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Abstract
Evapotranspiration (ET) is a main factor of the hydrologic balance. Estimating precise ET is necessary for managing the water
supply in a basin. In this study, daily barley standard evapotranspiration (DBSE) is obtained (1) directly by weighing lysimeter
and (2) indirect methods. In the first step, DBSEwas obtained by two weighing lysimeters in a semi-arid region (Kooshkak, Iran).
In the next step, indirect methods for estimating the DBSE, the Penman–Monteith (PM), and the artificial neural networks
(ANNs), including the radial basis functions (RBF), and the multi-layer perceptron (MLP), were utilized. Results showed that
DBSE can be successfully calculated in semi-arid region byMLP-ANN, RBF-ANN, and PMmethods. The ANNmethods were
offered as the best method because they need fewer input data and can be easily used for other developed programs that applied
for water allocation and therefore solve the conflicts between stakeholders and optimize water usage. Finally, the sensitivity of
ANNs to input data was investigated by relating changes in the daily metrological data to the dimensionless scaled sensitivities
(DSS) index. Results showed that in the multi-layer perceptron, ETc was more sensitive to sunshine hours and less sensitive to
wind speed and the radial basic function has different patterns which are more sensitive to sunshine hours. When the sunshine
hours decrease by more than 10%, the standard crop evapotranspiration (ETc) was more sensitive to average humidity and less
sensitive to wind speed.

1 Introduction

In recent decades, water resources have gradually decreased in
a semi-arid region of Iran mainly due to a decrease in seasonal
precipitation and an increase in both water demand and tem-
perature. Obviously, water availability is one of the most im-
portant factors for crop production in the arid and semi-arid
regions. Therefore, a careful understanding of the water bal-
ance is important in determining water-saving measures (Li
et al. 2003). Crop evapotranspiration is one of the most im-
portant parameters of water balance and is a major factor in the
optimal irrigation schedule to improve water use efficiency in
the irrigated land (Li et al. 2003). This study is the first report

that presented DBSE and offered an optimal indirect method
for calculating DBSE in semi-arid climates.

Crop evapotranspiration is directly calculated by measure-
ment of soil water loss, or by indirect methods such as the
aerodynamic method, the energy balance method, and the
combination of them. The direct method is costly and time-
consuming (Falamarzi et al. 2014); therefore, the indirect
methods are more commonly used. Most of the prevalent
models for predicting ETc are the physically based or empir-
ical equations that were developed based on climatological
variables (Sudheer et al. 2003).

The Penman–Monteith (FAO-PM56) as a standard indirect
method has been recommended for use by the Food and
Agriculture Organization (FAO) (Allen et al. 1998) and there-
fore, FAO-PM56 is the most prevalent method used.
However, the FAO-PM56 approach needs a large amount of
climatic data; for this reason, simpler methods were developed
that require less meteorological variables (Kumar et al. 2008;
Moghaddamnia et al. 2009; Traore et al. 2010; Ambas and
Baltas 2012; Ladlani et al. 2012; Aghajanloo et al. 2012;
Shahrokhnia and Sepaskhah 2013; Abrishami-Shirazi et al.
2019; Kisi 2010).
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Crop evapotranspiration is a nonlinear and complex phe-
nomenon; its design depends on the number and types of
meteorological data obtained and their impact on each other
(Landeras et al. 2008). In recent decades, notable advances in
the field of nonlinear-pattern identification have been made to
a branch of the nonlinear theoretical system of modeling that
is called artificial neural network (ANN). The ANN is a non-
linear mathematical structure capable of identifying arbitrarily
complex nonlinear processes that map the input and output of
any system (Sudheer et al. 2003).

