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Abstract
The metropolitan region of Barcelona (BMR) is one of the most densely populated areas in the Mediterranean countries. The
estimation of air temperature at a short scale from satellite measurements would contribute to a better understanding of the varied
and complex spatial distribution of temperatures in BMR. This estimation would be a first step to study several patterns of the
thermometric regime affecting population life quality and health. Taking advantage of MODIS data, air temperature measure-
ments at 48 thermometric stations along the year 2015, together with their geographic and topographic data, multiple regression
analyses have permitted to obtain fine spatial distributions (pixels of 1 km2) of minimum, mean and maximum daily air
temperatures. Previous to the multiple regression, Pearson coefficients and principal component analysis offer a first overview
of the relevance of the variables on the empiric temperatures. The most relevant variables on the multiple regression process at
annual and seasonal scale are land surface temperatures, latitude, longitude and calendar day. At a monthly scale, altitude
(maximum temperature) and continentality (cold months for minimum and hot months for maximum temperatures) are also
relevant. The best fits between empiric temperatures and those derived from the multiple regression processes have square
regression coefficients within the range (0.92–0.96) for the annual case, (0.70–0.92) at seasonal scale and (0.52–0.87) at monthly
scale. The root mean square error varies from 1.5 to 2.0 °C (annual case), from 1.3 to 2.0 °C (seasonal scale) and from 1.2 to
2.1 °C (monthly scale). In agreement with these regression coefficients and mean square errors, the obtained spatial distribution
of temperatures is of notable quality. As an outstanding application, the detection of several urban heat islands on different
conurbations within BMR along the Mediterranean coast becomes possible.

1 Introduction

The estimation of the land surface temperature (LST) from the
thermal infrared radiation (TIR) emitted by the Earth became
possible a few years after the arrival of remote sensing from
the space. Rao (1972) was the first to apply TIR to estimate
temperature patterns for the cities along the USAmid-Atlantic
coast from data collected by the Improved TIROSOperational
Satellite (Gallo et al. 1995). TIR measurement from the space

permits to know the LSTassigned to a pixel (Dash et al. 2001,
2002), without considering the multiple parts contained in this
pixel, as vegetation, sunlit and shadowed soils, irregular urban
surfaces or soil moisture, with different albedo and emissivity
values (Tomlinson et al. 2011; Benali et al. 2012). In fact, TIR
is derived from the top of atmosphere radiances, from which
LST is obtained after applying corrections due to atmospheric
attenuation, angular effects and emissivity values at the het-
erogeneous surface. Water vapour and aerosols are the main
agents causing variable attenuation in the TIR signal. This
reduces the LST availability to only under cloud-free condi-
tions, to avoid a systematic bias toward colder-than-true
values (Williamson et al. 2013). In this sense, the integration
of synergistic information from satellite optical-IR and passive
microwave remote sensing has been proved recently to permit
consistent and reasonable temperature estimations with
cloudy skies (Jang et al. 2014).

The right estimation of the temperature of the air at ≈ 2-m
height above ground (Ta) from LST is possible but complex.
The vertical lapse rate to be applied is function of the surface
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energy balance, which varies in function of the nature of the
surface and of the instant of the day, as also of advection,
adiabatic processes, turbulence and latent heat fluxes, all of
them affected by cloud cover, water vapour content and veg-
etation (Benali et al. 2012). During the night, the estimation of
Ta becomes simpler because the earth surface behaves almost
as homogeneous surface (Didari et al. 2017).

This Ta estimated from satellite measurements would solve
the weather stations scarcity in wider regions, where the
geospatial interpolation methods, as kriging or splines, cannot
provide accurate estimations, as happens, for instance, in
mountainous terrain (Lin et al. 2016) or undeveloped coun-
tries. In this way, Ta estimation becomes of crucial importance
to solve spatial gaps for a wide range of applications, in such a
way that it is accepted that TIR produces better Ta estimations
than those obtained by interpolating ground-station tempera-
tures (Mendelsohn et al. 2007).

In the first years of remote sensing, this strategy based on
TIR permitted to obtain extended and automatic LST for large
regions, but with a limited spatial resolution, as in the case of
Meteosat satellite (e.g. Cresswell et al. 1999). Since the year
2000, the MODerate resolution Imaging Spectroradiometer
(MODIS) sensor in Terra and Aqua polar satellites (http://
modis.gsfc.nasa.gov/) have reduced the spatial resolution for
LST to 1 km per pixel. In this way, two images per satellite per
day are generated (Terra satellite passes daily over the equator
close to 10:30 UTC and 22:30 UTC; Aqua at 13:30 UTC and
01:30 UTC), using both the 10.78–11.28 μm and 11.77–12.
27 μm spectral bands, together with split-window algorithms
(Wan et al. 2002). These MODIS products have been submit-
ted to consistent validation (Coll et al. 2005; Wang et al.
2008). In addition to climatological applications, other biolog-
ical and physical processes on the land and the ocean may be
derived using 36 electromagnetic spectral bands from visible
to TIR available from MODIS (Zhang et al. 2003; Wan et al.
2004; Wang et al. 2009) or also mapping the global distribu-
tion of urban land (Schneider et al. 2009).

Given the practical impossibility of Ta direct determination
from MODIS Terra LST, different estimation methods have
been applied (Zaksek and Schroedter-Homscheidt 2009). The
simplest one consists in supposing a linear relation between Ta
and LST by distinguishing different land cover types, as Shen
and Leptoukh (2011) have applied to Central and Eastern
Eurasia, or without this distinction for smaller regions (Fu
et al. 2011; Sohrabinia et al. 2015). The consideration of the
called temperature-vegetation index (TVX), proposed by
Nemani and Running (1989), by applying the normalised dif-
ference vegetation index (NDVI) and ignoring its seasonal,
ecosystem type and soil moisture variability, has permitted
the inclusion of the vegetation cover as a relevant factor
(Prihodko and Goward 1997; Vancutsem et al. 2010;
Cristóbal et al. 2008; Nieto et al. 2011; Wenbin et al. 2013;
Shah et al. 2013; Bustos and Meza 2015). Modifications have

been also added, as the differential TVX method (Sun et al.
2014). Certainly, the vegetation cover is determinant by its
transpiration cooling and latent heat fluxes, as also through
their low albedo and roughness which aides efficient sensible
heat dissipation (Benali et al. 2012). Alternatively, the multi-
ple linear regression applies different variables in addition to
LSTand NVDI to estimate Ta, as latitude, distance from coast,
altitude and solar radiation (Cristóbal et al. 2008) or albedo
and solar radiation (Xu et al. 2014). Nevertheless, after having
considered different predictors, Lin et al. (2012) have proved
that just the altitude and LST permit to obtain Ta for East
Africa. Zhang et al. (2011) also apply the solar declination
variable along the year and LST to derive Ta in China.
Kloog et al. (2017) derive daily Ta estimations from LST,
NVDI, elevation and the grid cell percentage of urbanicity
for France. But, in general, for extended regions, spatial-
temporal variables as Julian day of the year, latitude, longi-
tude, height above sea level, slope, curvature and distance to
the coast use to be considered (Recondo et al. 2013; Peón et al.
2014; Good 2015; Thanh et al. 2016; Yang et al. 2017). A
relation with the variables applied by different authors can be
found in Janatian et al. (2017). Also, the use of spatio-
temporal regression-kriging and incorporation of time-series
of remote sensing images have been proved to permit signif-
icantly more accurate maps of temperature than if plain spatial
techniques were used (Hengl et al. 2012). At the planetary
scale, the new dataset of spatially interpolated monthly cli-
mate data for global land areas at a very high spatial resolution
(approximately 1 km2) has considered LST observations to
cover areas with a low station density (Fick and Hijmans
2017). This effort improves the first LST map at the planetary
scale from MODIS measures (Kilibarda et al. 2014).

