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Abstract
Selection of suitable predictor(s) from the NCEP/NCAR reanalysis datasets for downscaling annual and seasonal rainfall over the
Western Himalayas has been carried out in the present study. Size of the domain on downscaling was also judged by considering
three different sizes of domains, namely Western Himalayan region (WHR), India and South Asia. Statistical measures like
spatial correlation maps, product-moment correlations, and adjusted R2 of regression analysis were used to evaluate the skills of
the predictors. Results showed predictors were sensitive to the method of analysis, choice of season, and size of the domain. A
majority of the predictors exhibited stronger spatial correlations (±) in annual and monsoon season compared to the winter. It was
found that the first principal components (PCs) of most of the predictors were consistently well correlated (RE) with the annual
and monsoon rainfall in all domains, whereas, in the winter season, none of the PCs showed such consistent results. During the
monsoon season, the predictors had higher RE values than the winter and annual time scale. Geopotential height at 850 hPa,
relative humidity at 500 and 1000 hPa, and precipitation rate emerged as good predictors for downscaling precipitation over
different predictor domains. On the other hand, the geopotential height at 500 and 850 hPa, v at 500 hPa, specific humidity at
500 hPa, and divergence at 850 hPa resulted as least affected predictors based on analysis of ranks of the predictors. Finally,
WHR was considered as a suitable predictor domain for downscaling monsoon rainfall for the Western Himalayan region
compared to other domains as ranks obtained for different predictors in this domain are not very sensitive to statistical measures
used to evaluate the skills of predictors.

1 Introduction

General circulation models (GCMs) are widely used sophisti-
cated tools to study climate as well as the large-scale upper-air
features of our Earth; however, they do not give reliable infor-
mation at the local scale (Hanssen-Bauer et al. 2003; Eden and
Widmann 2014; Das et al. 2016; Gaur and Simonovic 2017).
Direct output from the GCMs has limitations at subregional or
local scale due to their scale mismatch. To overcome this scale
differences, several downscaling methods have emerged to
bridge the gap between the large-scale coarser resolution of

GCMs simulations and the local-scale higher-resolution infor-
mation required for climate impact studies (Wilby andWigley
1997; Huth 1999; Eden and Widmann 2014; Meher 2019).
The empirical-statistical downscaling (ESD) method is one
of them. The statistical downscaling involves developing em-
pirical relationships between large-scale atmospheric predic-
tors (for example, mean sea level pressure, geopotential
height, humidity, or the wind) and local-scale surface
predictands (for example temperature or rainfall at a weather
station) (Hanssen-Bauer et al. 2005; Dabanlı and Şen 2017).
There are three categories of statistical downscaling tech-
niques developed so far, namely, (i) weather classification or
weather typing, (ii) regression/transfer function, and (iii)
weather generators (Wilby et al. 2004; Anandhi et al. 2009;
Hofer 2010; Blazak 2012; Kannan and Ghosh 2013). The first
two categories of approach may involve a perfect prognosis
approach (Kannan and Ghosh 2013) which use empirical
models that relate observation-based predictand and large-
scale predictor during a common time period and then applied
to simulated predictors (for example GCM scenario runs) for
the future (Kannan and Ghosh 2013; Eden and Widmann
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2014). Perfect prognosis approach is based on the assumption
that the relationship between simulated predictors and the
predictands will remain consistent in the future (Blazak 2012).

There is no general consensus regarding appropriate selec-
tion of suitable predictor variables (Hu et al. 2013; Eden and
Widmann 2014) for developing downscaling models.
Selection of appropriate predictor is sensitive to the domain
under consideration, predictand to be downscaled, attributes
of the prevailing large-scale circulation, seasonality, and the
topographic context, etc. (Anandhi et al. 2008; Anandhi et al.
2009; Forland et al. 2011). Earlier studies on predictor selec-
tion (Wilby et al. 1999; Wilby et al. 2004; Ghosh and
Mjujumdar 2006; Anandhi et al. 2009; Shashikanth and
Ghosh 2013; Salvi and Ghosh 2013) reported that the suitable
predictors must have the following characteristics: Firstly, sta-
tistical features of the predictors need to be well reproduced by
GCMs and reanalysis data products. Secondly, they ought to
be strongly correlated with the considered predictand. Thirdly,
they should be physically and/or conceptually sensible. It is
often advised to experiment with different geographical do-
main (preferably larger than the targeted predictand domain)
while selecting a suitable predictor for a target region (Wilby
andWigley 2000; Sauter and Venema 2011) because a smaller
domain over the target region may fail to capture the strongest
correlation between predictand and the predictor (Wilby and
Wigley 2000). In the case of precipitation downscaling for a
particular location, the optimal predictor domain should be
selected in such a way that all domains should capture the
mechanism that leads to the formation of precipitation over
that location. For example, rainfall downscaling study by
Anandhi et al. (2008) and Hu et al. (2013) screened various
predictors from the NCEP/NCAR (National Centers for
Environmental Prediction/National Center for Atmospheric
Research) reanalysis datasets on the basis of predictor’s role
in generating monsoon rainfall over the “Malaprabha river
basin of India” and “Yellow River source region of China”
respectively.

