
ORIGINAL PAPER

Spatio-temporal regression kriging model of mean daily
temperature for Croatia

Aleksandar Sekulić1 & Milan Kilibarda1 & Dragutin Protić1 & Melita Perčec Tadić2 & Branislav Bajat1

Received: 21 January 2019 /Accepted: 10 December 2019
# Springer-Verlag GmbH Austria, part of Springer Nature 2019

Abstract
High resolution gridded mean daily temperature datasets are valuable for research and applications in agronomy, meteorology,
hydrology, ecology, and many other disciplines depending on weather or climate. The gridded datasets and the models used for
their estimation are being constantly improved as there is always a need for more accurate datasets as well as for datasets with a
higher spatial and temporal resolution. We developed a spatio-temporal regression kriging model for Croatia at 1 km spatial
resolution by adapting the spatio-temporal regression kriging model developed for global land areas. A geometrical temperature
trend, digital elevation model, and topographic wetness index were used as covariates together with measurements from the
Croatian national meteorological network for the year 2008. This model performed better than the global model and previously
developed models for Croatia, based on MODIS land surface temperature images. The R2 was 97.8% and RMSE was 1.2 °C for
leave-one-out and 5-fold cross-validation. The proposed national model still has a high level of uncertainty at higher altitudes
leaving it suitable for agricultural areas that are dominant in lower and medium altitudes.
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1 Introduction

High-resolution daily temperature gridded datasets are widely
used for many purposes. They serve as input data for numer-
ous models across various research fields, such as agronomy,
meteorology, hydrology, ecology, and climatology.
Researchers use spatial or spatio-temporal interpolation
methods to create maps from point data and covariates.
Nowadays, point data are available from weather stations on
a global level (e.g., GHCN (Menne et al. 2012), GSOD
(https://data.noaa.gov/dataset/dataset/global-surface-
summary-of-the-day-gsod)), regional level (ECA&D (Klein
Tank and coauthors 2002)), and local (e.g., national hydrome-
teorological services) level. Furthermore, many of these point

data sources have open data policy so they are easily
accessible.

One needs to consider the extent, resolution, and support
while performing an interpolation. In this case, the support is a
time interval, an area, or a volume over which a measurement
or prediction is made. A variety of gridded temperature
datasets exists in various spatial and temporal resolutions
and supports (an extensive list is available at https://www.
esrl.noaa.gov/psd/data/gridded/). For example, researchers
have investigated spatial ranges from 5° (Osborn and Jones
2014) to 250 m (Holden et al. 2016), temporal resolution
ranges from 30 year period (PRISM Climate Group, Oregon
State University, http://prism.oregonstate.edu/normals/) to
daily (Kilibarda et al. 2014) gridded datasets, spatial extent
ranges from areas covering the whole world (Kilibarda et al.
2014) to relatively minute area extents (Rosenfeld et al. 2017),
and finally temporal extent ranges from more than 50 years
(Oyler et al. 2015) to a single year period (Parmentier et al.
2015). However, the global datasets are not optimal for most
of the applications mentioned above due to their coarse spatial
and temporal resolution and insufficient accuracy. Coarser
spatial and temporal support leads to the averaging of spatial
and temporal variability. This results in the omission of mi-
croclimatic areas and short time phenomena. Due to the
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shortcomings of global models, there is a need for the devel-
opment of local models that can produce gridded datasets at a
much finer spatial and temporal resolution with improved
accuracy.

Longitude, latitude, and elevation are most commonly used
covariates in temperature modeling—especially in linear
models (Wu and Li 2013; Yuan et al. 2014). Generalized ad-
ditive models based on longitude, latitude, and elevation gave
the best results for generating a gridded daily dataset for max-
imum air temperature surfaces at 1 km spatial resolution for
the state of Oregon, USA (Parmentier et al. 2014). The eleva-
tion is often an essential covariate due to the average temper-
ature decreases with altitude. The elevation is used either di-
rectly in temperature models (e.g., Jarvis and Stuart 2001) or
in the form of a topographic index or any other DEM deriva-
tives. For example, Dodson and Marks (1997) used elevation
in the form of hydrostatic and potential temperature equations
in the inverse distance weighting (IDW) method to interpolate
the minimum and maximum temperature at 1 km resolution
for the mountainous region in the US Pacific Northwest.
However, many other covariates have been proven to be
beneficial for temperature interpolation. Courault and
Monestiez (1999) used general atmospheric circulation pat-
terns along with elevation, Jarvis and Stuart (2001) introduced
land cover as a covariate, specifically useful in modeling ur-
ban effects. In recent years, the moderate resolution imaging
spectroradiometer land surface temperature (MODIS LST) is
widely used as one of the most important covariates for tem-
perature interpolation. Zhu et al. (2013), Hengl et al. (2012),
Kilibarda et al. (2014, 2015), Williamson et al. (2014), Xu
et al. (2014), Kloog et al. (2014), Parmentier et al. (2015),
Huang et al. (2015), Stewart and Nitschke (2017), and Li
et al. (2018) used MODIS as the main covariate for their
models. The MODIS LST is highly correlated with surface
measured air temperature, where specifically daytime images
are correlated well with maximum temperatures and nighttime
images with minimum temperatures (Oyler et al. 2016). The
problem with MODIS LST images is that they have spatial
and/or temporal gaps that need to be filled. Filling the gaps
using spatial or temporal interpolation together with the pro-
cessing of images are computationally consuming processes.
Proximity to the sea, land cover, vegetation indices, canopy
height, cloud cover, etc. are also used as covariates in temper-
ature modeling.