Besides different valuable applications of the estimation
of Ta from LST, this study should be the base of future
detailed analyses of the urban heat island (UHI) of
Barcelona considering its entire Metropolitan Region
(BMR). Unless otherwise indicated, UHI intensity is de-
rived as the difference in spatially averaged surface temper-
atures between urban and non-urbanised surroundings, as a
measure of the excess of warmth of the urban atmosphere
(Voogt and Oke 2003). UHI phenomenon has been usually
analysed from air temperature measurements of a short
number of gauges across the city, sometimes with emplace-
ments submitted to criticism, as gardens or roofs, and others
outside the city influence (Stewart 2011). This humble
departing state (Landsberg 1981), due to the scarcity of
points with measurements, has led to a first spatial and tem-
poral characterisation of the phenomenon (Arnfield 2003).
Later on, thermometers installed in automobile have permit-
ted to extend the analysis for selected transects across the
city (Caselles et al. 1991; Moreno-Garcia 1994) to derive a
thinner description of the anomalous urban thermal behav-
iour in relation to the rural proximity of the city. Urban
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networks of stations together with different rural tempera-
ture observatories around the city have been also undertak-
en permitting detailed descriptions (Giannaros and Melas
2012; Yang et al. 2013). The multiplicity of urban internal
configurations, due to the diversity of geometry,
morphology and size of the cities, together with local or
regional air dynamics, as the mesoscale sea breeze in the
case of littoral cities, makes the urban climate a difficult
objective to be rightly modelled. This shortcoming is
notably solved by considering Ta series derived from
satellite remote sensing. Voogt and Oke (2003) have
reviewed the research done with thermal remote sensing
before MODIS application. They conclude that the com-
plexity of the urban surface should be analysed through
couple canopy radiative transfer models with both sensor
view models and surface energy balance models to
simulate air temperature in and above the urban canopy
layer. With this purpose, Miao et al. (2009) have applied
MODIS observations with dynamical models to simulate
urban weather features for comparison with observations
in Beijing. Nevertheless, most of the studies analyse the
spatial UHI taking advantage of the high spatial resolution
provided by MODIS but without considering air dynamics
for single cities (Cheval et al. 2009; Cheval and Dumitrescu
2009; Fabrizi et al. 2011; Tomlinson et al. 2012; Ma et al.
2016), as also for sets of cities (Jin et al. 2005; Hung et al.
2006; Yasuoka 2006; Pongrácz et al. 2006, 2010; Imhoff
et al. 2010), for selected episodes, months or a few years.

2 Database

2.1 Study area

The metropolitan region of Barcelona, BMR, with an exten-
sion of 3242.2 km2 and a population density of 1566.2 inhab-
itants/km2, according to IdesCat-2017 (Institut Català
d’Estadística), is a crowded area close to the Mediterranean
Sea. Particularly, Barcelona city, with a population of 1.6 mil-
lion inhabitants, covers an area close to 100 km2 with a pop-
ulation density close to 16,000 inhabitants/km2. The orogra-
phy of the analysed region is characterised by the Littoral and
Pre-Littoral chains, with moderate altitudes up to 1700 m
a.s.l., both parallel to the Mediterranean coast. Between both
chains are placed the Vallès valley and Penedès Basin. The
most extended urban area (Barcelona city) is constrained
among the Mediterranean shoreline, the Littoral chain and
Llobregat and Besós rivers. The main orographic features of
the region and the distribution of altitude in meters are shown
in Fig. 1a,b. Details of the spatial distribution of CORINE land
cover classes (http://land.copernicus.eu/pan-european/corine-
land-cover/clc-2012), at level 3 for the year 2012, are shown
in Fig. 1c and Table 1.

2.2 Meteorological station data

Observed daily minimum, Tmin; mean, Tmean and maxi-
mum, Tmax temperatures are the dependent variables of
this study. These come from 48 meteorological stations,
37 of them belonging to the Servei Meteoròlogic de
Catalunya (www.meteocat.cat) and 11 to the Agencia
Estatal de Meteorología, (www.aemet.es) for the year
2015. Data are obtained in both cases from automatic
weather stations, and their quality is guaranteed by
periodic instrumental controls of the two governmental
institutions. Additionally, the 48 thermometric records
are free of perturbations, such as sharp changes or
artificial trends, in agreement with the results of the
Buishand (1982) and Pettitt (1979) tests, as proposed by
Wijngaard et al. (2003). Given that these possible pertur-
bations cannot be detected analysing only 1 year, the two
mentioned tests have been applied to longer records in-
cluding the year 2015, and the results have been also
compared with previous analysis of the thermometric re-
gime in a wider area of Catalonia (Martínez et al. 2010).
Figure 1 d shows the spatial distribution of the stations,
where five of them are outside but very close to the stud-
ied region. The stations are well spread over BMR except
in the north, where they are scarce. Table 2 gives the main
geographical and topographic variables of the thermomet-
ric station emplacements. Figure 2 a and b show the his-
tograms of altitudes for the 1 km2 pixels covering all the
BMA and for the set of meteorological stations respec-
tively. Altitudes of the available thermometric stations
are mostly emplaced below 600 m a.s.l.

2.3 Satellite data

The daily MOD11A1 LST measured by MODIS Terra, in-
cluding daytime 10:30 UTC surface temperature, LSTd, and
night time 22:30 UTC, LSTn, with 1 km2 spatial resolution,
has been used in this study. The normalised difference vege-
tation index, NDVI, is obtained from the 16-day MOD13Q1
product (with a resolution of 250 m):

NDVI ¼ NIR−RED
NIRþ RED

ð1Þ

where NIR is the near-infrared reflectance band-2 (841–
876 nm) and RED, the reflectance of the red band-1 (620–
670 nm). The normalised difference build-up index, NDBI, is
calculated as:

NDBI ¼ MIR−NIR
MIRþ NIR

ð2Þ

where MIR is the surface reflectance band-6 (1628–
1652 nm) from MOD09A1 product of 8-day average (with
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a resolution of 500 m). Figure 2 c and d show the histo-
grams of NDVI and NDBI for emplacements of tempera-
ture stations. A half of these coefficients are within the
0.3–0.5 interval, corresponding to emplacements with
low vegetation cover. For the whole set of 1 km2 pixels,
the modal value of NDVI is shifted toward 0.6. In conse-
quence, rural areas are slightly predominant in comparison
with urban domains. With respect to NDBI, it is worth
mentioning that most of the station emplacements have
coefficients ranging from − 0.2 to 0.1. For the whole do-
main, the mode of NDBI is − 0.1, suggesting a slight pre-
dominance of nonurban areas.

2.4 GIS data and calendar day

Besides Satellite variables LSTd, LSTn, NDVI and NDBI,
other six geographical and topographic variables are con-
sidered. These are latitude (lat), longitude (lon), distance
to coast or continentality (con), altitude (alt), orientation
(ori) and slope (slp) of the terrain for every meteorologi-
cal station and pixel. The first three are derived from
ArcGIS software (Geographic Information Systems,
GIS). Altitude, orientation and slope are obtained from
the Ground Digital Model (MDT—Institut Cartogràfic I
Geològic de Catalunya, ICGC) with a 15 × 15 m2 resolu-
tion. Table 3 summarises the minimum, mean and maxi-
mum of LSTd and LSTn, NDVI and NDBI, together with
geographic and topographic variables. Furthermore, the

calendar day, cd, has been transformed into a new calen-
dar day, cd*, according to:

cd* ¼ cos
2π cd−cdmaxð Þ

365
ð3Þ

to obtain the linearity respect to the air temperature (Janatian
et al. 2017). cdmax is the calendar day for which the mean
temperature along the year is the highest. Figure 3 a and b
show the relationship between Tmean and cd or cd* respective-
ly. cdmax for the year 2015 is equal to 200 (July 19th). Figure 3
b shows more signs of linearity between the air temperature
and the transformed calendar day, cd*.