The major portion of annual rainfall (70–80%) over the
Indian subcontinent occurs in the south-west monsoon sea-
son fromJune to September due to the large-scalemonsoonal
wind circulation. Similarly, the winter precipitation over the
Western Himalayan region (WHR) of India occurs in the
cooler winter season during December to February due to
another wind flow originated from the extratropical region
which is commonly known as western disturbances (Dimri
et al. 2015; Dimri et al. 2016; Das and Meher 2019). Lower
tropospheric planetary waves over mid-latitudes play a sig-
nificant role in generating monsoon rainfall over India
(Bawiskar 2005) and its neighboring regions like Western
Himalayas (Priya et al. 2016; Meher 2019) and the Indus
basin (Saeed et al. 2013). Studies by some scholars showed
that meridional (or v wind) velocities (Bawiskar et al. 2005;
Parthasarathy et al. 1991) and mean sea level pressure

(Douville 2006) are the major parameters which play a sig-
nificant role in the occurrence of all-India monsoon rainfall.
The mean sea level pressure (mslp) can be directly linked to
the south-west monsoon rainfall over India (Douville 2006)
through a pressure gradient developed between the Thar
Desert (low pressure) and the Bay of Bengal (high pressure)
during the active phase of the south-west monsoon season.
Themonsoonal circulation intensifies over the Indian region
with the increase of pressure gradient, causing the increased
moisture advection. Saeed et al. (2013) reported that
geopotential height over central Asia could be used as a po-
tential predictor to serve as a precursor for the rainfall in the
upper Indus basin region. Pervez andHenebry (2014) report-
ed that precipitation over two major river basins of South
Asia namely the Ganges and the Brahmaputra were signifi-
cantly influenced by various predictors like geopotential
height, u wind (wind flow from east to west or across lines
of latitude), v wind (wind traveling from south to north or
across lines of longitude) (at 850 and 1000 hPa pressure lev-
el), and specific humidity (at 500 and 1000 h Pa pressure
level) while the influence of air temperature was found to
be poor. Dimri et al. (2016) reported that the mid-
tropospheric circulation due to zonal wind (u-wind) and
geopotential at 500 and 850 hPa play a crucial role in conver-
gence for triggering thewinter precipitation over theWestern
Himalayas. Statistical metrics for evaluating independent
predictors against a predictand is not firmly established in
the literature. We have reviewed the works of several
scholars (see Table 1) leading to the selection of suitable
predictors for different statistical downscaling studies and
found that scatter plots, partial correlation, and stepwise re-
gression are some of the commonly used tools to select a
suitable subset of predictors from the reanalysis datasets.
For more reviews on predictor used in different downscaling
studies, readers are advised to follow the work by Anandhi
et al. (2008). In the present study, authors have reviewed
numerous literatures (mentioned in the above paragraphs
and Table 1) which have pointed out different upper-air
large-scale predictors and surface variables that can be pos-
sibly taken as suitable predictors to downscale precipitation
over different regions of South Asian domain and Indian
region (excluding the north-western part) in specific. The
Western Himalayan region of India is one of the less moni-
tored regions of the globe in terms of downscaling studies. In
the present paper, the authors have taken the initiative to
select some of the suitable predictors that will help for the
future downscaling studies over this region. The purpose of
the present paper is to choose suitable predictors for reliably
predicting station level precipitation over the WHR using
some conventional statistical techniques such as correlation
maps, EOF-based variance analysis, and calculating correla-
tion coefficient. All the predictors were exhaustively evalu-
ated through several statistical measures over three different
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domains to ensure reliable choice of suitable predictors for
estimating annual and seasonal rainfall over WHR through
statistical downscaling techniques.With this background in-
formation, the present study was carried out with the follow-
ing objectives:

1. To show how different techniques and domain size are
sensitive towards selecting appropriate predictors over
WHR.

2. To select domain wise potential predictor on the basis of
ranks obtained from the predictor-predictand relationship.

The rest of the description on the present investigation has
been divided into three major sections. Section 2 of the paper
gives a short description of the study region, the data used, and
the detailed methodology used in the present work. Section 3
of the article provides a detailed account of the results and
discussion. The key messages or the conclusions from the
present work are inscribed in Sect. 4.

2 Data used and methodology of predictor
selection

The study area is the Western Himalayan region of India
(WHR), extending between 28°42′ to 33°12′N and 75°34′ to
81°05′E and comprises the two northern states of India name-
ly Himachal Pradesh and Uttarakhand. Monthly gridded rain-
fall data (Pai et al. 2014) from the India Meteorological
Department (IMD) was used in the present study. The area-
averaged rainfall over the two states mentioned above was
treated as the reference predictand. Besides the observational
data, 24 numbers of large-scale atmospheric variables extract-
ed from the NCEP/NCAR reanalysis dataset (Kalnay et al.
1996) on a 2.5° × 2.5° grid over the same time period as the
observation data (1951–2005) were engaged for the present
study. These variables include geopotential height, zonal and
meridional wind speeds, specific humidity, relative humidity,
divergence at various pressure levels, vorticity, wind speed,
sea level pressure, precipitable water content, precipitation
rate, and air temperature (see Table 2 for details).

