fusion
(Vicsek and Family 1984).

Considering the above arguments, we formulate the CSP
theoretical distribution obtained for the final set of clusters
as:

n(t, Ni) = κ × t−w
(
g(Ni, d̂min) + g(Ni, d̂max)

)
(4)
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where the modulation function

g(x, x0) = θ(x − x0)(x − x0)
−τ (5)

θ(x) is the Heaviside step function (θ(x − x0) denotes the
θ(x) function shifted x0 units in the abscissa axis) and

κ = τ − 1

(N − d̂min)1−τ + (N − d̂max)1−τ − 2
(6)

is the normalization constant s.t. Equation 3 is satisfied.
In Fig. 2, we can see a generic CSP in which d̂min +1 and

d̂max + 1 are the most relevant features of the distribution.
Due to the dynamics of cluster aggregation, the clusters with

sizes in the trough of the Ni ∈
[
d̂min + 1, d̂max + 1

]
interval

are those in which their signal eigenvalues are relevant to the
statistics of the data under study. Clusters with sizes beyond
Ni = d̂max + 1 are the result of cluster aggregation of large,
unstructured clusters with unresolved signal eigenvalues
according to the FSD statistic. Thus, let the “focus zone” be
the cluster size range where the CSP is able to resolve the
climate regions (e.g. the shaded area in Fig. 2).

In this section, we have shown that the resulting CSPs do
not have an arbitrary shape. On the contrary, they result from
the cluster fusion process. The fitting of the experimental
CSPs to their theoretical functions by means of the scaling
parameters τ , κ , and w may reveal further details of the
physical processes in a single month/year. These scaling
parameters determine the statistics of the cluster sizes.
Therefore, examining their variations through the years may
lead to revealing the physical nature of the interactions
among clusters. This task is out of the scope of the present
work but it will be undertaken in the future.

Fig. 2 Plot of a generic CSP n(t, Ni), where d̂min + 1 and d̂max + 1 are
indicated with grey arrows and the interval of interest of cluster size
probability (focus zone) is shown in blue

3 Case study: wind resource in the Iberian
Peninsula

In this section, we analyze the wind resource in the Iberian
Peninsula in the framework of CR, in order to show the
performance of the proposed SODCC. Before this, we
discuss some previous works dealing with spatio-temporal
analysis of wind speed and different approaches for its
regionalization.

Spatio-temporal analysis of wind speed is significant
for a number of problems related to climate, as indicator
of circulation changes, and also for renewable energy
resource analysis, among others. Very recent works deal
with wind speed regionalization or spatio-temporal analysis
of wind speed using reanalysis data. In Yu et al. (2015),
the temporal variability of wind speed is studied in the
USA, based on the climate forecast system reanalysis data.
EOF analysis is used to find connections to NAO and
ENSO patterns, which seem to control part of the wind
speed variability across the USA. Another related work is
Troccoli et al. (2012), which studies long-term variability of
wind speed trends over Australia. In this case, wind speed
observations and reanalysis data are used to obtain the wind
speed trends.

Also, recent works on wind speed regionalization in
the Iberian Peninsula have been published. In Azorin-
Molina et al. (2014), the analysis of homogenization of
wind speed in the Iberian Peninsula is considered. The
study analyzes wind speed trends recorded at 67 land-
based stations across Spain and Portugal for the period
1961–2011, finding a slight downward trend in wind speed.
The paper also analyzes the possible impact of three
atmospheric indices (NAO, Mediterranean oscillation, and
western Mediterranean oscillation) and the role played by
the urbanization growth in the observed decline of wind
speed. Finally, in Santos-Alamillos et al. (2016), the effect
of spatio-temporal balancing of wind resource in wind farms
in Spain is studied. A regionalization approach based on
EOF analysis is carried out in this case.

With this discussion on previous related works in mind,
we start our analysis of wind speed in the Iberian Peninsula,
by considering wind speed at 10-m data obtained from
the ERA–Interim reanalysis dataset. We apply the SODCC
clustering algorithm, from both spatial and temporal points
of view, including an analysis of the results in the framework
of climate indices such as the NAO. Next, we compare our
findings with the results obtained by analyzing the dataset
by means of classical data analysis in climatology, i.e.
EOFS and REOFs. With this dual analysis, we are able to
show the main benefits of the CR method proposed in this
work. Finally, we demonstrate the robustness of the SODCC
algorithm to initialization parameters.
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3.1 Dataset

In this case study, we use wind speed at 10-m data obtained
from the ERA–Interim reanalysis dataset (Dee et al. 2011).
The geographical area is bounded by parallels 35◦N and
44◦N and by meridians 10◦W and 6◦E, demarcating the
Iberian Peninsula and the Balearic Islands. The grid is set
to 0.5◦ × 0.5◦, making a total of N = 627 nodes in the
network, placed in a regular grid as shown in Fig. 3. Given
this node location, the distance resolution is approximately
56 km. For this case study, we consider the wind speed data
for January, in representation for the most windy season in
the area of interest (Zishka and Smith 1980; Branick 1997).
We consider the 1979–2014 time interval with a temporal
resolution of Ts = 6 h, making a total of Mmonth = 31×4 =
124 data values per month. As the analysis that we consider
in this work is performed independently per year, we define
the following set of data (TJ ) to clearly specify the time
period under analysis:

TJ = {first time instant of j | j = 1979, . . . , 2014} (7)

Given the regular grid of the nodes, we should expect
edge effects in the border of the studied area. However, as
it will be commented on Section 3.b.2, these effects are not
apparent in the results.