Sudheer et al. (2003) used radial basis function (RBF)-
ANNs to evaluate daily ETc for rice crops. The crop
evapotranspiration was simulated using the RBF-ANN
model and was compared with the lysimetric data. The
results clearly showed the proficiency of the ANN
method in calculating the ETc. Trajkovic (2005) investi-
gated the reference potential evapotranspiration (ETo)
using Hargreaves and Thornthwaite methods in Serbia
from which a radial basis function (RBF) network was
also used to compute ETo using temperature data. The
result showed that RBF has a higher performance in ETo
estimation than the two other methods. Zanetti et al.
(2007) used the artificial neural networks for estimating
the ETo by using only data from the maximum and min-
imum air temperatures. The multi-layer perceptron net-
works showed the best results when composed of a single
hidden layer with ten neurons and hyperbolic tangent
sigmoid-type activation function. Dehbozorgi and
Sepaskhah (2012) employed the Penman-FAO (P-FAO),
Penman–Monteith, empirical model, and artificial neural
network to estimate the reference potential evapotranspi-
ration in the semi-arid region. The ANNs with six inputs
had better performance than the P-FAO equation and were
similar to the PM equation. In addition, the prediction
performance of ANNs, with four input parameters, was
higher than the PM equation and was similar to P-FAO
and the developed empirical equations. Abrishami et al.
(2019) utilized ANN-MLP to estimate the daily ETc of
wheat and maize in a semi-arid region. These networks,
which used climatic data, leaf area index, and plant height
for both crops, demonstrated the proficiency of MLP-
ANN method with two hidden layers in the estimation
of daily ETc. Kisi and Kilic (2015) estimated the ability
of ANNs and M5 model tree (M5Tree) in modeling ETo.
It was found that the ANN had better performance than
the PM and Turc methods in estimation of the ETo.

Global warming and climate change are anticipated to af-
fect the climatic parameters to varying degrees which, in turn,
affect the evapotranspiration. Therefore, it is important to de-
termine which meteorological variable has a higher effect on
ETc. Sensitivity analysis can assess the sensitivity of model
output with respect to variation in the model parameters
(Saltelli et al. 2004). Sensitivity analysis plays an important

role in understanding the connection between climate data
availability and prediction precision of ETo and between the
climatic condition and ETo variation (Gong et al. 2006). In
addition, the sensitivity of the input data for evapotranspira-
tionmodels is applied to find the best input data and determine
the most effective parameters in evapotranspiration. Many
investigations have studied the sensitivity of different vari-
ables for the ETc and ETo estimation methods (Beven 1979;
Ambas and Baltas 2012; Sharifi and Dinpazhoh 2014).

Cereals are the most important food crops and have pro-
vided 70 percent of the food for the world’s population. Of
these, barley is the world’s fourth most important cereal and
an important livestock feed product in Iran. For this reason, it
is used as the test crop in this study.

The aims of this study include (1) mensuration of bar-
ley evapotranspiration by weight lysimeters in an area in
the semi-arid climate of Kooshkak, (2) calculation of
DBSE by Penman–Monteith equation and artificial neural
networks (indirect methods), (3) comparison between the
indirect methods with the measured data and (4) investi-
gation of the sensitivity of the input data for the indirect
methods.

2 Materials and methods

2.1 Study area

The study area is Kooshkak Agricultural Research Station
(Faculty of Agriculture, Shiraz University), located in
Fars Province in the southwest of Iran at latitude 30° 4′
45″, longitude 52° 35′ 14″ and 1620 m above mean sea
level (Fig. 1). The long-term mean climate parameters of
the research station are annual precipitation 412 mm,
wind velocity 0.75 m s−1, relative humidity 50.5%, wind
velocity 0.75 m s−1, air temperature 15.68 °C, daily pan
evaporat ion 5.8 mm, and dai ly sunshine 8.4 h
(Shahrokhnia and Sepaskhah 2012). The regional climate
is classified as semi-arid (Malek 1982).

2.2 A direct method of measuring evapotranspiration

Barley (Hordeum vulgare) was planted in two large-scale
weighing lysimeters with each area of 7.07 m2. The lysimeters
are installed in the middle of a field with an area of 1600 m2.
The same cultivation practices were used in both the lysimeter
sites and their surrounding field and they were irrigated with
the same frequency and amount.