Table 1 Abrief literature review on the selection of suitable predictors using the NCEP/NCAR datasets in different domains over India and South Asia.
Bold references show that the work has been carried out nearby the Western Himalayas. See Appendix for the long name of the variables

Reference Study region Predictor variables used from NCEP/NCAR
reanalysis data

Method of selection Downscaled
climate
variable

Anandhi
et al.
(2008)

Malaprabha river
basin, India

t0925, t0700, t0500, t0200, z0925, z0500, z0200,
z0925, z0850, u0925, u0200, prw and sp.

Monsoon rainfall influence on probable
predictors

Precipitation

Goyal and
Ojha
(2010)

Pichola lake
catchment, Rajasthan,

India

t0200, t0500, t0925, u0200, u0925, v0200, v0925,
z0200 and z0925

Partial correlation and scatter plot between
predictor and predictand

Precipitation

Ojha et al.
(2010)

Pichola lake region in
Rajasthan state in
India

t0925, t0500, t0200, z0500, z0200, u0925, u0200,
v0925, v0200

Partial correlation and scatter plot between
predictor and predictand

Precipitation

Huang
et al.
(2011)

Yangtze river basin,
China

mslp, sf, su, sv, sz, u0500, v0500, u0850, v0850,
z0500, z0850, r0500, r0850, r, s, t2 m

Correlation and partial correlation analysis
among the predictand and the individual
predictors

Precipitation

Goyal and
Ojha
(2012)

Pichola lake
catchment, Rajasthan,

India

t0200, t0500, t0925, u0200, u0925, v0200 and
v0925

Partial correlation and scatter plot between
predictor and predictand

Temperature

Mahmood
and
Babel
(2013)

Jhelum basin,
Pakistan, and India

mslp, r, s, r500, and t2m Correlation and partial correlation analysis
among the predictand and the individual
predictors, P-values

Temperature
and
Precipitat-
ion

Hu et al.
(2013)

Yellow river basin,
China

Air temp, s, mslp, u and v at various pressure levels
(Exact levels were not mentioned in the article)

Correlation analysis between predictor and
predictand

Precipitation

Devak and
Dhanya
(2014)

Mahanadi river basin,
India

t0200, t0500, t0700, t0925, z0200, z0500, z0925,
u0200, u0925, v0200 and v0925

On the basis ofmonsoon rainfall influence on
probable predictors

Precipitation

Pervez and
Henebr-
y (2014)

The Ganges and the
Brahmaputra river
basins, South Asia

z0500, z0850, v0850, v0500, v1000, s0500, s0850,
s1000, u500, u0850,u1000, mslp, t2 m,
precipitation

Correlation coefficients and literature review
regarding influence of snow and monsoon
precipitation on predictors

Precipitation

Akhter
et al.
(2019)

Seven homogeneous
zones of India

z500, z850, z1000, u500, u850, u1000, v500,
v850, v1000, sh500, s850, s1000, r500, r850,
r1000, ta500, t850, t1000, mslp, prw

Variance explained by different principal
components; multiple linear regressions of
combined EOFs.

Precipitation
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2.1 Spatial region and correlation mapping

As downscaling results are sensitive to the size of the predictor
domain, the developing downscaling model considering the dif-
ferent size of domains may provide more reliable information for
policymaking. Forland et al. (2011) showed that smaller predictor
domain is more reliable than the larger ones; however, the GCMs
have a minimum skillful scale, and the local state is expected to
depend on ambient large-scale conditions. To justify which size
of domain will provide reliable downscaling results, three differ-
ent sizes of domains namely (i) South Asia (10°S-40°N, 20°-
120°E), (ii) India (8–38°N, 68–98°E) and (iii) the Western
Himalayan region (27–38°N, 72–82°E) have been considered
in the present work. For each domain, we separately tested how
well different predictor variables can reproduce the observed fea-
ture of rainfall over the WHR. First, the following statistical
analyses were performed over the bigger domain of South Asia
for selecting the suitable predictor(s) and thereby, the same pro-
cedure was continued for another two domains as stated above.

Spatial correlation or pattern correlation coefficient has been a
commonly used metric for quantifying the similarities between
predictands and spatial patterns of the predictors (Srinivasan et al.
1995; Parding et al. 2019). It is quantified through the calculation
of correlation coefficient between predictor’s data at each grid point

and the predictand for a common time period. Spatial correlation
maps were used to visualize those regions on the map where the
correlation coefficients were higher than the other regions.

2.2 Multiple regression and temporal correlation

Predictor selection often requires a transformation of the raw
predictors into a useful form because the information in the
nearby grid boxes in the predictor data is not independent of
each other (Maraun 2010). Empirical orthogonal function
(EOF) analysis, or more generally principal component anal-
ysis, is a prominent technique for reducing higher dimensional
fields (for example raw predictors) into a set of orthogonal
basis vectors that are linearly independent (uncorrelated) to
each other (Lorenz 1963; Hannachi et al. 2007). One merit
of EOF analysis is that the orthogonal basis vectors reduce the
problem of co-variability in subsequent regression analysis,
and a small set of components capture most of the variability
(often > 90% in its first seven vectors) through a lower dimen-
sional representation of the original data (Huth 1999; Maraun
2010).