The most commonly used methods for interpolation of
temperature involve distance criteria methods (Dodson and
Marks 1997; Srivastava et al. 2009), splines—being mostly
thin plate splines (Jarvis and Stuart 2001; Hutchinson et al.
2009; Yuan et al. 2014; Stewart and Nitschke 2017), regres-
sion and geostatistical methods (Courault and Monestiez
1999; Kurtzman and Kadmon 1999; Hunter and
Meentemeyer 2005; Carrera-Hernández and Gaskin 2007;
Haylock et al. 2008; Perčec Tadić 2010; Hengl et al. 2012;

Wu and Li 2013; Krähenmann and Ahrens 2013; Kilibarda
et al. 2014), and recent machine learning techniques (Xu et al.
2014; Gasch et al. 2015).

Kriging has become a very popular interpolation method
for temperature and other meteorological variables due to its
ability to take into account spatial correlation, to estimate
target variables at unobserved locations, and to quantify the
uncertainty associated with the estimator. Courault and
Monestiez (1999) used ordinary kriging (OK) to interpolate
maximum and minimum temperatures at a 1 km spatial reso-
lution for southeast France with the RMSE of 1–2 °C.
Afterwards, regression kriging (RK) was introduced, and it
was proven that it gives better results than OK (Hunter and
Meentemeyer 2005; Carrera-Hernández and Gaskin 2007) or
any other interpolation methods like distance criteria, regres-
sions, and splines (Hofstra et al. 2008). Haylock et al. (2008)
interpolated, amongst other variables, the mean surface tem-
perature for Europe at 25 km spatial resolution (E-OBS) by
using kriging with an external drift (KED) on anomalies from
monthly averages. Perčec Tadić (2010) made 20 climatologi-
cal (climatological normals) maps for Croatia for the period of
1961–1990 at a resolution of 1 km using regression kriging.
Frick et al. (2014) provided gridded daily datasets of surface
air temperatures for Germany at a 5 km spatial resolution
using RK. Brinckmann et al. (2016) and Berezowski et al.
(2016) interpolated the daily anomalies from the monthly av-
erages using simple kriging (SK) for minimum and maximum
temperatures for Europe. Spatio-temporal regression kriging
(STRK) has recently become popular due to the development
of R gstat (Pebesma 2004) and spacetime (Pebesma 2012)
packages. Gräler et al. (2016) added extensions to the R gstat
package for handling data formats from the R spacetime pack-
age, spatio-temporal variogram modeling, and spatio-
temporal interpolation. Hengl et al. (2012) used STRK for
interpolation of daily temperatures for Croatia and Kilibarda
et al. (2014) for global land areas.

Nowadays, machine learning (ML) methods are becoming
popular because they are easy to use and have decent accuracy
performances. One of the reasons why we did not use ML
methods in this study is that they cannot be easily explained
(black-box approach). Even though there are some initiatives
to establish a framework for spatio-temporal interpolation
using ML (Hengl et al. 2018), the accuracy is still lower in
comparison with RK. As opposed to an ML approach, the use
of STRK spatial and temporal correlations can be recognized
and explained through variograms.

The first objective of this research is to examine the perfor-
mance of the existing global STRK model (STRK_global,
Kilibarda et al. 2014) over Croatia using an independent sta-
tion dataset from dense Croatian national meteorological ob-
serving network. The second objective is to develop more
accurate local model for mean daily temperature for Croatia
based on smaller number of covariates (without MODIS LST)
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with respect to already existing model, i.e., Hengl et al.
(2012). Finally, validation results of the developed local mod-
el will be compared and discussed in relation to the (1)
existing STRK_global without high density station dataset
from Croatia and (2) existing local model relying on
MODIS data as covariate.

2 Study area and datasets

2.1 Study area

Although Croatia is a medium sized European country, the
diverse topography, openness toward the Pannonian Plain
and position on the eastern Adriatic coast characterizes the
country with three main climatic regions: continental, moun-
tainous, and maritime (Zaninović et al. 2008). This climate
diversity has inspired the testing of different climatic
(Antonić et al. 2001; Hengl et al. 2012) or physical models,
where the research of the strong and gusty bora wind is
amongst the most interesting examples (Bajić 1989; Belušić
and Bencetić Klaić 2004; Horvath et al. 2009; Ivatek-Sahdan
and Ivancan-Picek 2006). The diversity of climate conditions
is explored and mapped in detail for the most recent standard
climate normal 1961–1990 as reported in the climate atlas of
Croatia (Zaninović et al. 2008), where the large range of
values of different temperature parameters are presented,
amongst which are the mean monthly and annual temperature,
annual number of frosty, warm, and days with summer nights.
In the recent decade, the observed climate change in the region
is especially supported by pronounced warming and extended
dry periods (Cindrić et al. 2010), which emphasize the need
for spatio-temporal interpolation of temperature on fine spatial
and daily temporal scale. The maps produced by these studies
can serve as data sources for climate assessment and
monitoring.

