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Abstract
Understanding the trend characteristics of design rainstorm and spatial heterogeneity of extreme precipitation is of
great importance to reduce disasters induced by rare extreme precipitation. Using a high-resolution (0.5° × 0.5°) daily
gridded data set of precipitation across mainland China from 1961 to 2013, this study investigated the historical
changing trend and spatial heterogeneity of design rainstorm using the 30-year moving window method (30YM).
Differences in the quantification of the design rainstorm were compared for the use of the 30YM and the 30-year-
based increasing window method (30YBI). The results show that a significant increasing intensity but no spatially
uniform trend of design rainstorm can be observed across mainland China based on the 30YM analysis. The south,
east, and northeast China mainly showed an increasing trend, but the southwest and north China presented a
decreasing trend. The spatial heterogeneity of the design rainstorm was greatly enhanced if the nonstationarity
assumption was adopted on the national scale. The heterogeneity showed an increasing trend mainly in southeast,
north, northeast, and northwest China, and a decreasing trend in southwest and west China, indicating significant
regional variation in spatial heterogeneity. For most areas of mainland China, especially for southeastern, northeast-
ern, and western China, use of the most recent precipitation sub-series to quantify the design rainstorm may weaken
the potential nonstationarity and guarantee the safety of infrastructure in these areas where design rainfall increases.

Highlight
1. Obtain a design rainstorm value using a 30-year moving window
2. Investigate the changing trend of design rainstorm across
mainland China
3. Explore the spatial heterogeneity trend of design rainstorm across
mainland China
4. Discuss the difference of design rainstorm from different amounts
of rainfall data.
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1 Introduction

Extreme weather and climate events have happened frequent-
ly in recent decades due to the changes of global warming,
which is now one of the greatest threats to humans (Meehl
et al. 2000; IPCC 2007, 2012; Stocker et al. 2013; Wang et al.
2017b; 2018a, b). Among these extreme weather and climate
events, extreme precipitation is a common meteorological di-
saster with great potential harm that can also serve as a major
trigger of many natural disasters, such as flash floods, urban
waterlogging, landslides, and debris flow (Goswami et al.
2006; Parmesan 2006; Kendon et al. 2014; Wang et al.
2015; Yin et al. 2015; Fischer and Knutti 2016; Lai et al.
2016; Bao et al. 2017; Stennett-Brown et al. 2017). Many
studies have indicated that both the frequency and intensity
of extreme precipitation events in recent decades are
exhibiting an increasing trend in most regions, including
two-thirds of data-covered parts of Northern Hemisphere land
areas (Min et al. 2011), southern Africa (Pinto et al. 2016),
south-east Australia (Evans et al. 2017), and even areas where
the mean (or total) precipitation showed a decreasing trend
(Sillmann et al. 2017; Donat et al. 2017). The annual maxi-
mum daily precipitation in most of the above regions is ex-
pected to increase in the future (Rashid et al. 2016; Pinto et al.
2016; Evans et al. 2017), potentially due to human-induced
climate change (Zhang et al. 2007; Westra et al. 2013;
Ummenhofer and Meehl 2017). Thus, the variation character-
istic of this meteorological disaster requires further attention.

The study of nonstationarity and spatial heterogeneity is a
research priority in current efforts to understand extreme pre-
cipitation (Milly et al. 2008; Knutson et al. 2010; Ghosh et al.
2012; Burt et al. 2016; Son et al. 2017; Um et al. 2017). For
the nonstationarity problem, it is generally thought that cli-
mate change and human activities disturbed the precipitation
series (Du et al. 2015; Gu et al. 2016; Sraj et al. 2016;
Cancelliere 2017; Gu et al. 2017a, b; Sun et al. 2017a). In this
model, climate change and human activities have changed the
atmospheric circulation and then altered the spatial-temporal
characteristics of rainfall. The design rainstorm value may be
underestimated if we adopt the stationarity assumption for a
series (i.e., directly using the complete time series), especially
for regions exhibiting increasing frequency and intensity of
extreme precipitation (Lima et al. 2016; Singh et al. 2016;
Zhang et al. 2017; So et al. 2017). There may be significant
problems if the design rainstorm value fails to satisfy the ex-
pected standard, potentially resulting in disaster in new hy-
draulic engineering projects (e.g., dam break and levee fail-
ure). The safety of old hydraulic engineering structures may
also decrease with time due to two reasons: (1) the so-called
design standard based on a relatively short time series would
decrease as the series length increases with more extreme
values added to the series, and (2) with time, the stationarity
of the series may be disturbed, mainly indicated by differences