First of all, we subtracted the long-term (1951–2005) mean of
the observed rainfall from the raw rainfall data (or predictand). In
case of predictor variables, the long-term mean was subtracted

Table 2 Twenty-four NCEP/
NCAR large-scale variables taken
for the present study is given in
the first column. For simplicity,
the variables are represented by a
variable I.D. in the second
column

NCEP variables Variable I.D.

Monthly mean geopotential height 500 z0500

Monthly mean geopotential height 850 z0850

Monthly mean geopotential height 1000 z1000

Monthly mean u wind 500 u0500

Monthly mean u wind 850 u0850

Monthly mean u wind 1000 u1000

Monthly mean v wind 500 v0500

Monthly mean v wind 850 v0850

Monthly mean v wind 1000 v1000

Monthly mean of specific humidity 500 s0500

Monthly mean of specific humidity 850 s0850

Monthly mean of specific humidity 1000 s1000

Monthly mean of relative humidity 500 r0500

Monthly mean of relative humidity 850 r0850

Monthly mean of relative humidity 1000 r1000

Monthly mean of divergence 500 ▽500
Monthly mean of divergence 850 ▽0850
Monthly mean of vorticity 1000 1000

Monthly mean of vorticity 0.21

Monthly mean wind Speed at sigma level 0.995 from daily wind speed w

Sea level pressure 0.21 mslp

Monthly mean air temperature at sigma level 0.995 `t

Monthly mean of precipitable water content prw

Monthly mean of precipitation rate pr
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from each grid point. In the present study, we retained the prin-
cipal components (PCs) of the seven leading EOFs of each of the
predictor variables to estimate the total variance explained by
each of the EOFs. The percentage of explained variance of the
Nth EOF can be defined as the ratio between the eigenvalue of the
Nth EOF to the sum of all eigenvalues of all the EOFs taken
together (Wilks 2011; Lorenzo-Seva 2013). The higher-order
EOFs (beyond those explaining 90%) associated with negligible
variance represent noise and are not expected to add any value to
the regression used in the downscaling.

Backward elimination is a special case of stepwise regres-
sion. In this study, the whole process of backward elimination
was carried out using the R-statistical package (R Core team
2002). For each predictor variables, backward elimination be-
gins with seven leading EOFs in the model, and at each step,
different EOFs were eliminated from the model one at a time.
The final model or the best-fit model includes only those
EOFs which produce a minimum AIC (Akaike information
criterion) value and eliminating any one of these EOFs that
did not result in a lower AIC (Ripley 2002). We have identi-
fied the better-performing predictors by observing the adjust-
ed R2 values from the best-fit model; the larger the value of the
adjusted R2, the better the ability of the variable to act as a
suitable predictor (Hofer et al. 2010).

In another exercise, a stepwise regression was carried out
between the area-averaged data of observation (predictand) and
the area-averaged data of large-scale predictors in all three pre-
dictor domains. Before carrying out themultiple regressions, all
the area-averaged datasets were standardized using the linearly
detrended method to avoid spurious results associated with
accidental trends. The best-fit model with the highest value of
adjusted R2 has been taken to select the suitable combination of
predictors over different predictor domain. The fitted values of
the models were compared with the observational data using
different agreement indices (d-index and Pearson correlation
coefficient) and error indices, i.e., normalized root mean
squared error (NRMSE). Details of these indices were men-
tioned in Meher et al. (2017) and Meher and Das (2019)

The correlation analysis between the predictors and the
predictand is carried out in two different ways as follows.

1. The linear relation between different predictor and
predictand was analyzed using the Pearson’s product-
moment correlation between the area-averaged predictor
(X) and the area-averaged predictand (Y) for different
seasons (T) (annual, monsoon, and winter). For simplici-
ty, we have termed this correlation as the RA in the whole
document.

2. The Pearson’s product-moment correlation was also used
to quantify the linear relation between the predictand and
each of the leading EOFs of the predictor variables. For
simplicity, we have termed this correlation as RE in the
whole document.

Each of the method mentioned above was repeated for four
different time periods of varying temporal resolution (25 years
[1981–2005], 35 years [1971–2005], 45 years [1961–2005],
and 55 years [1951–2005]) to put more confidence in the
selection of suitable predictors.

2.3 Ranking of predictor variables and sensitivity
analysis

The overall aim of the ranking approach is to scrutinize the top/
bottom-ranked (1/24) predictors in all domains irrespective of
season. Ranking of predictors was carried out for the three
selected domains using the results obtained from the three
methods (i.e., R2, RA, and RE) as discussed in Sect. 2.2. The
ranking of predictors for a single domain (say India) and for a
particular season (say monsoon) was carried out as follows.

2.3.1 Ranking for R2 and RA values

1. Firstly, we have taken four time periods of different tem-
poral resolution as mentioned in Sect. 2.2 and calculated
the values of R2 and RA for the predictor variables.

2. Secondly, ranks (1–24) were given to the predictor vari-
ables based on their absolute values. Therefore, the
highest correlation value of a predictor implies a top-
ranked (1) predictor, whereas the lowest correlation value
of a predictor implies a bottom-ranked predictor (24).

3. Final rank (lie between 1 and 24) of a predictor is calcu-
lated by taking the arithmetic mean of its ranks obtained in
all the four-time period.

Similar steps were followed for the other two domains in
the winter season and annual time scale.