3.2 Data analysis with SODCC

The signal processing method for CR presented in this work
is based on the SODCC algorithm. The idea behind this
method is that, for each realization, the statistics calculated
for the set of clusters obtained reveal both the spatial and
temporal modes of the climate variable. All of the software
used in the present work for the SODCC analysis is original
and it has been developed by some of the authors in Matlab

Fig. 3 Geographical location of the N = 627 nodes (blue dots) of the
network used in the present case study

and it is available on the following link (https://github.com/
MihChi/SODCC).

The considered dataset includes January wind speed
data between 1979 and 2014. Data of each particular year
is independently analyzed, giving a total of 36 starting
points for the SODCC algorithm. This analysis allows
the assessment of the temporal evolution of the spatial
structures of the data.

For each possible value of Tj ∈ TJ , in this case study,
we perform 5000 independent simulations, applying the
SODCC algorithm to the wind speed dataset of N =
627 nodes. Such experiments allow the analysis of the
results with sufficient statistical representativity that are
not determined by specific realizations of the random
initialization. As previously mentioned, the output of each
independent SODCC realization is a set of clusters, formed
by nearby nodes, where it is possible to estimate the
eigenvalues that explain a minimum of 90% of the data
variance.

Result analysis can be performed at node level and at set
of clusters level for each Tj . In the first case, by analyzing
how likely is each node of the grid to belong to a cluster of
a given size, the spatial correlation of the data at multiple
spatial scales is revealed. Moreover, changes over the
different years will show both the temporal evolution of the
data statistics and their spatial extent. The following section
is devoted to the spatial analysis of the results by means of
the node to cluster size probability (NCSP) histograms. In
the second case, studying the complete set of clusters allows
a more straightforward analysis of the temporal evolution
of wind resources in the Iberian Peninsula. Section 3.2.2
includes the temporal analysis by means of the CSP
histograms normalized to have unit area as approximations
of the corresponding CSP theoretical distributions that were
previously introduced in Section 2.2.3.

3.2.1 Spatial analysis

The spatial analysis of the wind speed dataset can be
performed by means of the node to cluster size probability
(NCSP) histograms normalized to unit area, namely the
probability of a given node to be associated with a cluster
of a certain size Ni for the starting point of the simulation
Tj ∈ TJ . These NCSP histograms can be displayed over
a map, similar to the EOF and REOFs representations. We
can represent one map for each combination of Ni and
Tj enabling the analysis of the spatial extent of the data
correlations with great detail. Moreover, this representation
also allows the simultaneous analysis of various spatial
extents by using multiple values of Ni for each value of Tj

(e.g. Ni ∈ {5, 6} or Ni ∈ focus zone).
The decision criterion of the SODCC organizes the nodes

in terms of the explained variance, i.e. in a cluster of Ni
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a minimum of 90% of the data variance is explained by d̂

eigenvalues, being d̂ < Ni . Then, geographical areas where
the measured data has higher spatial correlation will result
in higher probability to form smaller clusters and lower
probability to form larger clusters, while areas where the
spatial correlation is lower the behaviour is opposite. In the
present case study, from Figs. 4 and 5, we can identify the
extent of the spatial correlation for each geographical areas.
The complete set of figures showing the NCSP histograms
for all possible cluster sizes (Ni ∈ [Nmin

i , Nmax
i ]) and for

all starting points of the simulation (Tj ∈ TJ ) is provided
as electronic supplemental material (file “2 NCSP.pdf”). All
these additional figures reaffirm our conclusions regarding
the spatial correlation of the wind speed data.

Figures 4 and 5 show the NCSP for Ni = 7 and
Ni = 18, respectively, for a subset of Tj ∈ TJ , i.e. each
figure indicates the probability of each node to belong to a
cluster if size Ni in a given year. The representation of the
NCSP over a map and showing the probability value using
colors allows the spatial analysis of the data correlations:
nodes located in areas with similar colors have similar data
statistics. The selected cluster sizes are representative values
from both inside and outside the CSP focus zone and will
allow the analysis at different spatial scales, as the cluster
size is directly related with the spatial extent. Both figures
use identical color range in order to show the probability
values and allow direct comparison. From these figures we
can clearly identify two different behaviours regarding the
spatial extent of the data correlations.

Figures 4 and 5 show the NCSP for Ni = 7 and
Ni = 18, respectively, for a subset of Tj ∈ TJ , i.e. each
figure indicates the probability of each node to belong to a
cluster if size Ni in a given year. The representation of the
NCSP over a map and showing the probability value using
colors allow the spatial analysis of the data correlations:
nodes located in areas with similar colors have similar data
statistics. The selected cluster sizes are representative values
from both inside and outside the CSP focus zone and will
allow the analysis at different spatial scales, as the cluster
size is directly related with the spatial extent. Both figures
use identical color range in order to show the probability
values and allow direct comparison. From these figures, we
can clearly identify two different behaviours regarding the
spatial extent of the data correlations.

The fact that multiple nearby nodes have a higher
probability to belong to a cluster of a given size (e.g. blue
and green areas in Figs. 4 and 5) indicates that the statistics
of the wind speed data of those locations are similar (from
an explained variance point of view). However, while in
Fig. 4, the examined clusters reveal the short range inter-
node relations (clusters with size 7, with an isotropic
distribution refer to an area of approximate radius of 87 km),
Fig. 5 refers to longer range inter-node relations (areas with

approximate radius of 137 km). Even though the particular
probabilities for both cluster sizes may be similar, the spatial
spread of both is obviously different. This fact is also
apparent in these figures due to contrast differences: lower
for larger cluster sizes, higher for small cluster sizes.

A consistent feature can be observed in both figures. If
a given node has a high probability of belonging to a small
size, then the same node has lower probability of being
assigned to a larger cluster, as the NCSP is calculated per
node and its sum has to be 1. However, individual clusters
are not necessarily isotropic, i.e. radially symmetric. As a
matter of fact, individual clusters may adopt elongated or
even non-convex shape. And self-averaging over multiple
cluster sets makes indistinct the variations on the clusters
frontiers.