in the new series that the old series used to calculate the initial
design standard for the hydraulic engineering project; these
differences may be due to climate change and human activi-
ties. As an example, a dam may be constructed based on the
flood control standard of a 100-year return period. However,
after many years, the standard may become only an 80-year
return period or an even shorter length of time to consider the
above factors, and in this new analysis, the dam safety may
greatly decrease. Accordingly, understanding the difference
between the calculations of design rainstorm under
nonstationarity and stationarity hypothesis is of great
importance.

The spatial characteristics of extreme precipitation are
usually different due to various geographical and climatic
factors, especially for large regions or countries (e.g.,
USA, China, and India) featuring obviously different geo-
graphic and climate characteristics, presenting an obvious
spatial heterogeneity problem (Ghosh et al. 2012; Choi
et al. 2014; Liu et al. 2015; Singh and Goyal 2016; Sun
et al. 2017b). To facilitate calculation under these condi-
tions, the design rainstorm typically applies the same meth-
od throughout a region considered a homogeneous region
(e.g., an administrative region, such as a city or even a
country), ignoring any spatial heterogeneity of the design
rainstorm. Hence, even if we have considered the influence
of nonstationarity and series length, the actual standard
may also be lower than the expected design standard in
some local regions because the uniform design standard
may not be completely appropriate to regions with spatial-
ly different precipitation characteristics. Therefore, spatial
heterogeneity is another significant factor which can be
used to calculate the appropriate design standard value,
and understanding the trend of spatial heterogeneity can
help to adjust measures in determining design rainstorm
value, formulating water resource management, and
preventing and mitigating disaster (Liu et al. 2014).

In mainland China, many cities have suffered disasters
induced by extreme precipitation, causing huge economic
losses, and casualties (Hu et al. 1998; Zong and Chen
2000; Wong and Zhao 2001; Cong et al. 2009; Zhang
et al. 2013; Liu et al. 2015). For example, in 2012,
Beijing city suffered the heaviest rainstorm (local areas
reached the 500-year return period) and floods in the pre-
vious 61 years, causing submersion of 16,000 km2 and
more than 11.6 billion Yuan (equal to 1.8 billion dollars)
in losses, and affecting 1.9 million people, with 79 deaths.
In 2016, the rainfall depth in Wuhan city reached
315.8 mm from June 30 to July 2, one-third of the total
annual rainfall, causing more than 30 deaths (Dai et al.
2017). Considering the seriousness of the disasters (e.g.,
floods, waterlogging, and landslides) that are related to
rare extreme precipitation, there has been increased atten-
tion focused on the recent extreme precipitation in
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mainland China. However, most of these studies examined
the spatial-temporal variation and patterns, and disaster
risk induced by extreme precipitation (You et al. 2011;
Zhang et al. 2011a; Wang et al. 2013; Zhou et al. 2014;
Yin et al. 2015; Wu and Huang 2015; Sun and Zhang 2017;
Wang et al. 2017a; Gao et al . 2017). Studies of
nonstationarity and spatial heterogeneity of extreme pre-
cipitation have been limited, and the spatial heterogeneity
trend of the design rainstorm based on the nonstationary
assumption and the continuous difference between the
changing trend of the design rainstorm based on
nonstationarity and stationarity assumptions remain poorly
understood. A better understanding of these two concepts
may allow China to better prepare for and defend against
disasters induced by extreme precipitation.

Therefore, the objectives of this study were to (1) investi-
gate the historical changing trend and spatial heterogeneity of
the design rainstorm across mainland China with focus on the
effect of potential nonstationarity and (2) explore the contin-
uous difference of the changing trend of the design rainstorm
based on nonstationary and stationary assumptions to calcu-
late design rainstorm values. The results of this work should
allow determination of the changing characteristic and law of
extreme precipitation, providing great scientific and practical
merits for hydraulic engineering construction, water resource
and security management, and flood hazard prevention and
reduction.