2.4 Ranking of RE values

1. Firstly, we calculated the RE values of all the predictors
for the first seven leading EOFs in the four different time
period as mentioned above.

2. Repeated step 2 as mentioned in Sect. 2.3.1.
3. An aggregate value of the ranks was calculated for each

predictor using the arithmetic sum of their ranks obtained
in all the four-time period for all the seven numbers of
EOFs.

4. For a particular predictor, the values obtained in step 3
were summed together to arrive at a final rank.

Similar steps were followed for the other two domains in
the winter season and annual time scale.

The overall rank of a predictor variable is calculated irre-
spective of the ranks obtained in all the season (for example,
see Table 3). The sensitivity of the ranks was tested to ensure
different methods used in the study are meaningful and to
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check the consistency of the predictors. The sensitivity of the
ranks was analyzed through two different methods.

1. Comparison of overall rank obtained by each predictor in
different domains. Box plots were used to visualize the
sensitivity of the ranks.

2. Comparison of overall ranks with rank calculated exclud-
ing only R2 value, ranks calculated excluding only RE

values, and ranks calculated excluding only RA values
over South Asia, India, and the WHR. The ranks are cal-
culated considering all the season and annual scale.

3 Results and discussion

3.1 Analysis of spatial correlation maps

Figure 1 shows correlation maps of two randomly selected
predictors (z0500 and r1000) over the South Asia domain
during annual, monsoon, and winter season. Correlation maps

of all the other predictors are shown in Fig. S1–S3 of the
supplementary material. In all the three figures, predictors like
u, v, and ▽ at all pressure levels and exhibited scattered
patches of positive and negative correlations over and around
the Indian subcontinent. Some predictors like z at all pressure
level and mslp had negative correlations (< − 0.35) over the
South Asian region, while v1000, s0500, and s0850, r at all
pressure level, prw, and pr gave mostly positive correlations
(> 0.40). Over the target-predictand domain (i.e., the WHR),
predictors like u0850 and t showed positive correlations in all
the season and annual scale, but they failed to reproduce the
same in other regions. The predictors had stronger positive or
negative correlation in annual and monsoon season than in the
winter season. It was observed that both u and v were well
correlated with the predictand. In this regard, Satyanarayana
and Srinivas (2008) reported that u responds to heating in the
monsoon trough in North India, while v has more local effects.
Hence, together, u and v are responsible for the convergence
of moisture and therefore related to precipitation over India.
On the basis of correlation maps, Sinha et al. (2013) found that
s, u, and v (at different levels) over different domains around
India are potential predictors (from NCEP/NCAR) to predict

Table 3 Suitable combination of predictors selected using multiple
regressions of all the 24 predictors in different predictor domain and
time scale. Agreement (d-index and R2) and error indices (normalized
root mean squared error, NRMSE) between observation and modeled

data were also calculated at each of the predictor domain in two
different seasons (monsoon and winter) as well as in the annual time
scale. Cells in italics represent predictors that are common in all
domains in different seasons and annual scale

South Asia India WHR

Variables selected

Annual z0850, v0850, ▽0850, prw z0500, z0850, u850, u1000, v0500, v0850,
s0850, s1000, r0850, r1000, prw

u0850, u1000, s0850, s1000, r1000,
1000, , mslp, t, prw

Monsoon z0850, u0500, v0850, v1000, s1000, r0500,
r0850, ▽0850, 1000, w, mslp, prw

z0500, z0850, z1000, u0850, v0850,v1000,
1000, , w, mslp

z0500, z1000, v0500, 1000, mslp, prw

Winter z1000, u0850, u1000, v0850, v1000, s1000,
r0850, r1000, ▽0850, 1000, mslp

u1000, v1000, s0500, r0500, r0850, r1000 z0500, s0500, s1000, r0500, r0850,
r1000, ▽0850, , mslp, t, prw, pr

Adjusted R2 values of multiple regression

Annual 0.18 0.30 0.50*

Monsoon 0.52* 0.61* 0.58*

Winter 0.30 0.40* 0.61*

Index of agreement (d-Index)

Annual 0.60* 0.78* 0.86*

Monsoon 0.88* 0.90* 0.87*

Winter 0.30 0.30 0.24

Correlation Coefficient (r)

Annual 0.50* 0.66* 0.76*

Monsoon 0.79* 0.82* 0.79*

Winter − 0.05 − 0.12 − 0.20

NRMSE

Annual 172.3 111.5 82.6

Monsoon 76.2 68.3 76.7

Winter 183.6 184.9 168.6

*Significant at 5%
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Indian monsoon rainfall. The results of the present work are
almost similar to the finding of Sinha et al. (2013).