Figure 4 a shows the dependence of Tmax on the orientation.
This dependence is unclear and a linear relationship should be
discarded. Trying to solve this lack of linearity, the orientation
is given as sine and cosine compounds. Figure 4 b shows the
case for Tmax against sine compound, where a small linear
increasing tendency is observed. Conversely, the cosine com-
pound does not show signs of linear tendency.

3 Methodology

The estimation of surface air temperatures is based on the
relationships between variables obtained from satellite
(LSTd, LSTn, NDVI and NDBI), geographic and topographic
data (latitude, longitude, altitude above sea level, orientation,
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Fig. 1 Spatial distribution of main orographic features (a), altitude above sea level (b), CORINE land cover classes (c) and the thermometric stations (d)
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slope and distance to coast), the modified calendar day (cd*)
and empiric data (Tmin, Tmean and Tmax) recorded at the ther-
mometric stations.

The first step consists of computing the Pearson corre-
lation coefficient for all possible pairs of data, including
empiric data. In this way, possible relationships between
assumed independent variables can be detected.
Additionally, the dependence of empiric data on the set
of independent variables can be determined. The rotated
principal component analysis (RPCA) (Jolliffe 1986;
Richman 1986; Preisendorfer 1988) is the second step.
In this way, more detailed characteristics of relationships
between independent variables can be established; partic-
ularly, the ratio of data variance explained by every rotat-
ed principal component, RPC, and the contribution (factor
loading) of every independent variable in the RPCs. These
strategies, Pearson correlation and PCA, have been also
applied by Thanh et al. (2016).

The third step consists of a multiple regression process with
software from Statistic package for Social Sciences, IBM-
SPSS, with an assumed linear relationship between empiric
data and independent variables. The multiple regression good-
ness of fit is quantified by the square regression coefficient,
R2, including all the significant independent variables accord-
ing to P values and α = 0.05 (Harrell 2001) and by residuals
between empirical, emp, and estimated, est, temperatures
computed from the root mean square error, RMSE, and the
mean average error, MAE. These errors are computed as:

RMSE ¼ N−1∑N
i¼1 empi−estið Þ2

n o1=2
ð4aÞ

MAE ¼ N−1∑N
i¼1 empi−estij j� � ð4bÞ

The multiple regression process is repeated adding step by
step a new independent variable. In this way, the relevance of
every variable on the multiple regression process is contrasted
by observing the changes in R2 and RMSE. In addition to the
coefficients of the multiple regression equations, the beta
weights (standardised coefficients) are also computed to de-
termine the relevance of every independent variable on the
multiple regression equation.

As a summary, in comparison with other similar researches
based on satellite and thermometric stations data, it should be
mentioned that in this paper, first, cross-correlation and prin-
cipal component analysis (PCA) permits the detection of pos-
sible redundant variables in the multiple regression process.
Second, new geographic variables (orientation and slope) are
tested. Third, both thermometric satellite data (LSTd and
LSTn) are used in the multilinear regression, whatever mini-
mum, Tmin; mean, Tmean and maximum, Tmax, daily tempera-
tures are deduced from themultiple linear regression. It should
be also remembered that only variables with absolute values
of beta weight exceeding 0.01 have been finally considered
for the multiple regression equations.

4 Results and discussion

4.1 Correlation coefficients and PCA

The Pearson correlation and the RPCA, based on the principal
component analysis, PCA, have permitted to detect the degree
of dependence between empiric data (Tmin, Tmean and Tmax)
and the rest of parameters (geographic and topographic vari-
ables and data from a satellite). Table 4 shows the Pearson
correlation coefficients among all variables. The high correla-
tions, ranging from 0.86 to 0.97, between Tmin, Tmean and Tmax

with daytime and nighttime LST and also with cd* are out-
standing. The correlation of the empiric temperatures with the
other parameters is always inside ± 0.23.

Table 1 Types of land cover (percentage and areas) on BMR

Land cover Area (km2) (%)

Coniferous forest 866.91 26.7

Broad-leaved forest 493.41 15.2

Discontinuous urban fabric 333.53 10.3

Vineyards 293.50 9.0

Sclerophyllous vegetation 291.79 9.0

Non-irrigated arable land 173.43 5.3

Industrial or commercial units 166.17 5.1

Continuous urban fabric 132.75 4.1

Permanently irrigated land 95.16 2.9

Occupied by agriculture 68.76 2.1

Transitional woodland-shrub 68.26 2.1

Pastures 43.71 1.3

Complex cultivation patterns 36.72 1.1

Green urban areas 26.34 0.8

Mixed forest 22.44 0.7

Fruit trees and berry plantations 19.66 0.6

Sport and leisure facilities 19.48 0.6

Road and rail networks 18.54 0.6

Mineral extraction sites 14.05 0.4

Construction sites 9.34 0.3

Airports 9.33 0.3

Moors and heathland 8.35 0.3

Port areas 7.44 0.2

Olive groves 5.66 0.2

Beaches, dunes, sands 5.12 0.2

Salt marshes 4.22 0.1

Sparsely vegetated areas 3.45 0.1

Watercourses 3.37 0.1

Total 3244.72 100
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NDVI and NDBI are strongly correlated (− 0.79) as expect-
ed. There is also some correlation between these indices and
the geographical variables latitude, longitude, altitude and
slope, with values for NDVI between 0.26 and 0.52 and for
NDBI between − 0.48 and − 0.36. It is important to mention
that the correlations between the NDVI and NDBI indices
with temperatures are low, with absolute values around 0.20.
Latitude shows its highest correlation with longitude (0.62)
and also with altitude (0.55), continentality (0.50), NDVI
(0.48) and NDBI (− 0.48). Altitude has the highest correlation

with continentality (0.60) and with latitude and NDVI index
(0.52). The orientation has low correlations with all the other
variables, although the highest ones correspond to those of the
NDVI and NDBI indices. Finally, the slope, with low corre-
lations in general, presents the highest ones with NDVI,
NDBI, continentality and altitude.

Figure 5 shows some examples of the possible linear rela-
tionship between Tmin, Tmean or Tmax and some of the inde-
pendent variables. The variables with the clearest linear rela-
tionship are, as expected, LSTd and LSTn according to the

Table 2 GIS characteristics of the stations: longitude (Lon), latitude (Lat), altitude above sea level (Alt), distance to shoreline (Con), orientation of the
slope (Ori) and topographic slope (Slp). Ori equal to − 1.0 indicates flat terrains (slope equal to 0.0)

Station Lon (°) Lat (°) Alt (m) Con (m) Ori (°) Slp (%)