The particular spatial patterns that appear in Figs. 4 and 5
are revealing a shorter range explained variance in the area
around the Balearic Islands for the subfigures plotted in
the rightmost columns. As for the physical interpretation of
these results, very similar variations in wind speed through
time in neighbouring nodes are revealed as blue/green
patches. Thus, from subfigures (a), (c), (e), (g), and (j) of
both figures, we can clearly define short-range similarly
varying areas. These homogeneously varying areas and their
relation to macroscopic climate features will be addressed
later in the temporal analysis of the SODCC.

One of the main benefits of the present methodology
relies on the fact that cluster sizes are directly related to
the explained variance of the data from the encompassed
nodes. Smaller cluster sizes can be directly related to
fewer eigenvalues being directly responsible for 90% of the
variance of the data in the cluster (by construction). On the
other hand, in larger clusters, a larger number of eigenvalues
is needed to explain the same amount of variance of the data
over a larger spatial extension. Thus, the fewer eigenvalues
needed (small clusters), the higher the variance endowed
to each of those eigenvalues than with respect to the set in
larger clusters. In the present case, the larger variance in
the smaller clusters (in wind speed) can be related directly
to a higher amount of energy concentrated in smaller areas.
This fact can be directly related to wind energy production
in those areas (Chidean et al. 2018). Furthermore, a relative
increase (decrease) of the population of smaller clusters
in successive years would indicate the absence (presence)
of dominant components at a larger scale. This facilitates
not only the quantification of the correlation distance of
turbulence in wind speed, but also their dominant locations
at any given time.

At this point, one further comment is required with
respect to the edge effects. Although we expected edge
effects to be apparent in the NCSP histograms, we did
not find evidence of such. We performed spatial sensitivity
analysis considering both the center and the borders of
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Fig. 4 NCSP values for Ni = 7
and multiple values of Tj

represented over the map,
showing the probability of a
given node to belong to a cluster
of size Ni = 7. This
representation allows the spatial
analysis of the data correlations
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Fig. 5 NCSP values for
Ni = 18 and multiple values of
Tj represented over the map,
showing the probability of a
given node to belong to a cluster
of size Ni = 18. This
representation allows the spatial
analysis of the data correlations
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Fig. 6 CSP histograms resulting
from the SODCC clustering of
the wind speed data from the
N = 627 nodes for Tj = 1979
and Tj = 1980

the grid, obtaining, up to experimental measurement error,
virtually the same results. Thus, this type of analysis for
large grids does not exhibit edge effects.

In conclusion, we can state that the CR based on the
SODCC algorithm allows for the identification of regions
of interest where the climatic data share similar statistics or
belong to the same physical mode.

3.2.2 Temporal analysis

The temporal analysis of the results can be performed by
means of the NCSP. However, due to the many possible
cluster sizes (from cluster sizes 3 to 35 for each year under
study), an alternative method based on the theoretical CSP
distribution presented earlier is considered. The proposed
method is based on the analysis of CSP histograms for each
Tj and its inter-annual variations.

The CSP histogram reveals overall information about the
behaviour of the results for each Tj . For example, Fig. 6
shows the CSP for Tj = 1979 and Tj = 1980. As
previously stated, these histograms reveal a bi-modal shape,
with two exponential decays starting in d̂min+1 and d̂max+1,
respectively. The complete set of figures showing the CSP
histograms is provided as electronic supplemental material
(file “1 CSP.pdf”).

Again, the temporal analysis of the results using the
complete set of figures like the ones represented in Fig. 6
might be arduous and relevant details might be omitted.
Thus, Fig. 7 combines all the obtained CSPs in a 3D
representation, where the color gradient indicates the bar
height (the probability of each cluster size) and the third
axis is time. The orientation of the figure is chosen to better
visualize the most representative differences over the time.

In this representation, the variations in time in the
different CSPs are now apparent and are revealed as a series
of hills and valleys (in time). For example, for a cluster size
of 15 nodes, we can see a valley for Tj = 1981 and a hill
for Tj = 1991. However, some datasets might lead to less
clear results and additional calculations have to be made

in order to obtain similar conclusions. Possibly one might
criticize that visual analysis of the figures is not enough
to offer convincing conclusions. Therefore, the next step
in this methodology is to quantify the differences between
the different CSPs. A canonical measure of the “distance”
between any two probability mass functions is the Kullback-
Leibler divergence (KLD) (Kullback and Leibler 1951).
Thus, to quantify the variations in time between any two
of the CSP histograms Pcluster(Tj ) and Pcluster(Tk), we
examine their KLD computed as

DKL(Tj , Tk) =
Nmax∑

Ni=Nmin

Pcluster(Tk|Ni) log
Pcluster(Tk|Ni)

Pcluster(Tj |Ni)

(8)

where Pcluster(a|b) states for the value of the CSP histogram
for the year a and cluster size b. In order to avoid numerical
issues and still calculate the KLD, if any Pcluster(a|b) = 0
we replace this zero value by 2−52, the machine epsilon of
the simulation and analysis equipment.

As stated above, the KLD is used here as a measure
of dissimilarity among the different CSP histogram with

Fig. 7 CSP histograms resulting from the SODCC clustering of the
wind speed data for the N = 627 nodes and for all values of Tj ∈ TJ

(see Eq. 7), represented as a 3D-bar plot and color gradient to indicate
the bar height
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different years as reference, i.e. a low KLD value means
that the CSP histograms from two different years are
very similar. Thus, we will have as many KLD curves as
reference years.