The leaf area index (LAI) and crop height were recorded at
7-day interval. During the growing season, the crops were
irrigated using furrow irrigation with well water. Crops in
the lysimeters and surrounding field were protected from dis-
ease, pests, and water stress which are the standard conditions
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for the daily barley evapotranspiration (ETc). Daily ETc values
in two lysimeters were determined by using the difference
between weights of lysimeters based on precipitation, irriga-
tion, and deep percolation amounts in a 24-h period from 21
November 2011 to 12 June 2012. The DBSE was determined
based on the water balance principle as follows:

ETc ¼ P þ I−Dþ Δw ð1Þ
where ETc is the standard crop evapotranspiration (mm3

day−1), P is the precipitation (mm3), I is the amount of irriga-
tion (mm3), D is the deep percolation (mm3), and Δw is the
daily change in weight of the lysimeters (equivalent mm3).
Details of measurement procedure were reported by
Hashemi (2013).

2.3 Penman–Monteith equation (indirect method)

In 1948, Penman developed the mass transfer procedure and
the energy balance and derived an equation accordingly. This
equation calculated the evaporation from an open water sur-
face by using standard climatological parameters such as sun-
shine, wind speed, humidity, and temperature. The combina-
tion equation was developed later by many researchers. They

extended the equation to cropped surfaces by considering re-
sistance factors. The Penman–Monteith equation for comput-
ing ETc is as follows:

ETc ¼
Δ Rn−Gð Þ þ ρcp

es−ea
ra

� �

λ Δþ γ 1þ rs
ra

� �� � ð2Þ

where ETc is the crop evapotranspiration rate at standard
conditions (mm·d−1), Rn is the solar radiation (MJm−2·d−1),G
is the soil heat flux (MJ m−2·d−1), cp is the specific heat of
moist air (kJ kg−1 °C−1), Δ is the slope of the saturation pres-
sure versus temperature function (kPaoC−1), ρ is the air density
(kg m−3), γ is the psychometric constant (kPa °C−1), (es−ea) is
the vapor pressure deficit of the air (kPa), rs and ra are the
(bulk) surface and aerodynamic resistance (s m−1), and λ is the
latent heat of evaporation (MJ kg−1). The calculated daily
value of G is very small so it is considered as zero in the
computation.

The aerodynamic resistance and the (bulk) surface are im-
portant components of Penman–Monteith equations presented
in the FAO56 (Allen et al. 1998). The equations depend on the
height and leaf area of barley as measured in the field.

Fig. 1 Map of the research station located in Marvdasht city, Iran
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2.4 Artificial neural network (indirect method)

ETc is a complex and nonlinear process which depends on the
interacting climatology factors and their indigenous features.
However, the lack of physical understanding of the ETc pro-
cedure and unavailability of relevant data results in imprecise
calculations of the ETc. Over the past two decades, artificial
neural networks (ANNs) have been increasingly used in
modeling of hydrological processes because of their high abil-
ity to simulate hydrologic variables without any understand-
ing of physical processes (Kumar et al. 2011; Abrishami et al.
2019; Dehbozorgi and Sepaskhah 2012).

In this study, for ANN model, daily average temperature
(°C), daily average humid (%), daily wind speed (m s−1), and
daily sunshine hours (h) were used as input data and the mea-
sured DBSE as output data. All the input data were randomly
divided into training and testing subsets as follows: three-
quarters of the data for the training set and a quarter of the
data for the testing set. The training data set was used for
calculating the gradient and updating the network biases and
weights, whereas, the testing data set was used for validating
the network performance. To attain the best artificial neural
network, two neural networks, radial basis function (RBF) and
multi-layer perceptron (MLP), were evaluated.

2.4.1 Radial basis functions

The radial basis function network is a network that applies
radial basis functions as the transfer functions for finding fea-
tures of input data. Radial basis functions of the outputs and
nodes parameters are a linear combination of the output of the
RBF.

The radial basis function (RBF) networks have three layers:
an input layer, a feature layer with a radial basis transfer func-
tion, and a linear output layer (Fig. 2).