1 Barcelona—Airport 2.070000 41.292778 4 1802.41 − 1.00 0.00
2 Pontons 1.519167 41.416944 632 25,990.09 241.39 20.88
3 Vilafranca del Penedès 1.676944 41.330278 177 13,508.15 243.43 3.73
4 Sitges—Vallcarca 1.852500 41.243889 58 925.42 206.57 7.45
5 Barcelona—CMT 2.200000 41.390556 6 185.5 225.00 1.18
6 Barcelona—Drassanes 2.173889 41.375000 5 357.9 − 1.00 0.00
7 Sabadell—Aeródromo 2.103056 41.523611 146 14,686.96 − 1.00 0.00
8 Vilassar de Dalt 2.362500 41.505000 56 1586.01 150.95 8.58
9 Arenys de Mar 2.540000 41.587500 74 1406.52 71.57 5.27
10 Santa Susana 2.696944 41.650833 40 2814.06 158.20 8.98
11 Fontmartina 2.431111 41.760000 936 22,575.42 182.86 33.37
12 els Hostalets de Pierola 1.808131 41.531094 316 31,647.54 150.52 22.02
13 Vacarisses 1.914997 41.592518 343 31,910.67 90.00 11.67
14 Vallirana 1.935642 41.381968 252 13,153.66 160.35 24.78
15 Barcelona Observatori Fabra 2.123885 41.418432 411 6527.97 230.31 50.89
16 el Vendrell 1.521214 41.215534 59 3946.43 26.57 3.73
17 Font-rubí 1.623863 41.432921 415 25,729.52 161.57 7.91
18 Sant Martí Sarroca 1.630325 41.374910 257 19,374.48 90.00 3.33
19 PN del Garraf—el Rascler 1.907752 41.288317 573 3446.25 237.53 10.87
20 Viladecans 2.037870 41.299278 3 3275.54 − 1.00 0.00
21 el Montmell 1.487694 41.341706 545 18,210.02 153.43 3.73
22 Sant Pere de Ribes—Garraf 1.804796 41.278610 161 4823.22 199.80 22.14
23 Cabrils 2.377015 41.517731 81 2228.08 − 1.00 0.00
24 Dosrius—Montnegre Corredor 2.445317 41.619917 460 8362.11 209.74 13.44
25 Rellinars 1.917178 41.632863 421 34,368.7 315.00 9.43
26 Sant Llorenç Savall 2.026470 41.681290 528 31,792.68 155.56 10.07
27 Tagamanent—PN del Montseny 2.302911 41.747610 1030 26,303.64 221.82 21.25
28 la Granada 1.728574 41.366193 240 16,069.11 78.69 4.25
29 Vilanova del Vallès 2.300134 41.544401 126 7461.61 270.00 11.67
30 Montserrat—Sant Dimes 1.837509 41.595390 916 37,477.48 0.00 75.00
31 la Bisbal del Penedès 1.467169 41.271511 185 11,123.03 180.00 8.33
32 Canaletes 1.693370 41.485181 325 29,463.36 101.31 4.25
33 Malgrat de Mar 2.756574 41.647064 2 198.76 45.00 1.18
34 Badalona Museu 2.247574 41.452149 42 620.04 135.00 2.36
35 Sant Sadurní d’Anoia 1.794292 41.433861 164 21,985.71 65.56 20.14
36 Cunit 1.633462 41.201869 17 990.45 203.20 6.35
37 Barcelona Zoo 2.188469 41.389433 7 914.09 135.00 1.18
38 Barcelona—el Raval 2.167751 41.383899 33 1324.86 0.00 1.67
39 Barcelona Z. Universitària 2.105397 41.379197 79 5269.22 191.31 4.25
40 Caldes de Montbui 2.168358 41.612653 176 18,811 45.00 3.54
41 la Llacuna 1.535278 41.479475 589 32,688.25 165.96 6.87
42 Castellbisbal 1.975463 41.478924 147 20,531.47 71.57 15.81
43 Sabadell—Parc Agrari 2.069524 41.565680 258 19,910.4 135.00 3.54
44 Parets del Vallès 2.226185 41.567346 123 12,099.08 180.00 6.67
45 Puig Sesolles 2.437738 41.773622 1668 23,695.86 233.13 8.33
46 el Prat de Llobregat 2.080219 41.340456 8 5401.52 − 1.00 0.00
47 Canyelles 1.721949 41.288007 148 7951.78 21.80 8.98
48 Sant Cugat CAR 2.079558 41.483110 158 14,117.55 258.69 12.75
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high correlation value obtained between these variables and
the temperatures.

The first four RPC selected with the eigenvalue exceeding
1.0 criterion have a similar percentage of explained variance
(from 23.4 to 14.6%). Whereas they explain 77.2% of data
variance, the remaining eight RPC are associated with the
22.8% of data variance. Consequently, the revision of the re-
sults offered by the PCA is centred on these four first RPCs.
Tables 5b and 6b show the RPC factor loadings and the ex-
plained variance by the components, for the set of thermomet-
ric stations. The first component, RPC1, is strongly related to
LSTd and LSTn and cd*, explaining 23.4% of data variance.
The second component, RPC2, is mainly correlated with
continentality and altitude, and also related to slope, latitude
and NDVI. This component explains 22.6% of data variance.

RPC3 is highly correlated with longitude and latitude, and
slightly negative with NDBI. The third component explains
16.6% of data variance. Finally, RPC4 is notably correlated
with the sine of the orientation, moderately with the cosine of
the orientation and with NDVI and NDBI. This last compo-
nent explains the variance of 14.6%. It is worth mentioning
that NDVI and NDBI have middle weights on the second,
third and fourth components, this fact suggesting that these
two variables will probably have a lesser role in the multiple
regression equations than expected. Given that PCA is applied
to 12 variables for the 48 thermometric stations, this relatively
low number of samples in comparison with the high number
of 1 km2 pixels could mask the relevance of some variables on
the spatial distribution of Tmin, Tmean and Tmax. In order to
detect these possible differences, RPCA has been also applied

a b

c d

0 200 400 600 800 1000 1200 1400 1600 1800

Altitude (m)

0

100

200

300

400

500

600

N
um

be
ro

fa
re

as
1k

m
x1

km

0 200 400 600 800 1000 1200 1400 1600 1800

Altitude (m)

0

1

2

3

4

5

6

7

8

9

10

11

12

N
um

be
ro

fs
ta

tio
ns

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
NDVI

0

0.1

0.2

0.3

0.4

R
el

at
iv

e
fr

eq
ue

nc
y

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
NDBI

0

0.1

0.2

0.3

0.4

R
el

at
iv

e
fr

eq
ue

nc
y

Fig. 2 Histograms of altitude for all the pixels (a) and meteorological stations (b). Histograms of NDVI (c) and NDBI (d) only for meteorological
stations
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to pixels with 1 km2 resolution. Tables 5b and 6b summarise
the RPC factor loadings and the explained variance by the
components, for the 4042 pixels of 1 km2. By comparing with
results of Tables 5a and 6a, the first RPC is quite similar for
both cases. The second RPC for Table 5a is equivalent to the
third RPC for Table 5b, almost disappearing the contribution
of the slope, NDVI and latitude. The third component
(Table 5a), linked to latitude, longitude and NDBI, corre-
sponds to the fourth RPC (Table 5b). The fourth RPC
(Table 5a), with the contribution of NDVI, NDBI and orien-
tation, is substituted by the fifth RPC (Table 5b), basically
sinus of the orientation. Finally, the 2nd RPC (Table 5b) is
constituted by NDBI, NDVI and slope. Conversely to
Table 5a, where NDVI and NDBI are linked with moderate
weights to more than one component, for Table 5b, these
parameters are clearly related only to the second RPC. As a
summary, the degrees of independence of the multiple regres-
sion variables are quite similar considering data from the set of
thermometric stations or from a denser network of 1 km2

pixels. Only some discrepancies are detected comparing factor
loadings corresponding to NDVI and NDBI for both spatial
resolutions.

4.2 Multiple regression

4.2.1 Annual case

The first multiple regression is applied to the annual case,
including all days along the year 2015 accomplishing two
conditions: first, only not cloudy days can be selected, given
that LSTn, LSTd, NDVI and NDBI cannot be accurately com-
puted for cloudy days; second, days with missing Tmin, Tmean

or Tmax are not chosen for the multiple regression procedure.
The set of days accomplishing both conditions are designed as
complete data days and the same dataset with the same con-
straints are used at seasonal and monthly scale. Table 7 gives
the different models obtained in every stepwise regression,
being added one more variable until all the significant vari-
ables are used. This table also gives the R2 coefficients and
RMSE. The goodness of fit improves step by step, but with
minor differences. For Tmin, Tmean and Tmax in the first step
with a single variable, values of R2 from 0.860 to 0.935 and
RMSE from 1.8 to 2.7 °C are obtained. When all significant
variables are involved, R2 coefficients of 0.920, 0.955 and
0.918 and RMSE of 1.9 °C, 1.5 °C and 2.0 °C are reached.