We calculate the KLD, DKL(Tj , Tk), for all possible
combination of (Tj , Tk), being Tj ∈ TJ and Tk ∈ TJ .
Figure 8 a and b show all the calculated KLD curves,
separated into two differentiated patterns depending on the
reference year. This separation depends on both the decay
exponent of the CSP histograms shown in Fig. 7 and the
shape of each KLD curve. In Fig. 8a, the reference years Tj

are

T ∗
J ∈{1986,1988,1994,1996,2001,2003,2008,2010,2014}

(9)

The representation of the KLD curves in separated
plots is useful as it helps the analysis of the results by
enhancing the differences between two distinct behaviours.
For example, the T ∗

J subset can be easily identified from
Fig. 8b as the DKL(Tj 	∈ T ∗

J , Tk ∈ T ∗
J ) stand out as maxima.

This subfigure also reveals a quasi-periodic pattern for the
T ∗

J subset, that appears in non-consecutive pairs every 4–
6 years. On the other hand, in Fig. 8a, DKL(Tj ∈ T ∗

J , Tk)

exhibit significantly higher values that confirm the lower
degree of similarity to other years, as the years from T ∗

J are
the reference for the KLD.

3.2.3 Correlation with climate indices

The KLD between the different CSP histograms offers the
possibility of relating the obtained results with different

climate indices. Note that it is possible to calculate the
correlation between the different KLD curves and any
climate index related to the phenomenon under study.
In this case, a good choice for a climate index to be
correlated with wind speed in the Iberian Peninsula is the
NAO (Working Group on Surface Pressure 2016). This
climate index controls important processes related to Iberian
Peninsula climate (Trigo et al. 2002), with deep effects not
only on temperature (Prieto et al. 2002) or precipitation
trends (Trigo et al. 2004), but also in renewable energy
resources such as wind speed, as shown in Jerez et al.
(2013). Of course, the NAO is not the only index with
influence in the climate of the region, but different studies
have pointed out a stronger relationship of the Iberian
Peninsula climate with the NAO (Gimeno et al. 2002). On
top of the already referred to works in the introduction of the
present work, there are more recent studies that build on to
that relation (Qu et al. 2012; Burningham and French 2013)
and (Bierstedt et al. 2014).

To sum up the following analysis, we have encountered
the difficulty of correlating a time series which can be
positive or negative (the NAO) with a positive defined time
series (the KLD). If we do that the usual way, both the
correlation and the anticorrelation cancel each other, thus
obtaining a numerical small correlation (< 0.5) where a
clear graphical correlation between signals can be observed.
We have separated the positive and negative phases of the
NAO as they have a clear climatological interpretation.

More specifically, we consider the January index of
the NAO for the years under study, that is plotted in
red (NAO−) and blue (NAO + ) bars in Fig. 8c. Visual
comparison between the KLD curves in Fig. 8a and the

Fig. 8 Kullback-Leibler divergence DKL(Tj , Tk) for Tk ∈ TJ and
separating between (a) Tj ∈ T ∗

J (see Eq. 9) and (b) Tj 	∈ T ∗
J , plot-

ted in black lines. c January index of the NAO between 1979 and
2014, plotted in red and blue bars for NAO− and NAO + , respectively.

d Correlation between all KLD curves and NAO index (normalized
to their respective maximum values, Corr (DKL, NAO+)max = 0.41,
Corr (DKL, NAO−)max = 0.21). In (b) and (d), years Tj ∈ T ∗

J have
been highlighted with grey lines
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NAO index reveals a high degree of similarity. To attest this
fact, we calculate the correlation between the KLD curves
and the January index of the NAO, differentiating between
NAO− and NAO + , and normalizing to the maximum
obtained value.

This normalization is necessary as in this work we
calculate the correlation between a real-defined time series
(the NAO index) and a non-negative defined one (the
KLD time series). Moreover, the separation between NAO +
and NAO− (e.g. by means of a half-wave rectification)
is also useful because our signals of interest exhibit both
correlation or anti-correlation, the cross correlation operator
performs poorly (cancelling each other), and the actual
similarity between the signals is not apparent. This non-
linear operator (correlation a positive signal with a half-
wave rectified real signal) has been described elsewhere
(Eq. (3) in Doi and Fujita 2014) and it has been referred to
as cross-matching operator.

By separating between NAO + and NAO−, the total
signal energy of the NAO series (i.e. the squared modulus
of the signal integrated in time, such that the larger the
variation of the NAO series between positive and negative
values, the larger is its corresponding energy) is distributed
between the two rectified signals (energy of the NAO signal
= ∑

i |NAOi |2 = ∑
i |NAO+

i |2 + ∑
i |NAO−

i |2), namely
in the following percentage 68% and 32%, respectively.
Therefore, the maximum value of the correlation between
the KLD series and NAO + signal would always result
in value lower than unity, to be precise 0.68 for NAO +
(and 0.32 for NAO−) given the considered NAO series. In
this work, the correlation values obtained between all the
KLD series and NAO + signal are ≤ 0.41 (and ≤ 0.21
for NAO−). Taking into account the half-wave rectification,
these values correspond to actual correlation values of
0.41/0.68 = 0.60 between KLD and NAO + and of
0.21/0.32 = 0.66 between KLD and NAO−.

As both actual correlation values are similar and in
order to perform fair comparison avoiding different signal
energy issues, in Fig. 8d, we represent the correlations series
normalized to their maximum value. In order to clarify the
relation to the KLD represented in Fig. 8b, we marked with
vertical grey lines the reference years Tj ∈ T ∗

J in both
figures. From these results, we can explicitly state that the
KLD with reference years Tj ∈ T ∗

J is highly correlated
with both phases of the NAO. Then, the spatial extent of
the data correlations, observed in the NCSP histograms, is
also very similar between years Tj ∈ T ∗

J but very different
to those of any other year Tj 	∈ T ∗

J . As the KLD is used
as a distance metric of “difference” between histograms,
each KLD series quantifies differences between the CSPs
of different years. Namely the higher the KLD, the more
different the CSPs histograms and a given time series is
dependent on Tj . For example, CSPs obtained for Tj ∈ T ∗

J

reveal a higher occurrence of small clusters, perceptible by
the presence of multiple “valleys” in Fig. 7.