2.2 Datasets

Two different sets of the measurements from meteorological
stations were used, namely the Global Surface Summary of
the Day (GSOD) and Croatian mean daily temperature dataset
(CMDT). In addition, the digital elevation model (DEM) and
topographic wetness index (TWI) were used as static
covariates.

GSOD (https://data.noaa.gov/dataset/dataset/global-
surface-summary-of-the-day-gsod) is a global dataset of the
daily summaries of meteorological variables including mean
daily temperature. The data is collected from over 9000
stations. Mean temperatures are measured with the precision
of 0.1 °F (0.055 °C). Daily summaries are calculated only if
there are a minimum of 4 observations at the station during the
day. There are 48 GSOD stations in Croatia for the year 2008

(Fig. 1, blue circles). GSOD is used in this study because it
provides more measurements of the mean daily temperature
than other open datasets (e.g., GHCN-daily, ECA&D), and it
allows the prediction of mean air temperature with the STRK_
global model to be independent with respect to CMDT. For
the purpose of this study, the mean temperatures were
converted from °F to °C.

CMDT (http://spatial-analyst.net/book/HRclim2008)
provides data from 159 stations in Croatia (Fig. 1, green
squares). Furthermore, there are 57,282 measurements of the
daily mean temperature available for the year 2008. A detailed
description of this dataset is given by Hengl et al. (2012). The
daily mean temperature is calculated as a weighted average of
measurements taken at 07, 14, and 21 UTC. The precision of
the measurements is 0.1 °C which is comparable with the
GSOD dataset.

GSOD and CMDT datasets are stored in R STFDF objects
(space-time full data frame) (Pebesma 2012), which are ap-
propriate space-time objects, because the data exist for nearly
all of the days at all of the stations’ locations. For each CMDT
station, DEM derivatives are extracted and added as an attri-
bute to STFDF. Not all 157 CMDT stations are used for ac-
curacy assessment. The 9 coastal stations were not used for

Fig. 1 Spatial distribution of GSOD (blue circles) and CMDT (green
squares) meteorological stations for mean daily temperature, CMDT
stations which are included in GSOD dataset (orange diamond), and
CMDT stations with missing DEM and TWI values (red triangles).
DEMSRE3 is global relief model (DEM) produced by combining
SRTM 30+ and ETOPO DEM, and TWISRE3 is derived from the
SAGA GIS Topographic wetness index (TWI). DEMSRE3 and
TWISRE3, both at a 1 km spatial resolution, were downloaded from
worldgrids.org (not active anymore) (Hengl et al. 2015) (Fig. 2)
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accuracy assessment (Fig. 1, red triangles) because static co-
variates DEM and TWI were missing for these stations due to
a poorly defined coastline on 1 km DEMSRE3. Furthermore,
the stations located in the vicinity of 2 km from the GSOD
stations, 37 of them that are considered as duplicates, were not
used to test the STRK_global predictions made by GSOD
(Fig. 1, orange diamonds).

3 Methods

3.1 Spatio-temporal regression-kriging

In a purely spatial variant of regression-kriging, the multiple
linear regression (MLR) and SK are combined into RK, where
the MLR is used to model a trend, and the SK is used for
modeling the spatial correlation between regression residuals.
MLR finds the relationships between covariates and the ob-
served variable. Then, it uses the MLR model on the covari-
ates to make a prediction at unknown locations. Even though
multi-iteration generalized least squares (GLS) represents an
optimal solution for MLR trend modeling, Kitanidis (1993)
showed that OLS produces almost the same results as GLS in
the case of kriging. Based on stationarity assumption, which
means that the mean and variance of the residuals are constant
throughout the space-time domain (the mean is zero), SK can
be used for MLR residual modeling. The spatial correlation
between the MLR residuals can be explained using a spatial
variogram. Thus, RK provides better results than MLR and
SK (or OK) used independently, except in special cases. For
example, when MLR describes all of the variability of the
observed variable and residuals have no spatial structure, then
there is no need for SK. In the opposite case, when there are no
relationships between the covariates and the observed vari-
able, then only SK (or OK) could be performed (Zhu et al.
2013). The term RK is often used interchangeably with uni-
versal kriging (UK) and KED. Although these interpolation
methods have differences in the means of computation, the
predictions and accuracy of the predictions are the same
(proof Hengl et al. 2007, Appendix). UK was first presented
by Matheron (1963). All the computation was performed in
one step, and the trend was modeled as a function of coordi-
nates. Wackernagel (1998) started to use the term KED as an
improved version of UK by introducing auxiliary variables,
i.e., covariates in trend modeling. Consequently, RK imposed
itself as a two-step interpolation technique that separates trend
and residual modeling (Ahmed and de Marsily 1987; Odeh
et al. 1995). Therefore, the trend could be modeled using
linear, machine learning, or any other regression technique.
Considering that the target variable is air temperature, the
spatial trend in RK should not be confused with e.g., “positive
temperature trend” as is used in global warming research and
discussions.