Fig. 3 Evolution of Tmean with
the calendar day, cd (a) and the
transformed calendar day, cd* (b)

Table 3 Mean, minimum and maximum of recorded diurnal (LSTd)
and nocturnal (LSTn) temperatures, normalised difference vegetation in-
dex (NDVI) and normalised difference built-up index (NDBI), latitude

(Lat), longitude (Lon), distance to shoreline (Con), altitude (Alt), orien-
tation (Ori) and slope (Slp) for all 1 × 1 km pixels and for the 48 stations

LSTd (°C) LSTn (°C) NDBI NDVI Lat (°) Lon (°) Con (m) Alt (m) Ori (°) Slope (%)

Pixels

Mean 23.00 11.09 − 0.09 0.52 41.52 2.09 15.565.01 294.53 165.86 23.40

Min − 13.93 − 8.39 − 0.57 − 0.20 41.19 1.47 1.92 0.00 0.00 0.00

Max 48.13 30.65 1.00 0.98 41.81 2.78 41.103.86 1646.00 359.26 163.91

Station

Mean 23.54 11.47 − 0.04 0.41 41.46 2.01 13.313.41 279.17 148.30 10.66

Min − 3.35 − 5.67 − 0.75 0.10 41.20 1.47 185.50 2.00 0.00 0.00

Max 45.31 27.19 0.44 0.85 41.77 2.76 37.477.50 1668.00 360.00 75.00
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Table 8 gives the standardised (beta weight) and non-
standardised multiple regression coefficients for the last
models of every dependent variable. In the case of Tmin, the
variable with the highest beta weight is LSTn, while LSTd

does not appear in the multiple regression equation because
it is not significant. Latitude, longitude and calendar day also
have prominent standardised coefficients. For Tmean, the most
important variables are LSTn and LSTd, with the rest of the
variables having small or non-significant coefficients. Finally,
in the case of Tmax, the variables LSTd and LSTn have the
highest beta weights and are also quite similar. Latitude, lon-
gitude and altitude also play a significant role in Tmax. It
should be noted that NDVI and NDBI indices have small or
non-significant coefficients.

Orientation and slope are the variables that present the low-
est beta weight coefficients for the three temperatures, possi-
bly because a much denser network of stations would be nec-
essary to represent all the variety of slopes and orientations.
Figure 6 shows the bar histogram of the beta coefficients of
the last model, including all the significant variables. It is
outstanding the positive values for LSTn and, not so relevant,
the positive values of LSTd. Among the negative values, the
beta weight corresponding to latitude for Tmin is the most
relevant.

The relationships between the temperatures obtained from
the multiple regression equations and the observed Tmin, Tmean

and Tmax are plotted in Fig. 7. While R2 for Tmean is 0.96, for
Tmin and Tmax is 0.92. The RMSE (MAE) ranges from 1.5

Table 4 Pearson correlation coefficients for empiric temperature data, satellite data, geographic and topographic variables and transformed calendar
day. The not significant coefficients (α = 0.05) are codified as ns

Tmax Tmean Tmin LSTd LSTn NDBI NDVI Lat Lon Con Alt orisin oricos Slp cd*

Tmax 1000 0.961 0.881 0.928 0.913 0.214 − 0.210 − 0.127 − 0.064 − 0.071 − 0.229 0.100 0.036 − 0.112 0.868

Tmean 0.961 1000 0.968 0.930 0.967 0.194 − 0.221 − 0.139 ns − 0.162 − 0.200 0.042 0.036 − 0.079 0.897

Tmin 0.881 0.968 1000 0.864 0.953 0.163 − 0.205 − 0.146 0.070 − 0.227 − 0.157 − 0.018 0.036 − 0.035 0.874

LSTd 0.928 0.930 0.864 1000 0.907 0.247 − 0.262 − 0.143 − 0.043 − 0.113 − 0.204 0.066 0.060 − 0.145 0.855

LSTn 0.913 0.967 0.953 0.907 1000 0.139 − 0.181 − 0.102 0.087 − 0.203 − 0.166 ns 0.039 − 0.060 0.902

NDBI 0.214 0.194 0.163 0.247 0.139 1000 − 0.792 − 0.482 − 0.463 − 0.066 − 0.379 0.269 0.257 − 0.357 0.136

NDVI − 0.210 − 0.221 − 0.205 − 0.262 − 0.181 − 0.792 1000 0.481 0.255 0.281 0.524 − 0.300 − 0.291 0.445 − 0.103

lat − 0.127 − 0.139 − 0.146 − 0.143 − 0.102 − 0.482 0.481 1000 0.624 0.502 0.551 0.037 − 0.028 0.242 ns

lon − 0.064 ns 0.070 − 0.043 0.087 − 0.463 0.255 0.624 1000 − 0.331 0.034 − 0.110 ns − 0.011 ns

con − 0.071 − 0.162 − 0.227 − 0.113 − 0.203 − 0.066 0.281 0.502 − 0.331 1000 0.599 0.182 0.037 0.369 ns

alt − 0.229 − 0.200 − 0.157 − 0.204 − 0.166 − 0.379 0.524 0.551 0.034 0.599 1000 − 0.281 − 0.177 0.435 ns

orisin 0.100 0.042 − 0.018 0.066 ns 0.269 − 0.300 0.037 − 0.110 0.182 − 0.281 1000 0.210 − 0.187 ns

oricos 0.036 0.036 0.036 0.060 ns 0.257 − 0.291 − 0.028 ns 0.037 − 0.177 0.210 1000 ns ns

slp − 0.112 − 0.079 − 0.035 − 0.145 − 0.060 − 0.357 0.445 0.242 − 0.011 0.369 0.435 − 0.187 ns 1000 ns

cd* 0.868 0.897 0.874 0.855 0.902 0.136 − 0.103 ns ns ns ns ns ns ns 1000

Fig. 4 Dependence of Tmax on
orientation, Ori (a) and sinus
compound, ORIsin (b)
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Fig. 5 Dependence of Tmax and
Tmin on some of the variables of
the multiple regression process
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(1.2) °C for Tmean to 2.0 (1.6) °C for Tmax. The histogram for
Tmean residuals is also shown in this figure. Fifty-one per cent
of differences between estimated and observed temperatures
are lower or equal to 1.0 °C.

4.2.2 Seasonal and monthly cases

Table 9 shows the R2, RMSE and the number of samples, N,
with complete data for seasonal multiple regressions and for
the different temperatures. The highest correlations corre-
spond to Tmean for spring and autumn, possibly due to the
moderate range of the temperatures in these seasons. The low-
est R2 corresponds to the winter Tmin. The RMSE values do
not exceed 2.0 °C, which corresponds to Tmax in summer.

The standardised beta coefficients for each variable are
given in Table 10, with only significant coefficients. The italic
entries correspond to coefficients greater than 0.10, seeing at a
glance the most important variables in the multiple regression
equations. Tmean is the variable that depends on the minimum
number of variables in any season of the year, especially in
spring and autumn. For example, in autumn, only the LSTn

and LSTd temperatures have notable beta coefficients, and in
spring, the cd* is also important. The NDVI and NDBI indices

do not have high coefficients in any of the seasons. Only
NDVI has values slightly higher than 0.10 in winter and sum-
mer for Tmax, while NDBI has a negative coefficient in spring
for Tmax. The geographical variables that more contribute to
the multiple regression are latitude, longitude, continentality
and altitude, especially for Tmax and Tmin. Slope and orienta-
tion have small or non-significant beta weights.