Therefore, KLD series calculated with Tj ∈ T ∗
J as

a reference, shown in Fig. 8a, have higher values on a
sustained basis. These higher values are caused by the
displacement of the CSPs histograms, that shift from high
occurrence of small clusters to higher occurrence of large
clusters. Moreover, it is noticeable that common patterns
in Fig. 8a closely follow the shape of the January NAO
index (depicted in Fig. 8c). Therefore, we can assert with
confidence that almost all years with positive NAO index
and most of the years with negative NAO index show a
higher occurrence of larger clusters. We can also conclude
that years Tj ∈ T ∗

J are “tipping point” years, where no
clear phase (either positive or negative) of the NAO index
dominates in the Iberian Peninsula. This situation results in
fewer dominant large-scale components and a larger short
scale wind speed correlation, causing a more frequent and
uneven distribution of turbulent cells. In the present work,
these cells correspond to clusters sizes of 7 − 9 nodes
covering convex clusters with a ≈ 50-km radius.

In conclusion, a macroscopic time evolution of the
climate regions with the SODCC analysis and its relation to
NAO climate index has been established and the associated
physical interpretation can be extracted from the results.

3.3 Comparison with EOFs and REOFs

In the following, we analyze the wind speed dataset using
EOFs and REOFs, independently for each year considered
in the dataset (from 1979 to 2014), using the methodology
detailed in Björnsson and Venegas (1997).

The first step for this analysis is to check out whether the
phase transition is achieved. In other words, we calculate
the ratio between the amount of nodes and the amount of
data available for each node and then we check if it is
sufficient to properly calculate the EOFs. The considered
dataset includes N = 627 nodes in the network and
Mmonth = 31 × 4 = 124 data values per node and month.
The condition that establishes that the phase transition is
achieved and therefore that the EOFs are properly calculated
is the following:

Mmonth

N
� 4 (10)

Given the considered dataset, it is obvious that the phase
transition is not achieved and then it is not possible to
calculate the EOFs using all the geographical locations in
the Iberian Peninsula. Therefore, it is necessary to use a
subsample of the N possible nodes, in order to satisfy both
the phase transition condition and the regular spatial grid
requirement. Specifically, we consider the Nsubsample = 25
nodes highlighted in Fig. 9 to calculate the EOFs and the
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REOFs. This spatial subsampling diminishes the spatial
resolution of the grid from 56 to 168 km in the longitudinal
axis and to 280 km in the latitudinal axis.

Regarding the REOF calculation, we consider the
varimax criterion (Kaiser 1958) applied to the first three
EOFs. Figure 10 shows the first EOF and the first REOF
calculated over the considered dataset for several values
of Tj ∈ TJ , revealing the different physical modes of
the wind speed in the region of interest. The complete
sets of figures showing the EOF and REOF are provided
as electronic supplemental material (files “3 EOF.pdf” and
“4 REOF.pdf”). As expected for this analysis, we can
observe the differences between the EOFs and the REOFs,
mainly caused by the inherent orthogonality obtained from
the EOF calculation and relaxation of this constraint in
the REOF case. It is commonly accepted that the physical
modes are not in general orthogonal and, therefore, the EOF
analysis is not the most suitable. On the other hand, the
REOF analysis reveals the structure of the physical modes
and the obtained patterns indicate underlying behaviour of
the data, i.e. the wind speed in this work. Note, however,
that the proposed SODCC algorithm also allows the study
of the underlying data behaviour, and besides that, as we
previously mentioned, it allows carrying out this study at
multiple spatial resolutions of the grid.

In the following, we directly compare the REOF results
with the results obtained from SODCC for the NCSP
histograms, that were previously described. Figure 11
represents the results obtained for multiple values of
Tj using the REOF analysis and the NCSP histograms
considering cluster sizes from Ni = 5 to Ni = 8. In this
case, the NCSP histogram when multiple cluster sizes are
considered represents the probability of a node to belong
to clusters of multiple sizes, therefore is the sum of the
histograms of individual cluster size. The complete set of

Fig. 9 Geographical location and identification of the Nsubsample =
25 nodes (red dots) of the network used for the EOF and REOF
analysis

figures showing the REOF plots overlapped to the NCSP
histograms is provided as electronic supplemental material
(file “5 NCSP REOF.pdf”). This range of cluster sizes
represents the focus zone for the CSP histograms, it allows
the study of short range spatial correlation, and limits the
small variations between consecutive cluster sizes that can
appear by chance. Moreover, the results that we may obtain
with this analysis can be extrapolated to long range spatial
correlations due to the dichotomy previously observed.

We can clearly see in Fig. 11 the marked change in
the long to short range behaviour of clusters/cells (larger
probability values) in years with either clear positive or
negative NAO indices (Tj 	∈ T ∗

J ) with respect to transition
years (Tj ∈ T ∗

J ) commented in the previous subsection.
REOF values tend to show the sharpest transitions following
the edges of probability change regions (red vs. green or
blue) albeit with much less definition. Thus, where there
is no dominant phase of the NAO, wind behaviour does
not determine the sharp regional separation in climate
zones. The Northeastern part of the Iberian Peninsula
has marked long range behaviour (low probability for the
NCSP distribution, i.e. orange/red regions) independent of
the NAO phases (mainly due to the Pyrenees). On the
other hand, the behaviour of the rest of the regions in
the Iberian Peninsula evolves with time and shifts from
long range corridors to short range turbulent cells (higher
probabilities for the NCSP distribution, i.e. blue/green
regions). The Northwestern region clearly shifts from long
range correlations (with either negative or positive NAO) to
short range (in years with transitional NAO).