The input data is defined as a vector that is a set of real
numbers x ∈ Rn. The output data of the feature layer is
modeled as a vector function of the center vector and input
vector and Hj(x) : R

n→Rm is shown as follows:

Hj xð Þ ¼ ρ x−c j
�� ��� � ð3Þ

where cj is the center vector for center j of the feature layer
and ρ is the radial function. The function depends only on the
distance between each center vector and input vector, accord-
ingly entitled radial basis function. The Euclidean distance
and Gaussian function as base function normally are used
for radial basis function network. The equation for the calcu-
lation is:

y ¼ ∑m
j¼1w jH j xð Þ þ wo ð4Þ

where wj is the weight of the jth center to the neuron of the
output, w0 is the bias of the neuron of the output, m is the
number of feature layer neurons, and y is the amount of output.

The parameters wj, w0, m, and cj are computed in an ap-
proach that optimizes the fit between the simulated data and
the measured data.

In this study, the network was conditioned by the dif-
ferent spread of radial basis functions’ values and mean
square error (MSE) as a performance goal. The spread of
radial basis function value and the performance goal
(MSE) value varied between 1 and 100 and 0 and 4
mm·d−1, respectively. The optimum network structure
was chosen by trial and error based on statistical indica-
tors of test data.

2.4.2 Multi-layer perceptron

A multi-layer perceptron (MLP) is a feed-forward artifi-
cial neural network model that relates input data to ade-
quate outputs. The MLP contains sets of multiple layers
of neurons in directed graphs which are fully connected
next to each other. It is an adjustment of the standard
linear perceptron and can discern data that is not linearly
separable (Cybenko 1989). The MLP architecture typical-
ly is defined by three layers, including input, hidden, and
output layers (Fig. 3).

Formally, a one-hidden-layer MLP is a function f : RD→
RL, whereD is the size of the input vector x and L is the size of
the output vector f(x), which is shown as follows:

f xð Þ ¼ G b 2ð Þ þ w 2ð Þ S b 1ð Þ þ w 1ð Þx
	 
	 
	 


ð5Þ

where b(1) & b(2) are the bias vectors, w(1) & w(2) are the
weight matrices, and G and S are the transfer functions. The
vector U(x) = s(b(1) + w(1)x) organizes the hidden layer. w(1) ∈
RL×M is the weight matrix relating the input vector to the

hidden layer with M neurons. Each column w 1ð Þ
i represents

the weights from the input units to the ith hidden neuron. The
common choices for S are tanh and sigmoid function. The
o u t p u t v e c t o r i s a c q u i r e d a s : f ( x ) = G ( b ( 2 ) +
w(2)(U(x)). w(2) ∈RM×Dis the weight matrix connecting the
hidden layer to the output layer. The typical function for the
output layer is linear.

For optimal training and simulation performance of
ETc, the model was evaluated with two hidden layers.
The nodes of the first hidden layer vary from 4 to 15
and the second hidden layer varies from 5 to 30.
Additionally, five transfer functions (hyperbolic tangent,
log-sigmoid, hyperbolic tangent sigmoid, symmetric
saturating linear, linear) for each layer, including the hid-
den layers and the output layer were tested. In this study,
two learning algorithms, Levenberg–Marquardt and
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Bayesian regulation were assessed. The best function al-
gorithm and the number of the nodes of the hidden layer
were selected by a process of trial and error based on the
statistical indicators.

2.5 Statistical analysis

Statistical analysis is an important tool to determine the accu-
racy of methods and select the best methods. In this work,

these parameters have been calculated to determine the accu-
racy of the model as follows:

1. Normalized root mean square error (NRMSE):

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Pobs−Psimð Þ2

NPobs
2

vuut ð6Þ

x1 

x2 

xi 

Y 

I w0 

H1 

Hj 

w2 
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Fig. 2 Architecture of a radial basis function network
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Fig. 3 Architecture of a multi-layer perceptron
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where Psim is the amount of simulated daily evapotranspi-
ration, Pobs is the amount of observed daily evapotranspira-
tion, and N is the number of observations. When the NRMSE
is closer to zero, the high precision of the model in predicting
ETc is shown.