3.2 Analysis of variance explained by EOFs
and multiple regression

Figure 2 shows the variance explained by first 20 leading
EOFs for all the predictors over the three study domains
during annual time scale and monsoon season. The vari-
ance shown for the EOFs are the average value of the
variance shown by respective predictors in four different
time periods of varying temporal resolution as given in
Sect. 2.2. It can be seen that the variance explained by
higher-order EOFs (e.g., 8–20) were negligible as com-
pared to the first seven leading EOFs. Similar results were
found for the winter season (not shown). In most of the
cases, the first seven leading EOFs together explained >
90% variance of the raw data. First, few EOFs are expected

to explain a major portion of the variance compared to the
variance explained by the rest of the higher-order EOFs. It
is also found that the explained variance of the first EOF of
most of the predictors was higher in WHR than in the
Indian and South Asian region (not shown here). A similar
type of result was reported by Akhter et al. (2019) where
they found the explained variance of the downscaling mod-
el in the monsoon season was higher in the Western
Himalayan region (Also known as the North mountainous
India in their paper) compared to four other homogenous
rainfall zones of India. In the present study, we have taken
first seven leading EOFs in the multiple regression pro-
cesses so that most of the regional and subregional vari-
ance can be incorporated in the selection of suitable pre-
dictors. Figure 3 shows the R2 values obtained for each
predictor over different domains during annual, monsoon,
and winter time frame. Over the South Asian region, the
mean of the R2 values obtained for all the predictors was

Fig. 1 Correlation maps of two
different predictors in annual,
monsoon, and winter time scale
over the South Asian domain.
Here, the correlations were
calculated between the total
annual/monsoon/winter rainfall of
the observational data and the
aggregated annual/monsoon/
winter values of the predictors at
each grid point location. For all
other predictors, refer to Figs. S1
to S3 of the supplementary article
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higher during monsoon (0.41) season than annual (0.24)
and winter (0.18) seasons. Similar results were also found
in the other two regions namely whole India and WHR. In
all the seasons, the average R2 of all the predictors over the
WHR was less than the Indian and South Asian region
whereas over the Indian and South Asian regions, they
were close to each other. Some predictors such as z0850
and z1000, s0500 and r0500, mslp, and pr gave higher R2

values for most of the cases (season and domain). The
predictors having the highest value of R2 on the annual

time scale were z1000 (0.34), u0850 (0.42), and z0850
(0.46) over South Asia, India, and WHR respectively. In
the monsoon season, the predictors having the highest val-
ue of R2 were the z0850 (0.53) over South Asia and s0500
over both India (0.53) and WHR (0.59). Similarly, in the
winter season, the predictors having the highest value of R2

were u1000 (0.30) over South Asia and pr over both India
(0.41) and WHR (0.39). The results obtained in the mon-
soon season are consistent with the findings of Akhter et al.
(2019) in their predictor selection study over the seven

Fig. 2 Variance explained by first
20 leading EOFs is shown for all
the predictors over the selected
study domains during annual time
scale and monsoon season. The
variances shown for the EOFs are
the average value of the variances
shown by respective predictors in
four different time periods of
varying temporal resolution
(25 years [1981–2005], 35 years
[1971–2005], 45 years [1961–
2005], and 55 years [1951–
2005]). It can be seen that the
variance explained by higher-
order EOFs (e.g., 8–20) were
negligible (~ 0–5%) as compared
to the first seven leading EOFs.
Similar results were found for the
winter season (not shown here)
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homogenous regions of India that reported that downscal-
ing model with s500, s850, s1000, and prw was able to
explain more than 70% of the observed rainfall variance
over the Western Himalayan region whereas predictors like
ta500 and u1000 have explained little about observed var-
iance. ▽ and parameters at different pressure level have
shown poor skills in all the selected predictor domains. An
EOF-based downscaling study by Nicholas and Battisti
(2012) found that the most skilful predictors from the
NCEP/NCAR data were all combinations of low-level spe-
cific humidity and one or more other fields at the same
level over China, which was consistent with our finding
over South Asia and the WHR. Pervez and Henebry
(2014) reported that the predictors like z, s, u0500,
u0850, and u1000, mslp, and w0500 gave higher explained
variance of the observation in the Ganges–Brahmaputra
basin of the South Asian region, which supports the find-
ings of the present study.

3.3 Analysis of product-moment correlation
coefficient

Figure 4 shows the correlations between area-averaged
predictand data and area-averaged predictor datasets for all
domains during annual, monsoon, and winter timescale.
Predictors like u0850, v0850, u1000, v1000, s, r at all pressure
levels, prw, and pr had high positive correlation coefficients
(RA > 0.4) in all domains during annual and monsoon time
frame, whereas in winter, the RA values were less (< 0.3).
These predictors gave higher RA values over the Indian do-
main (average RA = 0.54) compared to the other two domains
(average RA = 0.46) during annual and monsoon time scale,
whereas during winter season, the RA values over WHR (av-
erage RA = 0.28) was higher than over South Asia (average
RA = 0.06) and India (average RA = 0.18) domain. The predic-
tors having a strong positive correlation with the predictand
were s0500 (average RA = 0.66), r0500 (average RA = 0.60),

Fig. 3 R2 from the regression
between the predictand and the
predictors over a South Asia
(upper), b India (middle), and c
Western Himalayan region
(lower) for the annual total, mon-
soon total, and winter total pre-
cipitation calculated using back-
ward elimination method. Seven
leading empirical orthogonal
functions (EOFs) were used
against the observation in the
backward eliminationmethod and
the R2 values were calculated
from the best model fit
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and prw (average RA = 0.57) in all the three domains during
annual and monsoon time frame. In the winter season, the
predictor having high positive correlation was r1000 (RA =
0.29), v1000 (RA = 0.40), and pr (RA = 0.55) over South Asia,
India, and WHR, respectively. Similarly, some predictors like
z at all pressure levels and mslp gave strong negative correla-
tion (average RA = − 0.55) with the predictand over all the
domains in all the season and annual time scale. These pre-
dictors exhibited higher RAvalues over the South Asia domain
(average RA = − 0.59) than the other two domains (average
RA = −0.55). Similar results were also found for the winter
season.