A close analysis of the contour lines that represent the
REOFs and the color patches that represent the NCSP
histograms reveals that both results lead to comparable
conclusions. Thus, it is possible to observe the same
physical phenomenon using either REOF analysis or the
SODCC analysis. However, the EOF and REOF calculation
has several drawbacks that the SODCC algorithm is able
to overcome. For example, there exists a high dependency
between the REOF results and several criterion choices
during their calculation, i.e. the number of EOFs used
for their calculation or the rotation algorithm. Moreover,
when calculating the EOFs and the REOFs, the phase
transition has to be achieved for the autocorrelation matrix
of the considered dataset. In other words, if a high spatial
resolution is required for the grid then the dataset must
include a very large amount of data. Moreover, if the dataset
has not enough amount of data, the spatial resolution of the
grid is compromised, as it has happened in this case study.

On the other hand, the SODCC algorithm does not
depend on any parameter definition that could alter its final
result. Moreover, a significantly higher spatial resolution for
the grid can be obtained as the cluster organization follows a
bottom-up approximation and the phase transition condition
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Fig. 10 Spatial patterns and
percentage of the explained
variance of the first EOF ((a),
(c), (e) , and (ff)) and REOF
((b), (d), (f), and (h)) modes
calculated for the
Nsubsample = 25 spatial locations
and multiple values of Tj ,
presented as dimensionless
maps normalized to the [−1, 1]
interval. Selection of years has
been done in order to show no
bias with respect to set selection,
i.e. {1987, 1994} ∈ T ∗

J ,
{1990, 1994} 	∈ T ∗

J

has to be achieved at cluster level, requiring a significantly
lower amount of data.

A further advantage of SODCC over REOF is the fol-
lowing. While the REOF analysis offers a panoramic view
of the behaviour of the underlying data and its statistics,
the SODCC algorithm allows the study of multiple spatial
correlation extents. This benefit is achieved by analyzing
different cluster sizes where the degree of correlation in

different geographical regions can be identified (recall that
small clusters emerge in areas with high data correlation).

3.4 Robustness to initialization parameters

In the present section, we closely examine the robustness
of the results with respect to the initialization parameters.
We analyze the variation between CSP originated from
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Fig. 11 Comparison between
results obtained with SODCC
and REOF analysis for multiple
values of Tj . The NCSP
distributions are represented for
Ni = 5 to Ni = 8 using the
colorbar included at the top of
this figure. The first REOF mode
is represented as dimensionless
map normalized to maximum 1.
Colorbars are selected to
facilitate the visualization. Left
column corresponds to set of
years Tj 	∈ T ∗

J , right column
corresponds to set of years
Tj ∈ T ∗

J . Climate regions can be
clearly discerned in the NCSP
distributions

942



Spatio-temporal climate regionalization using a self-organized clustering approach

Fig. 12 KLD between CSPs
obtained from simulations with
different initialization
parameters for year Tj = 1979
with respect to the parameters
used in the present work: a
variation of the probability of a
node being selected as CH, Pi , b
variation of the maximum initial
cluster size, N1st

i , and (c)
variation of the number of
repetitions allowed for all the
nodes to be included in any
cluster, N

rep
i

simulations with different initialization parameters, using
the KLD metric. The initialization parameters under
examination are as follows:

1. P—the probability of a node being selected as CH,

Pi ∈ {0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75}
2. N1st—the maximum initial cluster size, N1st

i ∈
{2, 3, 4, 5}, and

3. Nrep—the number of repetitions allowed for the first
phase, N

rep
i ∈ {2, 3, 4, 5}

Without any loss of generality, we have selected for the
present test the first year in the series, Tj = 1979.

Figure 12 shows the resulting KLD calculated between
the CSPs obtained varying the three tuning parameters.
In Fig. 12a, we may observe that changes in the value
of Pi lead to a convex evolution in KLD (with respect
to Pi = 0.35, dash-dotted green line, the value that was
used throughout this work) for all values in the 0.35 ≥
Pi ≥ 0.65 range. Furthermore, the maximum difference
in KLD for that range is below 10−3. Thus, for reasonable
values of Pi (neither too few nor too many initial clusters),

Fig. 13 Upper panel: KLD for
the different CSPs for all
Tj ∈ TJ (joint representation of
the curves in Fig. 8 (a) and (b))
along with the maximum
obtained KLD values in Fig. 12
for 0.15 ≥ Pi ≥ 0.75 (magenta),
reasonable values of
0.25 ≥ Pi ≥ 0.55 (cyan),
2 ≥ N1st

i ≥ 5 (dashed blue), and
2 ≥ N

rep
i ≥ 5 (purple). Lower

panel: same as the above but
y-axis zoomed and in log-scale
(Zero values of KLD are omitted
for clarity)
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selection of the specific value has no relevant impact on the
obtained CSPs and, therefore, on the results of the present
work. Nevertheless, extreme values of Pi are shown to have
limited impact (KLD difference well below 10−2).

In Fig. 12b, we may observe that the variation of the
maximum initial cluster size, N1st

i also leads to negligible
differences between the CSPs, as the resulting KLD is well
below 10−3 for the considered range.

Finally, in Fig. 12c, we can see the resulting KLD
calculated between CSPs obtained from simulations where
different N

rep
i was used. Again, the resulting KLD is also

below 5 · 10−4 indicating that the CSPs are very similar
between them.