Table 11 shows R2, RMSE and N for every monthly mul-
tiple regression and for each temperature. For monthly cases,
R2 is lower than for seasonal or annual cases, ranging from
0.503 for July (Tmax) to 0.867 for November (Tmean).
However, RMSE have lower values than seasonal or annual
cases, especially for Tmean, which ranges from 1.2 to 1.5 °C.
The highest values correspond to April (Tmin) and July (Tmax),
both with 2.1 °C. Figure 8 shows the RMSE for every month
and Fig. 9 the estimated versus observed Tmean for November.
Table 12 summarises the significant variables on the multiple
regression process for every month and the different temper-
atures. A significant difference in comparison with annual and
seasonal scale is the relevance of LST. Whereas LST is the
most relevant at annual and seasonal scales, some differences
are detected at monthly scale depending on the specific month
and Tmin, Tmean and Tmax. The first multiple regression

Table 5 Rotated principal
components (a) RPC (stations) (b) RPC (pixels)

1 2 3 4 1 2 3 4 5

LSTdia 0.962 − 0.103 − 0.070 0.088 0.957 − 0.194 − 0.036 − 0.036 0.001

LSTnit 0.964 − 0.131 0.031 − 0.022 0.969 − 0.025 − 0.102 0.014 0.000

NDBI 0.137 − 0.343 − 0.558 0.546 0.156 − 0.851 − 0.033 − 0.306 0.055

NDVI − 0.136 0.552 0.388 − 0.544 − 0.153 0.878 0.160 0.245 − 0.046
Lat − 0.036 0.531 0.784 0.127 0.018 0.232 − 0.300 0.899 − 0.022

Lon 0.032 − 0.228 0.933 − 0.098 − 0.020 0.248 0.439 0.819 0.002

Con − 0.067 0.897 − 0.083 0.283 − 0.047 0.045 0.946 − 0.016 0.025

Alt − 0.067 0.817 0.152 − 0.224 − 0.035 0.457 0.769 0.061 − 0.016
Slp − 0.030 0.664 0.000 − 0.255 0.015 0.789 0.170 − 0.058 0.035

orisin − 0.012 − 0.099 0.073 0.777 0.010 0.073 − 0.069 − 0.096 0.932

oricos 0.009 0.012 − 0.065 0.570 0.022 0.224 − 0.167 − 0.291 − 0.378
cd* 0.978 0.046 − 0.019 0.009 0.977 − 0.028 0.043 − 0.002 − 0.004

(a) 48 thermometric stations

(b) 4042 pixels of 1 km× 1 km

Table 6 Total variance and
percentage of variance and
cumulated variance for every
RPC

RPC (a) Total Variance (%) Cumulated (%) RPC (b) Total Variance (%) Cumulated (%)

1 2811 23,427 23,427 1 2862 23,849 23,849

2 2712 22,600 46,027 2 2539 21,158 45,006

3 1992 16,600 62,627 3 1872 15,599 60,606

4 1753 14,606 77,232 4 1736 14,470 75,076

5 1019 8492 83,568

(a) 48 thermometric stations. (b) 4042 pixels of 1 km× 1 km
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variable for Tmin is the latitude for 8 months, the longitude
(1 month) and LSTn only for 3 months. Conversely, for
Tmean, LSTn is the most relevant for 11 months. Only for
August is detected a slightly higher relevance of LSTd in com-
parison with LSTn. Finally, for Tmax, the first multiple regres-
sion variable is the altitude for 5 months, LSTd (5 months) and
LSTn (2 months).

Table 7 Models obtained with
the stepwise regression analysis
for Tmin, Tmean and Tmax at annual
scale

R2 RMSE Variables

Model Tmin

1 0.908 2075 LSTn
2 0.910 2047 LSTn, lat
3 0.912 2027 LSTn, lat, cd
4 0.914 2004 LSTn, lat, cd, lon
5 0.916 1981 LSTn, lat, cd, lon, slp
6 0.917 1968 LSTn, lat, cd, lon, slp, NDVI
7 0.919 1947 LSTn, lat, cd, lon, slp, NDVI, alt
8 0.920 1937 LSTn, lat, cd, lon, slp, NDVI, alt, orisin
9 0.920 1932 LSTn, lat, cd, lon, slp, NDVI, alt, orisin, con
10 0.920 1930 LSTn, lat, cd, lon, slp, NDVI, alt, orisin, con, NDBI
11 0.920 1928 LSTn, lat, cd, lon, slp, NDVI, alt, orisin, con, NDBI, oricos

Model Tmean

1 .935 1780 LSTn
2 .950 1551 LSTn, LSTd
3 .952 1525 LSTn, LSTd, lon
4 .953 1509 LSTn, LSTd, lon, orisin
5 .954 1497 LSTn, LSTd, lon, orisin, cd
6 .955 1484 LSTn, LSTd, lon, orisin, cd, alt
7 .955 1480 LSTn, LSTd, lon, orisin, cd, alt, slp
8 .955 1474 LSTn, LSTd, lon, orisin, cd, alt, slp, oricos

Model Tmax

1 .861 2659 LSTd
2 .890 2365 LSTd, LSTn
3 .896 2299 LSTd, LSTn, lon
4 .900 2248 LSTd, LSTn, lon, orisin
5 .903 2222 LSTd, LSTn, lon, orisin, lat
6 .913 2096 LSTd, LSTn, lon, orisin, lat, alt
7 .916 2069 LSTd, LSTn, lon, lat, alt, NDVI
8 .917 2053 LSTd, LSTn, lon, lat, alt, NDVI, cd
9 .918 2046 LSTd, LSTn, lon, lat, alt, NDVI, cd, oricos
10 .918 2044 LSTd, LSTn, lon, lat, alt, NDVI, cd, oricos, orisin
11 .918 2042 LSTd, LSTn, lon, lat, alt, NDVI, cd, oricos, orisin,con
12 .918 2041 LSTd, LSTn, lon, lat, alt, NDVI, cd, oricos, orisin,con, slp
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Fig. 6 Histogram of the beta coefficients of the last model at an annual
scale for Tmin, Tmean and Tmax

Table 8 Standardised and not standardised multiple linear regression
coefficients for the annual case. Discarded variables for the multiple
regression are codified by ns

Standardised coefficients Coefficients

Tmin Tmean Tmax Tmin Tmean Tmax

Constant 532.394 5.023 − 228.921

LSTd ns 0.245 0.414 ns 0.172 0.298

LSTn 0.801 0.660 0.473 0.786 0.660 0.484

NDBI 0.027 ns ns 1.818 ns ns

NDVI − 0.031 ns 0.057 − 1.481 ns 2.812

lat − 0.286 ns 0.123 − 13.089 ns 5.886

lon 0.234 − 0.032 − 0.149 5.015 − 0.703 − 3.341

con 0.096 ns 0.062 5.723E−5 ns 3.839E−5
alt 0.083 − 0.043 − 0.189 0.002 − 0.001 − 0.004

orisin 0.033 0.029 0.015 0.368 0.326 0.178

oricos − 0.016 − 0.020 − 0.028 − 0.175 − 0.221 − 0.315
slp 0.047 0.022 − 0.014 0.023 0.011 − 0.007
cd 0.144 0.092 0.091 1.398 0.914 0.921
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4.3 Spatial distribution of Tmin, Tmean and Tmax

Some examples of the spatial distribution of temperatures
on BMR obtained by multiple regression are shown in
Figs. 10, 11, and 12. Figure 10 corresponds to Tmin,

Tmean and Tmax obtained for November 29. The UHI phe-
nomenon is quite evident for Tmin, being associated with
Barcelona city and a neighbouring area at the south of the
city with the highest temperatures. Yellow, green and blue
areas represent zones of lower temperatures, which corre-
spond to the Littoral and Pre-Littoral chains (yellow and
blue areas respectively) and the Vallès valley (green area).
The combined effect of the vicinity to the Mediterranean
coast and the UHI phenomenon is detected on the Tmean

map, with the highest temperatures along a narrow littoral
fringe. It is also worth mentioning the detection of two
nuclei of high temperatures, spatially coincident with
those observed for Tmin. For Tmax, this effect of the vicin-
ity to the littoral disappears and high temperatures cover a
good part of the metropolitan region. Only at the northern
extreme of BMR (Pre-Littoral chain) small green and blue
areas are detected with lower temperatures.