STRK is an extension of RK. Besides the spatial compo-
nent, it considers the influence of the time component and the
space-time interaction on a prediction, i.e., it replaces spatial
RKwith spatio-temporal RK. STRK is a suitable candidate for
the modeling of mean daily temperatures because of its ability
to describe the spatio-temporal variability of a certain variable.
Following the STRK interpolation method, the mean temper-
ature variable Z(s, t) that varies over space (s) and time (t) can
be decomposed as (Heuvelink and Griffith 2010):

Z s; tð Þ ¼ m s; tð Þ þ V s; tð Þ: ð1Þ

In previous equation (Eq.1), m is a deterministic compo-
nent of the variable (trend) and is modeled using MLR:

m s; tð Þ ¼ ∑
p

i¼0
βi f i s; tð Þ; ð2Þ

where the βi are regression coefficients estimated using ordi-
nary least squares (OLS) and β0 is model intercept (by impos-
ing f0 is equal to 1), the fi are covariates that are known over
the spatio-temporal domain, and p is the number of covariates
(Eq. 2).

V is a zero-mean spatio-temporal stochastic residual and is
modeled using a spatio-temporal sum-metric variogram
(Gräler et al. 2016):

γ h; uð Þ ¼ γS hð Þ þ γT uð Þ þ γST

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ α � uð Þ2
q

� �

; ð3Þ

where γ(h, u) denotes the semivariance of residuals at h units
of a distance in space and u units of a distance in time, γS, γT
are purely spatial and temporal components, γST is the space-
time interaction component and α is a spatio-temporal anisot-
ropy ratio which converts units of temporal separation (u) into
spatial distances (h) (Eq.3).

3.2 Mean daily temperature model for global land
areas

The mean daily temperature gridded dataset for Croatia at a
1 km spatial resolution was produced using the STRK_global
implemented in the R meteo package (Kilibarda et al. 2014)
and GSOD stations. The tmeanGSODECAD_noMODIS
model from the tregcoef data of the R meteo package were
u s e d f o r t r e n d e s t i m a t i o n . T h e n t h e
tmeanGSODECAD_noMODIS fitted variogram from the
tvgms data of the R meteo package was used for residual
prediction. An up-to-date version of R meteo package is avail-
able for download at https://r-forge.r-project.org/projects/
meteo/.

Geometric temperature trend (GTT), DEM, and TWI are
covariate layers used for MLR. The only dynamic covariate
layer is GTT proposed by Kilibarda et al. (2014). GTT is a
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function of latitude (φ) and the day of the year (day). GTT is
defined with the following function (Eqs. 4 and 5) for the
mean daily temperature:

GTT ¼ 30:4cosφ−15:5 1−cosθð Þsinjφj ; ð4Þ
where θ is:

θ ¼ day−18ð Þ 2π
365

þ 21−sgn φð Þπ: ð5Þ

The original model for global land areas uses MODIS LST
as a covariate (Kilibarda et al. 2014). However, the MODIS
LST daily images have spatial gaps while MODIS LST 8-day
images have temporal gaps due to cloud contamination, so
those gaps need to be filled. Since the idea of our research
was to develop a simple, accurate, and fast model for mean
daily air temperature estimation, MODIS LST data are omit-
ted. The STRK_global model is explained in detail by
Kilibarda et al. (2014).

3.3 Mean daily temperature model for Croatia

In order to make a better estimation of the mean daily temper-
ature for Croatia at a 1 km resolution, an adaptation of the
presented STRK_global for mean daily temperature was
made. The STRK_Croatia was developed using the data from
CMDT. This dataset contains observations from more than
150 stations, which is about three times the amount compared
with 48 GSOD stations used for the making of the
STRK_global (Kilibarda et al. 2014). A trend model was
made us ing the same covar ia tes appl ied in the
STRK_global: GTT, DEM, and TWI. Consequently, a
spatio-temporal sum-metric variogram was made for the re-
siduals calculated at the stations locations.

The trend modeling, estimation of the sample variogram,
and fitting of the spatio-temporal variogram are performed in
the R software (R Development Core Team 2012) using the
lm base function and the vgmSTand fit.StVariogram functions
from the R gstat package. The code is available at http://osgl.
grf.bg.ac.rs/materials/tac_hr/. The STRK_Croatia is now
available in R meteo package, i.e., trend in tregcoef data and
spatio-temporal variogram in tvgms data named hr. It was
used to produce a local mean daily temperature gridded
dataset for Croatia for year 2008.

3.4 Accuracy assessment

The accuracy of the STRK_global and STRK_Croatia is
assessed by leave-one-out (LOO) and stratified 5-fold cross-
validation. Before that STRK_global predictions made using
GSOD stations were compared with the CMDT data. Five
stratified folds are created using modified stratfold3d function
of the R sparsereg3D package (https://github.com/pejovic/

sparsereg3D, Pejović et al. 2018). This function creates
stratified folds in three steps:

1. Stations are clustered using k-means clustering according
to spatial location

2. Each cluster is split to folds, stratified according to the
altitude of the station

3. Each final fold is obtained by merging one fold from each
cluster.

Each of the folds was used once for cross-validation based
on the data from the other four folds. This method is chosen
because temperature observations in CMDT, as well as in
GSOD, are not represented well enough in the areas at higher
altitudes. Rather than LOO cross-validation, stratified cross-
validation was used for two reasons. (1) It is better in terms of
bias and variance (Kohavi 1995), and (2) it has an ability to
separate data in such a way that each fold of the data is a
representative sample of the whole dataset with regard to alti-
tude and spatial distribution of the stations.