In order to clarify the overall impact of a purposefully
bad selection of initial parameters (worst case scenario
which determines the upper limit of variation of KLD), we
have represented the maximum obtained KLD in each panel
of Fig. 12 as horizontal lines in Fig. 13. Figure 13 also
includes the KLD obtained for all Tj ∈ TJ , previously
shown in Fig. 8 (a) and 8(b). It can be clearly seen that,
even in the case of a bad selection of the tuning parameters,
the impact on the resulting KLD patterns is well below the
amplitude of the significant variations (≈ 10−4). Therefore,
the correlation analysis presented in Section 3.2.3 would
remain qualitatively invariant should a worst case scenario
of initialization parameters arise.

Therefore, we have shown that the SODCC method is
robust to the selection of the initialization parameters.

4 Conclusions

In this work, we have presented a novel methodology for
self-organized CR based on the SODCC algorithm. This
method organizes the regions by clustering the grid nodes in
terms of the explained variance of physical measurements
and their extent, i.e. in terms of the statistical characteristics
of the time series. The main advantages of the SODCC
algorithm, and hence of the CR method proposed, are that
it is robust to the selection of tunable parameters and that
it does not require any regular or homogeneous grid for
the nodes. Moreover, the present method has higher spatial
resolution of the grid, lower computational complexity, and
a more direct physical interpretation of the outputs than
other existing CR methods.

First, the operation of the SODCC algorithm only
requires the selection of the margin of the FSD statistic to
adjust to the corresponding chi-square distribution, which
controls the amount of explained variance in a cluster. In this
study, the margin was set such that, once the phase transition
for the covariance matrix is achieved, the explained variance
in each cluster is higher than 90%. This feature of SODCC is
a benefit over other classical methods as the obtained result

is due to the self-organization nature of the algorithm and it
is not necessary to determine a priori some key parameters,
such as the number of EOFs used in the REOF calculation.

Second, the SODCC independence from the measure-
ment nodes location is also a significant advantage over
other classical CR methods. In the wind speed case study
described in this paper, the SODCC algorithm has been
applied to a regular grid. However, this method has been
successfully applied to non-regular inhomogeneous grids
(Chidean et al. 2015b).

The analysis of the obtained set of clusters enables a
microscopic characterization of the climate regions and their
spatial extent. The NCSP histograms show the probability
of each node to belong to a given climate region (with joint
explained variance of 90%) of a given size. These outcomes
reveal the different physical modes of the data in the region
of interest.

The SODCC outcomes also permit the study of the
macroscopic behaviour of the different climate regions
through time. The CSP histograms show the overall
behaviour of the final set of clusters. The temporal analysis
of these results can be performed by using a measure of
similarity between the CSP histograms, such as the KLD.

This work also includes the analysis of the wind speed
in the Iberian Peninsula in January for the period (1979 −
2014) as a specific case study. By applying the SODCC
method to the present time series of data, it is possible
to (1) characterize spatial probabilistic climate regions that
have higher than 90% explained variance with high spatial
resolution of the grid and (2) characterize the time evolution
of the similarity of the studied area as a whole. Two
distinct patterns emerged in the KLD curves initialized in
the different years, pointing to a subset of years (T ∗

J ) with
distinct behaviour. Comparison between the KLD curves
and both the positive and negative phases of the NAO
showed higher correlation values for the T ∗

J subset of
reference years. The CR results corresponding to the T ∗

J

subset of years also showed distinctive features with large
spatial correlations. These results are corroborated by means
of the REOF analysis, with much lower spatial resolution of
the grid however.

Some general results obtained in the present study are
in the line pointed out by previous approaches. In Lorente-
Plazas et al. (2015), a characterization of surface winds
over the Iberian Peninsula is performed via a PCA and
clustering approach in which 20 differentiated regions in the
Iberian Peninsula. In the present work, we go beyond that
characterization and perform a time analysis and a novel
correlation with the NAO to show a high correlation of wind
patterns in the Iberian Peninsula with such oscillation. This
finding is supported, for example, in Jerez et al. (2013)
where it indicates a close relationship of the wind speed
resource with the NAO. Another work with comparable
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results with this one is Azorin-Molina et al. (2014), where a
study on surface wind speed trend in the Iberian Peninsula
is carried out based on measuring stations data. A direct
comparison of results is difficult to establish, due to the
different methodologies applied, observation lengths, and
data used. However, in Azorin-Molina et al. (2014), it is
also recognized the relationship of the wind speed resource
with the different phases of the NAO. But to add to these
previous findings, we have shown that there is statistical
evidence that the local wind speed clusters are large while
the NAO phase is either positive or negative. However,
in the transition years, where the NAO changes its sign,
the local wind speed clusters diminish in size. Thus, the
regionalization of wind speed zones in the Iberian Peninsula
is shown to depend, not only in the geographical features,
but also on the NAO phase.

Finally, as main conclusions of this work, we have found
the following: (1) the climate regions obtained by means of
the SODCC algorithm can be determined with higher spatial
resolution of the grid than equivalent analysis methods,
e.g. REOF analysis; (2) the SODCC outcomes facilitate the
physical interpretation of the underlying phenomena; and
(3) the NAO has a huge impact in the wind distribution
in the Iberian Peninsula in only a subset of years in the
studied period. This indicates that the SODCC is a valuable
tool to study the microscopic spatial distribution of climate
regions and also the macroscopic temporal evolution of
those regions.
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Appendix A: Phase transition of correlation
matrices with a finite number of samples

Using matrix perturbation analysis, it is possible to set
a lower bound on the amount of samples to recover the
largest eigenvalue of the corresponding correlation matrix
(Nadler 2008).