2. Mean Absolute Error (MAE):

MAE ¼ ∑N
i¼1 Pobs−Psimð Þj j

N
ð7Þ

When the value of this index is lower, it illustrates further
precision of the model.

3. Index of agreement (d):

d ¼ 1−
∑N

i¼1 Psim−Pobsð Þ2

∑N
i¼1 jPsim−Pobsj þ jPobs−Pobsj
	 
2 ð8Þ

where Pobs is the mean amount of observed daily evapotrans-
piration. The index of agreement shows that the performance
of the model is ideal (best) when the value is one or closer to
one.

4. Mean bias error (MBE):

MBE ¼ ∑N
i¼1 Psim−Pobsð Þ

N
ð9Þ

This index shows the mean overestimation and underesti-
mation of the model. The lower the value of this index, the
better the model.

5. R Square

R2 ¼
∑N

i¼1 Psim−Psim

	 
2
Pobs−Pobs

	 
2
∑N

i¼1 Psim−Psim

	 
2
∑N

i¼1 Pobs−Pobs

	 
2 ð10Þ

R2 is an index that indicates how well the data fit into a
statistical model. The closer the index approaches one is
better.

2.6 Sensitivity analysis for ANN

Sensitivity analysis is a prevailing approach for assessing the
effect of each input data in the model on ETc prediction. In
general, artificial neural networks do not give information
about the significant impact rate of input data on the output
data. Process sensitive analysis specifies which input data has
a higher effect and which has a lower effect; therefore, we can
reduce the number of input data and develop a simpler model.
Furthermore, we understand which data needs more precise
measurement.
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Fig. 4 Averages of measured DBSE from two lysimeters by days after
first irrigation (DAFI)

Table 1 Average barley evapotranspiration rate at different growth stages and its total seasonal measured and estimated by MLP-ANN, RBF-ANN,
and Penman–Monteith

Growth stages

Measured (mm day−1) Penman–Monteith (mm day−1) MLP-ANN (mm day−1) RBF-ANN (mm day−1)

Initial stage 1.22 1.21 1.31 1.32

Developing stage 3.80 4.06 3.11 3.33

Mid stage 7.50 8.43 6.71 7.00

End stage 4.21 5.87 4.78 4.93

Total seasonal ETc (mm) 689 783 654 680
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In this study, sensitivity analysis was carried out by using
dimensionless scaled sensitivity (DSS). This method demon-
strates the sensitivity of the predicted parameters to the input
data used. The dimensionless scaled sensitivity, SSij, is calcu-
lated as (Hill 1988):

SSij ¼ ∂y
0
i

∂bj

 !wi

b j ð11Þ

where j represents one of the inputs, i represents one of the

observations, y
0
i is the predicted value associated with the ith

observation, bj is the jth computed input, ∂y
0
i

∂b j
is the sensitivity

of the simulated value associated with the ith observation ac-
cording to the jth input and is assessed at the final input value
and wi is the weight of the ith observation (in this search it is
equal to one for every observation). ∂bj is the amount of
change to the inputs and ∂yj is the amount of change predicted
for the value associated with the ith observation.

Composite scaled sensitivities (CSS) are computed for
each input using the scaled sensitivities for all observations.
They are dimensionless, so can be used to evaluate the amount
of CSSwith different types of inputs. Model simulation results
are more sensitive to inputs that have a large CSS. The CSS

for jth input is computed as (Hill 1988):

CSSj ¼
∑N

i¼1 SSij
� �2
N

" #0:5
ð12Þ

where N is the number of observations, SSij is the scaled
sensitivities, i is the observed value, and j is the number of
input data.

For this purpose, the sensitivity analysis was carried out in
three steps:

1. Each state was generated by changing each input within a
range of − 20 to + 20% at an interval of ± 5% while
keeping other parameters constant.

2. The change of ETc for each state was predicted using the
optimum networks.

3. The scaled sensitivities (SSij) for each observation and the
Composite Scaled Sensitivities (CSSj) were computed for
each state.