The coefficient of determination (R2) and root mean
squared error (RMSE) were calculated as performance mea-
sures for both (STRK_global and STRK_Croatia) examined
models. Also, the annual average RMSE per test or cross-
validated station is calculated in order to find a cause of the
worst results which occur at some stations. All of the figures
used to present annual average RMSE per station are available
as interactive maps at http://osgl.grf.bg.ac.rs/materials/tac_hr/.
These maps were produced by R package plotGoogleMaps
(Kilibarda and Bajat 2012).

4 Results

4.1 Mean daily temperature model for global land
areas and prediction

The STRK_global was already implemented in the R meteo
package (tmeanGSODECAD_noMODIS model, Kilibarda
et al. 2014), so predictions were made for the limited area of
Croatia. The spatio-temporal trend model for STRK_global is
given by Eq. 6:

trend ¼ −2:44þ 1:02 GTT þ 0:0004 DEM−0:025 TWI ð6Þ

The parameters of the fitted sum-metric variogram are
shown in the Table 1.

Kilibarda et al. (2014) found that GTT by itself explains
75% of mean daily temperature variations with a standard
error of ± 5.7 °C which makes GTT the most important covar-
iate of the model. Furthermore, they concluded that there is no
pure temporal correlation between the residuals and also that
the temporal correlation is caught by the spatio-temporal
component.
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Mean daily temperatures at a 1 km spatial resolution for
Croatia for the year 2008 were estimated using above de-
scribed STRK_global model and both GSOD and CMDT
dataset. These datasets are available at http://osgl.grf.bg.ac.
rs/materials/tac_hr/ in GeoTIFF format. Predictions for each
pixel are made using the 30 nearest GSOD or CMDTstations,
and observations at these stations are not only for a specific
day, but also for the day before.

4.2 Mean daily temperature model calibration
for Croatia and prediction

The estimated spatio-temporal trend for the STRK_Croatia is
defined as:

trend ¼ 18:73þ 0:86 GTT−0:00921 DEM−0:606 TWI ð7Þ

This trend explains about 80% of the variation of the mean
daily temperature with RMSE = 3.5 °C, and GTT by itself
explains 74% of the mean daily temperature variation with a
standard error of ± 4 °C.

In Fig. 3 the scatterplot of observations and predictions is
presented (left). Residuals from the trend are normally distribut-
ed allowing for the kriging interpolation (Fig. 3, right). In Fig. 4
sample variogram and fitted sum-metric variogram are present-
ed. The sample variogram shows that there is obviously a spatio-
temporal correlation between the residuals and on account of
this spatio-temporal kriging that is applicable. The parameters
of the fitted sum-metric variogram are shown in Table 2.

Mean daily temperatures at a 1 km spatial resolution for
Croatia for the year 2008 were estimated using above de-
scribed STRK_Croatia and CMDT dataset. They are also

available at http://osgl.grf.bg.ac.rs/materials/tac_hr/ in
GeoTIFF format. Predictions for each pixel were made using
the 30 nearest CMDT stations and observations from them for
a specific day and previous 6 days as it could be inferred from
the range in the temporal component of the sum-metric
variogram (Table 2).

The STRK_Croatia is also added to the R meteo package.

4.3 Accuracy assessment

STRK_global predictions based on GSOD stations was tested
with CMDT. It is important to emphasize that these 111 sta-
tions from the CMDT were not used in the making of the
STRK_global. The R2 of the test is 92.9% and RMSE is
2.1 °C. The annual average RMSEs per station are presented
in the Fig. 5. The test shows that R2 is about 4% lower than for
cross-validation (96.6%, Kilibarda et al. 2014), and RMSE is
in a range of the result for the cross-validation for the whole
world (2.4 °C, Kilibarda et al. 2014) and averaged for Croatia
(2 °C, http://dailymeteo.org/node/3). These results are
explainable by larger number of stations used by Kilibarda
et al. (2014) since they merged ECA&D dataset with GSOD.

The LOO cross-val idat ion was performed for
STRK_global and STRK_Croatia models with 148 CMDT
stations (nine stations without DEM and TWI were excluded).
The R2 of STRK_global and STRK_Croatia equals 94.4%
and 97.8%, respectively, while the RMSE equals 1.9 °C and
1.2 °C, respectively. The annual average RMSE per station is
presented in the Fig. 6. For the STRK_Croatia, three stations
at altitudes higher than 1000 m got the highest RMSEs and
they are around 3 °C (Fig. 7). All the other stations at altitudes
lower than 1000 m got an RMSE less than 2.5 °C.

Fig. 2 DEM (left) and TWI
(right) values for Croatia

Table 1 Sum-metric variogram
parameters for the STRK_global
(Kilibarda et al. 2014)

Component Nugget [°C2] Sill [°C2] Range Function Anisotropy ratio

Spatial 2.24 30.55 5130 km Spherical –

Temporal 0 0 0.1 days Spherical –

Spatio-temporal 0.59 9.74 2242 km Spherical 501 km/day
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The 5-fold stratification folds from 148 CMDTstations are
shown in Fig. 8. Each of the folds is a representative sample of
the entire dataset considering the elevations and spatial distri-
bution of the stations and considering that the median and
mean of the folds do not differ more than 10 to 20 m from
the median and mean of the whole dataset. The spatial distri-
bution of the stations per fold is presented in the Fig. 9.