At seasonal scale, some examples of the spatial distri-
bution of average Tmin for the winter season are shown in
Fig. 11. Figure 12 depicts the monthly average of Tmin for
winter months (January, February and March). In spite of
the spatial distributions, the other three seasons are ob-
tained with a notable degree of accuracy; the winter case

Fig. 7 Estimated versus observed
Tmin, Tmean and Tmax, and the
histogram for residual Tmean at an
annual scale

Table 9 Square regression coefficient, R2, root mean square error,
RMSE and number of samples, N, at seasonal scale

Season Variable R2 RMSE N

Winter Tmin 0.696 1.95 1241

Tmean 0.853 1.32 1241

Tmax 0.799 1.83 1241

Spring Tmin 0.857 1.96 1368

Tmean 0.921 1.35 1368

Tmax 0.852 1.94 1368

Summer Tmin 0.765 1.73 1146

Tmean 0.829 1.42 1146

Tmax 0.738 1.97 1146

Autumn Tmin 0.808 1.83 1183

Tmean 0.865 1.41 1183

Tmax 0.821 1.67 1183
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for Tmin is introduced here given that the characteristics of
these four maps clearly manifest the UHI phenomenon in
the BMR. The map of average winter Tmin reproduces the
two nuclei of UHI on the downtown of the Barcelona city
and at the south along the coast. If the spatial analysis is
revised at a monthly scale, very similar spatial patterns to
those observed for November 29 (Tmin) are now found for
the cold months of January and February. In the case of
March (a more temperate month), the UHI is not so clear,
but the two nuclei appear again.

Table 10 Standardised and not standardised multiple linear regression coefficients for the seasonal scale. Discarded variables for the multiple
regression are codified by ns

Winter Spring Summer Autumn

Tmin Tmean Tmax Tmin Tmean Tmax Tmin Tmean Tmax Tmin Tmean Tmax

LSTd 0.277 0.457 0.643 − 0.055 0.190 0.349 0.061 0.331 0.534 0.188 0.282 0.476

LSTn 0.641 0.625 0.409 0.712 0.611 0.458 0.497 0.301 0.068 0.709 0.663 0.452

NDBI ns ns 0.062 ns − 0.053 − 0.114 ns ns − 0.074 ns ns ns

NDVI − 0.085 ns 0.121 − 0.052 ns ns ns ns 0.120 − 0.077 − 0.057 0.052

Lat − 0.598 ns 0.334 − 0.387 ns 0.104 − 0.478 ns ns − 0.623 ns 0.284

Lon 0.457 ns − 0.264 0.320 ns − 0.221 0.455 ns ns 0.465 ns − 0.350

Con 0.305 0.115 ns 0.129 ns 0.167 ns ns 0.201 0.256 ns ns

Alt 0.128 − 0.119 − 0.412 0.101 − 0.088 − 0.206 0.060 − 0.193 − 0.323 0.237 ns − 0.390

Slp 0.077 0.049 ns 0.063 ns ns 0.117 0.061 ns 0.085 0.075 − 0.036
orisin 0.064 ns − 0.038 0.039 0.044 0.065 0.043 0.056 0.067 0.059 0.036 ns

oricos − 0.052 − 0.054 ns ns − 0.021 − 0.048 ns − 0.030 − 0.064 ns ns ns

cd* − 0.131 − 0.138 − 0.181 0.234 0.213 0.176 0.209 0.310 0.297 ns ns − 0.040

Table 11 Square regression coefficient, R2, root mean square error,
RMSE and number of samples, N, at monthly scale

Month Variable R2 RMSE N

January Tmin 0.671 1.86 609
Tmean 0.815 1.24 609
Tmax 0.726 1.72 609

February Tmin 0.664 1.84 356
Tmean 0.824 1.24 356
Tmax 0.774 1.72 356

March Tmin 0.707 1.96 276
Tmean 0.824 1.34 276
Tmax 0.788 1.92 276

April Tmin 0.648 2.06 393
Tmean 0.769 1.32 393
Tmax 0.692 1.68 393

May Tmin 0.517 1.77 455
Tmean 0.651 1.20 455
Tmax 0.604 1.76 455

June Tmin 0.692 1.67 520
Tmean 0.748 1.21 520
Tmax 0.605 1.90 520

July Tmin 0.606 1.66 504
Tmean 0.606 1.29 504
Tmax 0.503 2.05 504

August Tmin 0.665 1.67 423
Tmean 0.727 1.25 423
Tmax 0.666 1.60 423

September Tmin 0.735 1.51 219
Tmean 0.779 1.22 219
Tmax 0.746 1.40 219

October Tmin 0.706 1.74 301
Tmean 0.765 1.45 301
Tmax 0.797 1.40 301

November Tmin 0.825 1.81 615
Tmean 0.867 1.37 615
Tmax 0.822 1.70 615

December Tmin 0.669 1.76 267
Tmean 0.728 1.28 267
Tmax 0.721 1.22 267

1 2 3 4 5 6 7 8 9 10 11 12
Month

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
M

SE
(o C

)

Tmin
Tmean
Tmax

Fig. 8 RMSE for every month
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4.4 Discussion of the results

With respect to the correlations among dependent and inde-
pendent variables used in the multiple regression, it is notice-
able, as expected, the high correlation (0.97) between the three
daily temperatures (minimum, mean and maximum) and the
two LST temperatures and also the calendar day. The correla-
tions are notably small for the rest of independent variables,
sometimes achieving values lower to 0.23. Another relevant
question is that results obtained by PC analysis, taking into
account the thermometric stations or the dense network of
1 km2 pixels, are very similar. Consequently, the relatively
sparse distribution of the 48 thermometric gauges would not
be a shortcoming to obtain a reliable spatial distribution of
temperatures, being then defined a relatively good image of
the thermometric variability on the BMR.

With respect to the multiple linear processes, the square
regression coefficients obtained at annual scale are notably
good, in spite of the RMSE varies within the (1.5–2.0 °C),
results quite similar to those obtained byCristóbal et al. (2008)
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Fig. 9 Estimated versus observed Tmean for November

Table 12 Significant variables in
decreasing order exceeding Beta
equal to 0.20 for the multiple
regression process at monthly
scale of Tmin, Tmean and Tmax

Month Tmin significant standardised beta coefficients > 0.20
January lat(− 0.926), lon (0.754), con(0.524), LSTn(0.486), LSTd (0.358), alt(0.254)
February lat(− 0.723), LSTn(0.690), lon(0.456), con(0.425)
March LSTn(0.661), LSTd(0.205)
April LSTn(0.701), lat(− 0.683), lon(0.531), con(0.626)
May lat(− 0.709), lon(0.686), LSTn(0.361), NDBI(0.231)
June lat(− 0.564), lon(0.533), LSTn(0.499), NDVI (− 0.242), alt (0.236), cd*(0.231), slp(0.217)
July lon(0.628), lat(− 0.582), LSTn(0.467), NDVI(− 0.207)
August lat(− 0.600), lon(0.476), LSTn(0.474)
September lat(− 0.893), lon(0.835), LSTn(0.439)
October LSTn(0.690), lat(− 0.569), lon(0.462)
November lat(− 0.770), LSTn(0.600), lon(0.584), con(0.311), alt(0.270)
December lat(− 0.598), LSTn(0.531), alt(0.309), NDVI(− 0.238)