Consider the data matrix X ∈ R
N×M , being M the

number of available data samples for each of the N
measuring stations or grid sites that we aim to analyze. Its
covariance matrix can be defined as � = MXMX

�/M ,
being MX the mean-centered data matrix, i.e. transforma-
tion of matrix X such that the mean of each row is zero.

Let the noise power of the measurement be defined as σ 2

and the modulus of the first EOF of � as ||v||2.The noise of
the first EOF being simply a white noise stochastic physical

process that perturbs all EOFs equally in time and space.
Thus, the Signal to Noise Ratio (SNR) needed to resolve the
first EOF (the one with higher explained variance) can be
defined as

SNRv = ||v||2/σ 2 (11)

It has been shown that the stochastic self-adjoint matrix
� experiences a phase transition for M samples obtained
from N measuring stations (for N/M = constant as N and
M got to ∞) s.t. M/N ≥ SNR−2

v (Nadler 2008, Eq. 2.19).
The phase transition can be detected in the largest eigen-
value as it “arises” from the set of noise degenerate eigen
values to a signal eigenvalue. This phase transition has been
identified also in the fields of unsupervised learning (via
the replica method) (Biehl and Mietzner 1994) and statistics
(via the Stieltjes transform) (Baik and Silverstein 2006).

This, in fact, provides a threshold on the minimum
amount of samples M needed to detect the eigenvalue with
a minimum SNRv as

M ≥ N

SNR2
v

(12)

Throughout the present work, we have used as working
threshold to separate signal eigenvalues from noise eigen-
values that establishes that the minimum number of samples
needed to obtain at least a signal eigenvalue is

M = 4 × N (13)

This assumption is valid as long as the only intervening
noise in the mixture of the EOF is additive, white, and
Gaussian.

Thus, we can see that the phase transition sets a limit on
the minimum number of samples M for a � = MXMX

�/M

covariance matrix to be well conditioned, i.e. non-singular.
By using a consistent threshold for the extraction of the
EOFs, no matter the size of the originating covariance
matrix (i.e. from small to large clusters or the complete
network), we ensure the coherence and comparability of the
results at any spatial scale.

Appendix B: Fast subspace decomposition

In this work, we use the Fast Subspace Decomposition
(FSD) algorithm to estimate the number of eigenvalues d̂

that account for a given amount of explained variance (Xu
and Kailath 1994). The FSD algorithm estimates the first d̂

Rayleigh-Ritz (RR) eigenvalues and eigenvectors (spanning
the signal subspace) up to the d̂ = d iteration, where d
is the value to be estimated. FSD is based on the Lanczos
method and has O(N2d) computational complexity, much
lower than that of the traditional eigendecomposition, that
has order of O(N3).
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For a data matrix X ∈ R
N×M with MX the centered data

matrix and � = MXMX
�/M the covariance matrix, the

FSD statistic ϕ
d̂

is defined as (Xu and Kailath 1994):

ϕ
d̂

= M(N − d̂) log

⎡
⎢⎣

√
1

N−d̂
(||�||2 − ∑N

n=1θ
2
n)

1
N−d̂

(Tr� − ∑N
n=1θn)

⎤
⎥⎦ (14)

where || · || is the Frobenius norm, θn is the RR eigenvalues,
and Tr� is the trace of matrix �. In each iteration, the ϕ

d̂

statistic is computed and for d̂ ≥ d + 1, ϕ
d̂

approaches a χ2

distribution with (1/2)(N − d̂)(N − d̂ + 1) − 1 degrees of
freedom.

Finally, it has been proven that, for M samples, the
following equation is valid (Xu and Kailath 1994)

ϕ
d̂

≤ γ
d̂

c(M) (15)

where γ
d̂

is a threshold computed a priori as the end tail
of the χ2 distribution according to the required amount
of explained variance. As in the present work we have
considered that the minimum explained variance by the d̂

eigenvalues estimated by FSD is 90%, we calculated the

value γ
d̂

such that it accounts for 0.1 of the area of the
corresponding χ2 distribution. Also, function c(M) must
comply with the following:

lim
M→∞

c(M)

M
= 0 and lim

M→∞
c(M)

log log M
= ∞ (16)

In practice, its asymptotic behaviour must be “slower”
than linear but “faster” than log log; functions such as
c(M) = log(M) or c(M) = √

log(M) can be used.

Appendix C. Schematic of themethod

In this work, we use the SODCC algorithm as the core
of a climate data analysis procedure. In order to facilitate
both the understanding of our results and conclusions and
reproducibility of this analysis, in this appendix, we include
a general scheme of the complete analysis performed in
this work (Fig. 14). We also include detailed schematic
representations of the performed simulations in Figs. 15
and 16 and of the analysis carried out in Fig. 17.

Fig. 14 Schematic representation of the simulations and result analysis performed in this work. Each inset is zoomed in Figs. 15, 16, and 17,
respectively
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Fig. 15 Schematic
representation of the cluster
initialization stage of the
SODCC algorithm
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Fig. 16 Schematic
representation of the cluster
growing stage of the SODCC
algorithm
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Temporal Analysis

Spatial Analysis

Start Here

Calculate the Cluster 
Size Probability (CSP) 

histogram

Calculate KLD 
between any pair of 

CSP histogram 

Correlation with climate indices

Analyze results and 
obtain conclusions

Analyze results and 
obtain conclusions

Apply cross-matching 
operator between KLD series 
and NAO- and NAO+ series
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Calculate the Node to 
Cluster Size Probability 

(NCSP) histogram

Plot NCSP 
over maps

Analyze results and 
obtain conclusions

Calculate NCSP 
for multiple 

cluster sizes 

Plot NCSP 
over maps

Calculate EOFs 
and REOFs

Plot EOFs and 
REOFs over maps

Analyze results and 
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Fig. 17 Schematic representation of the result analysis performed in this work
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