The results from the stratified 5-fold cross-validation show
that the STRK_global explains about 95.3% of the variation
with 1.7 °C RMSE, while proposed STRK_Croatia explains
about 98.2% of the variation with 1.1 °C RMSE. These results
are in agreement with the LOO cross-validation. The RMSE
per station are presented in the Fig. 9 with different color
coding for each fold.

The accuracy per month for both models was also assessed
(Table 3). The STRK_global does not show noticeable sea-
sonal differences in average monthly RMSEs. On the other
hand, STRK_Croatia shows noticeably larger RMSEs in cold
season with the largest RMSE in January and smaller RMSEs
in warm season with the smallest RMSE in April. The

improvements in changing from a global to local model are
also larger in warm season.

5 Discussion

5.1 Global vs local model

Besides GTT, DEM and TWI proved to be significant covar-
iates in the STRK_Croatia trend model (Eq. 7). They have a
larger influence in the prediction of the STRK_Croatia com-
pared with the one for STRK_global as is supported by the t
test for the significance of the regression coefficients. The
s igni f icant di ffe rence between the t rend of the
STRK_Croatia and the STRK_global is in the intercept value.
The aforementioned value is 18.73 °C for Croatia, which is
significantly higher compared with − 2.43 °C for the
STRK_global. This can be explained by the mean annual
temperature that is higher for Croatia (around 13 °C) than
for the entire world (around 1 °C).

Fig. 3 The scatterplot of
estimated mean daily temperature
values from the trend for STRK_
Croatia vs. observed values, (left).
Histogram of the residuals from
the trend for STRK_Croatia
(right). It shows that residuals
follow the normal distribution
which justifies the use of the
kriging

Fig. 4 Sample variogram (left) and fitted sum-metric variogram (right) of the residuals from the trend model for STRK_Croatia. Variograms are
presented in 3D
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A striking difference between the STRK_Croatia and
STRK_global fitted variograms is that a temporal variogram
component appears in the STRK_Croatia. This means that
there is a pure temporal correlation between the data in the
range of 7 days. Nugget effects from the spatial and spatio-
temporal components indicate that the short-range variability
is 0.3 °C. This, in turn, shows that there is room for model
improvement because the precision of the measurements be-
ing 0.1 °C is declared, which suggests that the stations with
lower precision are presented in the data or are themselves
potential outliers in data. As expected, the ranges and the
anisotropy ratio (excluding the temporal component) for the
STRK_Croatia are lower than for the STRK_global due to the
higher density of stations and smaller spatial extent.

Accuracy assessment shows that the STRK_Croatia, which
is an adaptation of the STRK_global, significantly improves
interpolation accuracy by 3.3% in R2 and 0.6 °C in RMSE.
When comparing accuracies per month (Table 3), the
STRK_Croatia performs better than STRK_global in each
month and the improvements are larger in warm parts of the
year. The largest improvement is for April, from 1.84 °C to
0.93 °C and the smallest for January, from 1.87 °C to 1.51 °C
RMSE. The average monthly RMSEs of the STRK_Croatia,

for those that are larger in the cold season compared with the
warm one, indicate that there are still some influences that
modifies winter temperatures (like e.g., cold air pool and tem-
perature inversions) that cannot be explained by the model.
Similar conclusions were obtained in Hiebl et al. (2009) and in
Perčec Tadić (2010) when comparing monthly normals and in
Hiebl and Frei (2016) when comparing daily minimum and
daily maximum temperatures. In these papers, the cold
months/season had prediction errors that were larger than in
warmmonths/season. The adjustment of the global model and
a benefit of the larger observations density become obvious if
we take a look at predictions in Fig. 11. The STRK_Croatia
model shows a more pronounced spatial variability, especially
in the mountainous regions. On the other hand, the
STRK_global smooths the prediction because it was trained
on the sparser station network for the whole world (Kilibarda
et al. 2014). Further on, the spatial range of 221 km for the
STRK_Croatia variogram is much shorter than 5130 km for
STRK_global. Also, the spatial nugget of 2.24 °C for the
STRK_Croatia variogram is much larger than 0.56 °C for
STRK_global. This results in a loss of local variability and
accuracy in the STRK_global. For the STRK_global, the
highest errors occur in the western part of Croatia and near
the coastline (Figs. 7 and 11) because it represents a moun-
tainous region (Fig. 2). The STRK_Croatia managed to reduce
errors not only in that region but for the whole area of Croatia.
However, the error in the mountainous region is still higher
compared with the other parts of Croatia. Figure 10 shows
time series of predictions from LOO cross-validation and ob-
servations for Zavižan (1514 m) and Zagreb-Maksimir
(121 m) stations. It can be noticed that both STRK_global
and STRK_Croatia predict mean daily temperature with high
accuracy at lower altitude (Fig. 10, Zagreb-Maksimir), which
confirms Kilibarda et al.’s (2014) claim that STRK_global
performs better for areas at lower altitude. STRK_Croatia pre-
dictions are much closer to observations with slight underes-
timation while STRK_global mostly overestimates mean dai-
ly temperature for stations at higher altitude (Fig. 10,
Zavižan). This improvement at higher altitude was expected
because STRK_global models variability of mean daily tem-
perature for the whole world, while STRK_Croatia tends to
explain variability just for Croatia. It looks like that
STRK_Croatia predictions are STRK_global predictions
shifted to observations values (Fig. 10, Zavižan) with small
adjustments. This shift is a consequence of the shift in trend
models, i.e., trend for STRK_Croatia performs better than