Figure 5 shows the correlation coefficients (RE) between
area-averaged predictand and seven leading EOFs of each
predictor field over the three selected domain. The first EOF
(and sometimes the second EOF) of most of the predictors
were consistently well correlated with the predictand in annual
and monsoon timescale over all domains, whereas, in the win-
ter season, none of the EOFs have shown such consistent

results. In all the seasons and annual time scales, the first
EOF of u0850, u1000, v1000, s at all pressure level, r0500,
prw, and pr had strong positive correlation with the predictand
over all domains. It was also found that these predictors had
nominally higher correlation over the WHR domain (Average
RE is 0.54 in annual and 0.60 in monsoon) than over the South
Asian (average RA is 0.53 in annual and 0.58 in monsoon) and
Indian domain (average RE is 0.53 in annual and 0.49 in mon-
soon) during the same time frame. In the winter season, the
correlations shown by the first EOF of these predictors were
though positive but their values were low, i.e., < 0.20. The
leading EOF of z at all pressure levels, ▽0850, , and mslp
had strong negative correlation with the predictand in all the
domains during annual (average RE = −0.51), monsoon

Fig. 4 Comparison of the correlation coefficient between the observed
rainfall and the area-averaged predictor variables over the South Asia
(Black bars), India (gray bars), and Western Himalayan region (white
bars) during annual, monsoon, and winter seasons. The figure shows
the correlation coefficients were higher in monsoon season than the an-
nual and winter time scale

Fig. 5 Comparison of the correlation coefficient (RE) between the
observed rainfall and the seven leading EOFs of different predictor
variables over a South Asia, b India, and c Western Himalayan region
during annual, monsoon, and winter season. Figures show the correlation
coefficients are either highly positive or negative for the first or second
EOFs. There are several cases in which higher-order EOFs also showed
good correlation with the observation

J. K. Meher, L. Das440



(average RE = −0.58), and winter (average RE = − 0.17) time
frame. In general, it was found that during the monsoon sea-
son, the predictors were having higher RE values than the
winter and annual time scale. Besides the first EOF, there were
also other EOFs which gave a good correlation (both positive
and negative) with the predictand in different domains and a
different season, but a general statement cannot be written for
these correlations. Hence, we have included the seven leading
EOFs while ranking different predictors in the subsequent
sections.

3.4 Ranking of predictors and sensitivity analysis

Figure 6, 7, and 8 show the ranking of all the predictors over
South Asia, India, and WHR domains respectively. The three
statistical metrics RA, RE, and R2 were used to evaluate the
final rank (1 to 24) of each predictor over all domains. In all
the study domains, rank 1 of a predictor denotes the best
predictor whereas rank 24 denotes a poor predictor. In the case
of RA and RE, we have used their absolute values in evaluating
the ranks. The final rank of a predictor was calculated by
ranking the total sum of all the ranks obtained in all the
seasons.

Over the South Asia region, the top-ranked predictors were
r1000 (rank 1), r0500 (rank 2), and z0850 (rank 3) whereas the
bottom-ranked predictors were and v1000 (rank 23 each) and
s0850 (rank 22). Over the India domain, the top-ranked pre-
dictors were z0850 (rank 1), r1000 (rank 2), and r0850 (rank
3), whereas the bottom-ranked predictors were v1000 (rank
24), ▽0500 (rank 23), and v0500 (rank 22). Similarly, over the
WHR domain, the top-ranked predictors were pr (rank 1),
r0500 (rank 2), and s0500 (rank 3), whereas the bottom-
ranked predictors were v0500 (rank 24), ▽0500 (rank 23),
and w (rank 22). In a separate study, it was reported that
downscaling models with precipitable water (prw) and specif-
ic humidity predictors have shown good validation results
compared to other predictors over the WHR of India. In gen-
eral, the predictors which have shown very poor performance
were the v0500, v1000, and ▽0500, whereas the well-
performed predictors were z0850, r500, r1000, and pr. These
are the predictors which acquired either top ranks (1–4) or
bottom rank (2–24) at least in two out of three domains.

Figure 9 shows the sensitivity analysis of ranks obtained by
each of the predictors in different domains. The final ranks of
the predictor were used in this analysis as they were prepared
taking all the seasons and annual fields into consideration. It
can be seen that five predictors (z0500, z0850, v0500, s0500,
and ▽0850) were independent of the method and season of
predictor selection, as their ranks had lower standard deviation
than the other predictors. The overall ranks obtained for z0850
were consistently good and never exceeded > 5 in any of the
domains. Similarly, the ranks obtained by v0500 were consis-
tently poor and never fell below < 21. One predictor, i.e.,

z0500, consistently showed a rank which lies between 10
and 13 in all the domains. It was found that other than these
predictors, all others were sensitive to the domain under con-
sideration. For example, predictor like pr ranked 1 and 4 over
the WHR and India domains, respectively, but was ranked 17