3 Results and discussion

The DBSE was determined based on the principle of soil
water balance in the weighing lysimeter and the average of
measured DBSE in two lysimeters was considered as the daily
barley standard evapotranspiration. The DBSE as a function
of days after first irrigation (DAFI) was shown in Fig. 4.

The value of barley ETc during the growing season, be-
tween the emergence and stem elongation, is very low due
to low LAI, temperature, and winter frost conditions. The
mean daily average ETc was only about 1.1 mm day−1 at the
early growth stage and increased as both temperature and
canopy growth increased. The DBSE increased rapidly, until
to the end of the mid-season stage. The maximum DBSE rate
occurred at 172–183 DAFI, with a mean value of 9.5 mm
day−1. Total measured crop ETc was 689 mm.

Fig. 5 a The measured and
estimated DBSE by Penman–
Monteith by days after first
irrigation (DAFI) and b linear
regression between measured and
calculated DBSE by PM method
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3.1 Penman–Monteith ETc

Daily barley ETc was estimated using the Penman–Monteith
equation. The average calculated ETc rate in individual growth
stage was shown in Table 1. The results indicated that for each
growth stage except the initial stage, the mean calculated ETc
rate was higher than the measured values and total calculated
seasonal ETc was 13% higher than the measured seasonal
ETc. Figure 5 a, b show the comparison between the measured
and estimated DBSE. The measured values of DBSE and the
calculated Penman–Monteith ETc in Fig. 5a followed the
same pattern. From day 1 to day 30, the DBSE rate was very
low at least as 2.0 mm·d−1. After day 100, the rate increased
gradually from 2.0 to 10.0 mm·d−1 until day 170. The
Penman–Monteith ETc showed a higher DBSE rate of about
11.0 mm·d−1 when as compared with the measured values
which had lower rates of about 10.0 mm·d−1. The difference
was about 10%.

The linear relationship between the predicted amount of
DBSE by Penman–Monteith and the measured value has been
plotted and compared with 1:1 line in Fig. 5b.

The value of the intercept was not significantly different
than zero. Therefore, a linear regression without intercept was

fitted to the data. The equation of linear regression is shown
below:

ETcMeasured ¼ 1:06� ETcSimulated ð13Þ

3.2 ETc by the ANN methods

3.2.1 Result of multi-layer perceptron artificial neural
network

The training and testing results showed that multi-layer
perceptron artificial neural network’s structures with two hid-
den layers and its structure 4-8-5-1, and Levenberg–
Marquardt learning algorithm and hyperbolic tangent transfer
function for hidden layers and linear transfer function for out-
put layer had the best prediction. Moreover, with linear regres-
sion, the relationship between the predicted DBSE by neural
network and the measured value has been plotted. The plotted
line has been compared with the 1:1 line. The difference be-
tween the obtained slope and intercept of the linear regression
equation with 1.0 and 0 was not statistically significant at the
5% level of probability. Therefore, the relationship between
the simulated DBSE by MLP-ANN and the measured values
has been computed with a linear regression model without
intercept for the testing and training data. Results have been
shown in Figs. 6 and 7. The equations of the linear regression
are as follows:

Training : ETcMeasured ¼ 1:047� ETcSimulated ð14Þ
Testing : ETcMeasured ¼ 1:106� ETcSimulated ð15Þ

Figure 6 indicated that the measured and simulated DBSE
followed the same pattern with different rates. TheMLP-ANN
estimated the DBSE of the end season average rate which was
lower than the measured values, and in the remaining seasons,
the simulated values were closer to the measured values

Fig. 7 Linear regression between
the measured and predicted
DBSE for a training set and b
testing set

Fig. 8 Comparison between the measured and estimated DBSE by RBF-
ANN
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(Table 1). In general, the results showed seasonal ETc was
computed at 5% lower than the measured value by the
MLP-ANN.

3.2.2 Result of radial basis function artificial neural network

The result (Figure 8) showed that the network had the best
performance with a spread of radial function value of 39 and
mean square error of 0.5. A linear regression model has been
fitted to the relationship between the simulated amounts of
barley evapotranspiration by the neural network (RBF-
ANN) and the measured values (Fig. 9a, b).