Month Tmean significant standardised beta coefficients > 0.20
January LSTn(0.588), LSTd (0.457), con(0.213)
February LSTn(0.482), alt(− 0.323),LSTd (0.286)
March LSTn(0.650), LSTd(0.393)
April LSTn(0.685)
May LSTn(0.376),alt(− 0.366), LSTd (0.250), cd*(− 0.202)
June LSTn(0.451), LSTd (0.409), NDBI(− 0.219)
July LSTn(0.435), alt(− 0.333), cd*(− 0.318), LSTd (0.208)
August LSTd(0.358), LSTn (0.282), alt(− 0.273)
September LSTn(0.369), alt(− 0.377), LSTd (0.265), NDVI(0.212)
October LSTn(0.629), LSTd (0.219)
November LSTn(0.645), LSTd (0.223)
December LSTn(0.577), LSTd (0.271), slp(0.227)

Month Tmax significant standardised beta coefficients > 0.20
January LSTd(0.530), alt(− 0.532), LSTn (0.398), lat(0.484), lon(− 0.309)
February LSTd(0.557), alt(− 0.547), lat (0.357), lon(− 0.322)
March LSTd(0.556), LSTn(0.489), con(0.329), alt(− 0.317)
April alt(− 0.459), lon(− 0.490), LSTn(0.415), lat(0.360), LSTd(0.260)
May alt(− 0.409), LSTd(0.395), con(0.387), cd*(− 0.313)
June LSTd(0.510), alt(− 0.422), con (0.330), NDBI(− 0.329)
July alt(− 0.403), LSTd(0.399), con(0.390), cd*(− 0.347)
August LSTd(0.535), alt(− 0.468), con (0.243)
September alt(− 0.604), LSTd(0.456), NDVI(0.364)
October LSTn(0.503), LSTd(0.363), lon(− 0.345), alt(− 0.329), lat(0.275)
November LSTn(0.434), LSTd(0.430), alt(− 0.410), alt(− 0.329), lon(− 0.359), lat(0.284)
December alt(− 0.814), lon(− 0.508), lat(0.481), LStd(0.355)
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for the whole Catalonia. For the results at seasonal and month-
ly scales, even though the square regression coefficients are
lesser than those obtained at an annual scale, the RMSE values
are very similar, being not exceeded 2.1 °C. Consequently, the
images of the spatial distribution of temperatures should be of
similar quality at annual, seasonal and monthly scales.
Nevertheless, the highest RMSE values are detected at a
monthly scale (Tmin for April and Tmax for July).

Another noticeable characteristic is the low weight of
NDVI and NDBI on the multiple linear regression, which
has been also detected in other similar analysis around the
world. In spite of both coefficients could be relevant, as
they represent the type of vegetation and building respec-
tively, the LST obtained from satellite data could itself
include a great percentage of the information concerning
NDVI and NDBI.
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Fig. 10 Example of the spatial
distribution of Tmin, Tmean and
Tmax derived by multiple
regression for November 29,
2015
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From an applied point of view, given that the obtained ther-
mometric maps are submitted to a maximum RMSE of 2 °C, a
dense network of minimum, mean and maximum temperature
data could be possible to analyse thermometric phenomena
(UHI and hot and cold outbreaks) affecting life quality and
health of BMR population. Additionally, data obtained with
smaller pixels, for instance with LANDSAT satellite, would
permit a notable increase in the spatial resolution of tempera-
tures. Unfortunately, the available data from LANDSAT is
nowadays minor than that found from MODIS satellite, and
the accuracy of the results would be then questionable.

5 Conclusions

Previous to the multiple regression process, the Pearson cor-
relation coefficient and the PCA have permitted to detect links
between empiric temperatures recorded at 48 meteorological
stations and satellite data, geographic and topographic data
and transformed calendar days. The PCA has also permitted
to validate if the set of the thermometric stations are appropri-
ate for a goodmultiple regression process by comparing RPCs
and factor loadings corresponding to 48 stations dataset and
1 km2 pixel network. In spite of the very different spatial data
density for thermometric stations and pixel coverage, a few
discrepancies are found with respect to the factor loadings of
NDVI and NDBI. In this way, a denser network of thermo-
metric data would improve the role of NDVI and NDBI on the
multiple regression. It is also worth mentioning the substitu-
tion of the topographic parameter of orientation (Ori) by
cos(Ori) and sin(Ori), being detected a slight improvement
on the relevance of sin(Ori) when it is used instead of Ori in
the multiple regression process.

A revision of the multiple regression analyses results man-
ifests the strong relevance of LSTn for Tmin and Tmean and
LSTd for Tmax at the annual scale, as obtained by Thanh
et al. (2016). A similar pattern is observed at a seasonal scale.

The relevance at a monthly scale of LSTd on Tmin is not sig-
nificant for February, April, May, June and September.
Additionally, the relevance of LSTn on Tmax is not significant
for September.

With respect to specific results at the annual scale, first of
all, it is noticeable that the best fit between empiric tempera-
tures and those generated by multiple regression is usually
found for Tmean, being obtained the worst for Tmax in terms
of R2 and RMSE. It is also noticeable that cd* only plays a
relatively important role for Tmin and the set of relevant vari-
ables are not the same for Tmin, Tmean and Tmax. At monthly
scale, whereas the best fits are effectively obtained since
January to December for Tmean, the worst fit is obtained for
Tmax (June, July) and Tmin (April). At a seasonal scale, the
results are quite different. Whereas the minimum residual for
Tmean is detected in winter and spring, for Tmin it is found in
summer and for Tmax in autumn.

In short, the reasonably good results of the multiple regres-
sion process would permit:

– Describing with detail (pixels of 1 km2) the spatial distri-
bution of temperatures, notably improving the spatial data
density on BMR derived from the thermometric network
and without applying interpolations.

– Obtaining detailed maps of UHI phenomenon on urban
areas. It has to be remembered that these details of the
UHI intensity could not be obtained from a few thermo-
metric stations. In particular, two clear focus of high UHI
intensity for Tmin in winter have been detected.
Additionally, the smooth temperatures along the
Mediterranean coast are verified by observing Tmax and
Tmean maps.

A systematic and detailed spatial description of tempera-
tures with the methodology used in this paper could be a
significant improvement in the analysis of cold and hot out-
breaks. It should be underlined that these analyses could be
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Fig. 11 Winter season spatial
distribution of average Tmin

derived by multiple regression
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very useful to study the effects on the life quality and health of
the Barcelona city and metropolitan area inhabitants.
Conversely to a relatively scarce distribution of thermometric
stations used to analyse these outbreaks, the multiple linear
regression method provides a more detailed (1 km × 1 km)
spatial distribution of air temperatures.

Finally, comparing R2 and RMSE for BMR with those
obtained by Cristóbal et al. (2008) for the whole Catalonia,
it is observed that better results have been obtained for BMR.

Whereas for Tmin and Tmax, the best results are achieved for
BMR (R2 equal to 0.92 in front of 0.54–0.57 and RMSE equal
to 1.5–1.6 °C in front of 2.3–1.8 °C), for Tmean, R

2 is again
better for BMR (0.96 in front of 0.66). The RMSE for Tmean

obtained for the whole Catalonia (1.3 °C) is slightly better
than that obtained for BMR (1.5 °C). One reason for these
differences could be that BMR area is ten times smaller than
Catalonia, implying a minor variability of temperatures and
geographical characteristics and permitting a better
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description of the spatial distribution of temperatures. A
higher spatial density of thermometric stations could be an-
other factor favouring the BMR results.
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