Table 2 Sum-metric variogram
parameters for the STRK_Croatia Component Nugget [°C2] Sill [°C2] Range Function Anisotropy ratio

Spatial 0.56 1.61 221 km Spherical –

Temporal 0 3.60 7.4 days Spherical –

Spatio-temporal 0.27 4.58 830 km Spherical 248 km/day

Fig. 5 Annual average RMSE per station for testing of STRK_global
predictions made by using GSOD stations (http://osgl.grf.bg.ac.rs/
materials/tac_hr/). RMSE values are presented by the radius of the circles
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trend for STRK_global. Another reason is that residuals for
STRK_global and STRK_Croatia follow the same spatio-
temporal patterns, even though residuals from STRK_global
are larger than STRK_Croatia (Fig. 11).

5.2 Mean daily temperature model for Croatia
and comparison with other models

The mean temperature for Croatia has already been modeled
by regression-kriging and the same dataset of CMDT stations
in a previous study (Hengl et al. 2012). Latitude, longitude,
DEM, topographically weighted distance from the coastline,
and TWI were used as static, and DEM-derived total potential

insolation (INSOL) and MODIS LST images as dynamic co-
variates in that study. Hengl et al. (2012) explained 86% of
variation with 3.4 °C RMSE by MLR using these covariates,
which is slightly better compared with 80% of the variation
with 3.5 °C RMSE for the STRK_Croatia. This result may be
explained by the larger number of covariates used and the
effect of dynamic predictors in a model. Consequently, the
fitted variograms are also different. The STRK_Croatia fitted
variogram has lower nuggets, sills, and ranges, and the spatio-
temporal component is also more significant. However, the
overall accuracy is improved by 1.2 °C in RMSE and 7 s%
in R2 (RMSE = 2.4 °C and R2 = 91% in Hengl et al. 2012),
even though the MODIS LST images were omitted. The trend

Fig. 6 Annual average RMSE per station. Results of LOO cross-validation, STRK_global on the left and STRK_Croatia on the right (http://osgl.grf.bg.
ac.rs/materials/tac_hr/). RMSE values are presented by the radius of the circles

Fig. 7 Scatter plot DEM vs
annual average RMSE from LOO
cross-validation, STRK_global
on the left and STRK_Croatia on
the right. Stations at altitudes
above 1000 m (red) in the top
right corner have the highest
RMSEs. Notice the smaller scale
on the y-axis for the STRK_
Croatia model
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model proposed by Hengl et al. (2012), which includes
MODIS, already explained a lot of spatial patterns and there
was not much spatio-temporal relation left for SK to model.
On the other hand, the simple STRK_Croatia trend model
performed slightly worse but the fitted variogram explained

more spatio-temporal variation. GTT explains a lot of temper-
ature variation, which is comparable with MODIS LST.
However, GTT obviously leaves a stronger spatio-temporal
relation between residuals that can be explained by kriging.

When comparing the accuracy of other local (country)
models at 1 km spatial resolution, STRK_Croatia performs
similar or even better than some of them. Frei (2014) interpo-
lated daily temperature at 1 km spatial resolution for
Switzerland (European Alps) using nonlinear profiles and
non-Euclidean distances and Rosenfeld et al. (2017) applied
linear mixed effect models (3-step model with MODIS LST)
for Israel. They both achieved RMSE of around 1 °C and R2

of around 97%. One must keep in mind that both Switzerland
and Israel cover a smaller area (around 41,000 and
21,000 km2, respectively) than Croatia (57,000 km2), while
the number of stations used for model development were com-
parable or larger (100 and 239, respectively). Nonetheless, the
results of the STRK_Croatia are in the range of this accuracy.
Huang et al. (2015) used linear regression models with
MODIS LST as a covariate for central China’s Shaanxi
Province, and Janatian et al. (2017) used a similar method
with 11 more covariates in the eastern region of Iran. The
accuracies of these two models (RMSE ranged from 2.5–
3.5 °C and R2 was around 90%) are lower compared with
STRK_Croatia because of a much larger area of these two
countries and due to the fact that only around 20 stations

Fig. 8 Boxplot of the altitude per fold

Fig. 9 Annual average RMSE per station for 5-fold cross-validation, STRK_global on the left and STRK_Croatia on the right (available at http://osgl.
grf.bg.ac.rs/materials/tac_hr/). RMSE values are presented by the radius of the circles
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were used for model development. Extensive research is
available that interpolates daily minimum and maximum
temperatures at 1 km spatial resolution for different areas.
For example, Jarvis and Stuart (2001) performed the analysis
for England and Wales, Zhu et al. (2013) for Xiangride River
basin in the north Tibetan Plateau, Parmentier et al. (2014 and
2015) for the state of OR, USA, Oyler et al. (2015) and Li
et al. (2018) for the conterminous USA, Hiebl and Frei (2016)
for Austria. RMSE values were around 1–3 °C and R2 did not
exceed 97%. Some of the models performed even better
(RMSE below 1 °C) but the reason for this was due to a larger
number of stations available. Others modeled daily tempera-
ture at coarser spatial or temporal resolution. Benali et al.
(2012) provided weekly 1 km mean temperature estimations