This linear regression has been compared with a 1:1 line,
and the comparison between the fitted line and 1:1 line at 5%
level of probability has been investigated. The results showed
that the difference between the regression slope and intercept,
respectively, with 1.0 and 0.0 at the chosen level of probability
(5%), was not statistically significant (Fig. 9a, b). Finally, the
relationship between the simulated DBSE by RBF-ANN and
the measured values with a linear regression model without
intercept has been fitted for testing and training data in (Fig.
9a, b). The equations of linear regression without intercept of
data are as follows:

Training : ETcMeasured ¼ 1:0� ETcSimulated ð16Þ

Testing : ETcMeasured ¼ 1:066� ETcSimulated ð17Þ

Figure 8 showed that the measured and simulated DBSE
follow the same pattern. The RBF-ANN simulated the mean
barley ETc rate in each growth stage of crop closer to the
measured values (Table 1). Furthermore, the seasonal ETc
was estimated about 1.3% lower than the measured value by
The RBF-ANN.

The statistical indices were computed for indirect methods
(MLP-ANN, RBF-ANN, and Penman–Monteith) for estimat-
ing the DBSE in a semi-arid region (Table 2). Results indicat-
ed that the three methods have acceptable performance ac-
cording to each statistical index (Table 2).

3.3 Sensitivity analysis

Figure 10a showed the results of the sensitivity analysis of
barley ETc obtained by MLP-ANN model for each of the
weather parameters. The most sensitive variable for ETc was

Fig. 10 The dimensionless
composite scaled sensitivities of
DBSE with response to change in
climate variable in a MLP-ANN
model and b RBF-ANN model

Fig. 9 Linear regression between
the measured and predicted
DBSE for a training set and b
testing set
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the sunshine hours (Rn) and the wind speed was the least. In
response to the increase in Rn by + 20%, the percent change in
seasonal ETc was about 7%. A 20% increase in the wind speed
caused the seasonal ETc to increase by about 3%. The dimen-
sionless composite scaled sensitivities showed that the barley
ETc was less effective in the range of change in the value of all
variables from − 10 to 5%.

Figure 10b indicated the results of the sensitivity analysis
of barley ETc obtained by RBF-ANN model for each of the
inputs. In this model, the curves showed a different pattern
compared with MLP-ANN. The most sensitive variable for
ETc was the sunshine hours (Rn) followed closely by decreas-
ing values of variables by higher than 10%.When the average
humidity was decreased higher than 10%, it becomes the most
sensitive variable. The wind speed was the least sensitive var-
iable for ETc in all levels of changes. In response to the in-
crease in Rn by + 20%, the percent change in seasonal ETc
was about 7% and a 20% increase in wind speed caused the
seasonal ETc to increase by about 3%. The ETc showed less
change by the dimensionless composite scaled sensitivity
analysis in the range of change values for all variables from
− 10 to 10%.

4 Conclusions

The barley standard ETc was measured by two weighing ly-
simeters in a semi-arid region. The highest barley ETc oc-
curred between 172–183 DAFI, with an average of 9.5 mm
day−1 and the seasonal ETc of 689 mm. This information
would be used by stockholders to optimize cropping pattern
based on the supply of water resources as well as managing
deficit irrigation.

In this study, the potential of the artificial neural network
with two kinds of the multi-layer perceptron and the radial
basic function and Penman–Monteith models for estimating
DBSE using climatological data have been investigated.
Although all approaches have acceptable accuracy, the
ANNs is more applicable due to its need for fewer variables.

Results of sensitivity analysis showed that in the multi-
layer perceptron, barley ETc was more sensitive to sunshine

hours and less sensitive to wind speed and the radial basic
function was more sensitive to sunshine hours (Rn). In con-
trast, when Rn was decreased more than 10%, ETc was more
sensitive to average humidity.

It was found that Rn was an important factor in input data
of networks for estimating barley ETc; therefore, it was very
important for decision making to find the best methods and
technologies to improve the estimation of ETc.
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