Fig. 6 Ranking of 24 predictor variables in the South Asia domain during
a annual, b monsoon, and c winter. Here, rank 1 shows a better
performing variable, whereas rank 24 denoted a poor performance of
the variable. Bottom panel of the figure shows the final ranks obtained
for all the predictors considering all the three time scales taken in a–c. The
aggregated rank for a particular predictor was calculated by the arithmetic
sum of the ranks obtained in all season and annual scale. Ranking of the
aggregated ranks was represented through overall rank
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over South Asia. Similarly, s1000 showed a poor rank of 20
and 21 over the South Asian and Indian regions respectively
whereas it showed a better rank (7) over the WHR. Figure 10
shows the second way of analyzing the sensitivity of the ranks
where we compared the ranks obtained through different
methods like overall rank, rank calculated excluding only R2

method, ranks calculated excluding only RE method, and
ranks calculated excluding only RA method over the three
selected domains. It is revealed that in each of the three do-
mains, there is a significant correlation (between 0.90 and
0.95, at 1% level) between the overall ranks and the ranks
obtained after excluding different methods; hence, the

Fig. 9 Sensitivity analysis of ranks in different domains. The plots were
generated using the overall rank obtained by each of the predictor
variables over different domains namely South Asia, India, and Western
Himalayan region

Fig. 7 Same as Fig. 6, but for India domain

Fig. 8 Same as Fig. 6, but for WHR domain
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methods used in this study are very effective and meaningful
in selecting suitable predictors over the South Asia domain.
Over the South Asia domain, eight predictors (z1000, v0850,
v1000, s0500, r at all pressure levels, and 1000) have shown
their overall ranks were not varied more than ± 3 after exclu-
sion of any of the methods taken in this study. Similar results
were also obtained for five predictors (z0850, u0850, v0500,
s1000, and pr) over the India domain and eight predictors
(v0500, v1000, r0500, and ▽0500, 1000, w, t, pr) over the
WHR domain.

3.5 Analysis of multiple regressions of the raw data

Table 3 shows the selected combination of variables ob-
tained from the backward multiple regression between all
the 24 variables (i.e., predictors) taken in this study and
the observational data (i.e., predictand). Table 3 also
shows calculated values of various statistical metrics be-
tween the observational data and the best-fit model data.
Variables which have maximum occurrence in different
best-fit models were v0850, s1000, r0850, r1000, 1000,

mslp, and prw. The adjusted R2 values over the smaller
predictor domain of WHR were significant (at 5%) and
higher than other regions, while monsoon was the season
in which the R2 values were significantly higher than
annual and winter time scale. Calculated d-index (and
correlation coefficient) values were 0.60 < d-index < 0.90
(and 0.50 < r < 0.82) for the annual and monsoon time
scale and < 0.31 (and very low negative values) in the
winter, which showed that model-fitted values using the
selected combination of variables were close and in good
agreement with the observation during the annual and
monsoon seasons whereas poor in winter season over all
the selected predictor domain. The calculated NRMSE
values showed that the model-fitted data were character-
ized by low normalized error with observation in annual
and monsoon seasons whereas high error in the winter
season.

4 Conclusions

The major conclusions from the present study were outlined
as follows:

& The predictors examined exhibited stronger positive or
negative spatial correlation with the observed regionally
averaged rainfall (the reference predictand) in annual and
monsoon season than in the winter season. In all the se-
lected domains, the mean of the regression coefficient
values obtained for all the predictors was higher during
monsoon than annual and winter seasons. In all the sea-
son, the average R2 values of all the predictors over the
WHR were less than the Indian and South Asian region
whereas over the Indian and South Asian regions, they
were close to each other.

& Predictors like u0850, u1000, v0850, v1000, s and r at all
pressure levels, prw, and pr indicated high positive corre-
lation coefficients (calculated through areal average meth-
od, RA) in all the selected domains during annual and
monsoon time frame whereas in winter, the RA values
were less. These predictors also had higher RAvalues over
the Indian domain as compared to the other two domains
during annual and monsoon time scale, whereas during
the winter season, the RA values over WHR were higher
than South Asia and India domain.

& First EOFs ofmost of the predictors were consistently well
correlated (RE) with the predictand in annual and mon-
soon timescale over all the selected domains, whereas, in
the winter season, none of the EOFs have shown such
consistent results. In general, it was found that during
the monsoon season, the predictors were having higher
RE values than the winter and annual time scale.

Fig. 10 Comparison of ranks obtained through different methods like
overall rank, rank calculated excluding only R2 values, ranks calculated
excluding only RE values, and ranks calculated excluding only RAvalues
over South Asia, India, and WHR. The ranks are calculated considering
all the seasons and annual scales
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& WHR predictor domain as mentioned in this study can be
taken as a potential predictor domain for downscaling
monsoon rainfall for the Western Himalayan region.
Whereas, the statistical analysis of predictor selection for
winter season rainfall over the Western Himalayan region
was associated with poor findings (low agreement with
observation). Hence, extreme care must be taken while
downscaling winter rainfall over the Western Himalayan
region.

& Predictors like z0500, z0850, v0500, s0500, and ▽0850 were
independent of the method, season, or size of the domain.
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sure level at that hPa
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