for Portugal (RMSE was 1.33 °C and R2 was 94.1%). Frick
et al. (2014) provided 5 × 5 km gridded daily datasets of sur-
face air temperature for Germany (RMSE was 1.39 °C and R2

was 98.3%). Brinckmann et al. (2016) provided daily mean
temperature dataset for Europe at 5 km spatial resolution
(RMSE was 1–2 K and R2 was 90%). Most of the above
mentioned models are generally more complex or they use a
large number of covariates including MODIS LST, which has
a well-known problem with missing values and cloudiness.
However, their accuracy is not better in comparison with
STRK_Croatia. As a result, we recommend STRK_Croatia
as a simple framework not only for mean but also for maxi-
mum and minimum temperature interpolation that can be ap-
plied to other countries or local areas.

There is still some room for model improvement in terms of
mean daily temperature prediction at higher altitudes (specifically
over 1000 m altitudes). Microclimate at higher altitudes is more
complex. Also, insufficient number of stations and their distribu-
tion at higher altitudes do not cover temperature variability that
could be explained by STRK (Kilibarda et al. 2015). Model
underperformance and station deficiency problem at higher alti-
tudes are also confirmed by Hengl et al. (2012). Many other
publications point to the same problem. Perčec Tadić (2010)
mapped monthly means of 20 climatological parameters, includ-
ing the mean temperature, for the 1961–1990 period for Croatia
with a resolution of 1 km. She proved that mapping accuracy is
lower at higher altitudes due to the station deficiency problem.
Dodson and Marks (1997) also confirmed that interpolation of
the temperatures on higher altitudes will be biased toward tem-
perature at lower elevations. Stahl et al. (2006) compared 12
interpolation methods for interpolating daily maximum and
minimum temperatures over British Columbia , Canada, and
the main conclusion was that the prediction was better with a
denser distribution of stations on higher altitudes. Many others,
like Krähenmann and Ahrens (2013) and Frei (2014) also have
drawn the same conclusion. Benali et al. (2012) suggest that

Table 3 RMSE values [°C] for each month for STRK_global and
STRK_Croatia obtained by LOO and 5-fold cross-validation and differ-
ences between them

Model STRK_global STRK_Croatia Difference

Cross-
validation

LOO 5-fold LOO 5-fold LOO 5-
fold

January 1.87 1.91 1.51 1.52 0.36 0.4

February 1.84 1.86 1.38 1.38 0.46 0.48

March 1.89 1.91 1.03 1.04 0.86 0.87

April 1.84 1.85 0.93 0.95 0.91 0.9

May 1.8 1.81 1.02 1.03 0.78 0.78

June 1.78 1.8 1 1 0.78 0.8

July 1.88 1.88 1.04 1.04 0.84 0.84

August 1.87 1.89 1.14 1.16 0.73 0.73

September 1.92 1.93 1.08 1.09 0.84 0.84

October 1.77 1.79 1.21 1.22 0.56 0.57

November 1.87 1.9 1.23 1.26 0.64 0.64

December 1.91 1.94 1.13 1.16 0.78 0.78

Maximum and minimum RMSE values for each column are in bold

Fig. 10 Time series of predictions
from LOO cross-validation
(red—STRK_global, blue—
STRK_Croatia) and observations
(green) for station Zavižan and
station Zagreb-Maksimir
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MODIS LST can improve accuracy in areas with low station
density. MODIS LST could explain microclimatic conditions
but the model will becomemore complex. The stations of neigh-
boring countries are even more likely to improve the
STRK_Croatia due to the fact that they have a significant impact
on the prediction for the areas near the Croatian border.

6 Conclusions

Considering both accuracy and model simplicity, the
STRK_Croatia has proved to be a good solution for produc-
tion of high resolution mean daily temperature grids for local

areas. Compared with STRK_global (Kilibarda et al. 2014),
the improvement was made in 3.4% in R2 and 0.7 °C in
RMSE. Suggested methodology uses only tree covariates,
DEM, TWI, and GTT, and improves overall accuracy by 7%
in R2 and 1.2 °C in RMSE in comparison with the study
(Hengl et al. 2012), where seven covariates, including
MODIS LST images, were used. Having in mind that all co-
variates (DEM, TWI, and GTT) used in our study are avail-
able in real-time, the proposed STRK_Croatia can be used for
obtaining real-time temperature grids, which is not the case
with models based on MODIS LST images. Most of existing
temperature models are generally more complex or they use
large number of covariates that also include MODIS LST.
However, in most cases, their accuracy is lower in comparison
with STRK_Croatia. Nonetheless, accuracy assessment
shows that the STRK_Croatia model still does not perform
well enough for the prediction of mean daily temperatures at
higher altitudes (> 1000 m) by reporting similar errors as be-
fore with spatial or spatio-temporal interpolation methods for
this area. Additional stations and measurements at higher al-
titudes and stations from countries around Croatia and
MODIS LST could improve prediction accuracy at higher
altitudes. This limitation makes the model most suitable for
application on lower elevations such as in agriculture, health
care, spatial planning, tourism, etc. Future research should
focus on the enhancement of model prediction accuracy at
higher altitudes. The proposed framework for the develop-
ment of the STRKmodel could be applicable to any local area
not only for mean but also for daily maximum and minimum
temperature.
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