2 Data and methodology

2.1 Data

In this study, we used a high-resolution (0.5° × 0.5°) gridded
daily precipitation data set (GPD) gathered from 2474 rain
gauge stations distributed in mainland China from 1961 to
2013. Released by the National Meteorological Information
Centre (NMIC) (NMIC, http://cdc.nmic.cn/home.do), this
GPD data set has been validated so that each of the gridded
box series is highly correlated with the original observational
series with a small error and can therefore be used to
characterize precipitation variability (NMIC 2012). Many
studies have rigorously calibrated the data set, and the data
have been verified to exhibit good applicability and rationality
(Ren et al. 2015; Wu et al. 2016; Wang et al. 2017c; Lai et al.
2019). As shown in Fig. 1, there are a total of 3825 grid points
across mainland China, and an individual grid point is the
basic research unit of this study. Additionally, in our earlier
research (Wang et al. 2017c), mainland China was divided
into 50 homogeneous regions according to both the character-
istics of mean annual precipitation and location indices using a
fuzzy c-means method. This study applied the same 50 homo-
geneous regions to extend this research.

2.2 Extreme precipitation indices

Currently, there are three main kinds of methods to define
extreme precipitation indices (Alexander et al. 2006; Zhang
et al. 2011b): (a) precipitation exceeds a fixed threshold, such
as if the daily precipitation exceeds 25 mm (Wu et al. 2016);
(b) precipitation exceeds a variable threshold, for example, the
95th or 99th percentile (Bonsal et al. 2001); and (c) there is
maximum precipitation within a specified period, such as
yearly maximum consecutive 1-day (RX1DAY) or 5-day
(RX5DAY) precipitation (Min et al. 2011).

This study used the design value of extreme precipitation
(i.e., the design rainstorm value) to illustrate the spatial-
temporal variance trend of extreme precipitation. The design
rainstorm value was calculated by fitting an extreme value
distribution function (e.g., generalized extreme value (GEV))
and computing a certain return period (such as a 100-year
return period) value based on RX1DAY or RX5DAY series.
This value is considered as an excellent indicator to measure
precipitation extremes (Cooley et al. 2007; Pall et al. 2007).
The two indices (RX1DAYand RX5DAY) are widely adopted
in the design of water conservancy projects, with years of
application worldwide (Min et al. 2011). These indices can
better characterize extreme events and are widely utilized to
estimate the extreme precipitation of a certain return period
(such as 100-year return level values). In this study, the design
rainstorm values (20-, 50-, and 100-year return periods) were
generated by fitting the GEV distribution with the RX1DAY
or RX5DAY series data.

2.3 Design rainstorm trend analysis

2.3.1 GEV

The GEV distribution is based on extreme value theory and
block maxima theory with three parameters, and is widely
adopted to quantify the intensity and frequency of extreme
precipitation. Compared to other distributions, it is more ap-
propriate to estimate precipitation frequency (Svensson and
Jones 2010). The distribution function of GEV is as follows:

F xð Þ ¼ exp − 1þ kzð Þ−1
k

h i
; k≠0

exp −exp zð Þ½ �; k ¼ 0

(
ð1Þ

where z ¼ x−μ
σ ; μ, σ, and k are the location, scale, and shape

parameters, respectively. The shape parameter k determines
whether the distribution has an upper bound. Specific GEV dis-
tributions are defined by the value of k. The Gumbel distribution
exists when k= 0, k < 0 implies a Frechet distribution, and k > 0
indicates a Weibull distribution (Asl et al. 2013).

In this study, the quantification of design rainstorm values
(e.g., 20-, 50-, and 100-year return periods) was based on the
annual maximum method and the GEV distribution. The
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annual maximummethod was used to extract the annual max-
imum precipitation series (AMP, such as the RX1DAY and
RX5DAY series) from the daily precipitation series. Then,
the GEV parameters were estimated by the AMP series with
the maximum likelihood estimation (MLE) method, allowing
different design rainstorm values to be calculated. This meth-
od of using AMP series data to calculate the design rainstorm
values is commonly applied to hydraulic engineering design
(Bonnin et al. 2004).

2.3.2 The 30-year moving window

The frequency analysis using GEV is based on the stationary
assumption, which means the AMP series used to estimate
GEV parameters is stationary (Chow et al. 1988). As de-
scribed above, the stationarity may be disturbed due to climate
change. Instead of using the whole AMP series to estimate the
GEV parameters as is done in most studies, some studies have
used a fixed-year moving windowmethod to address potential
nonstationary effects, such as a 30-year (Kao and Ganguly
2011; Ghosh et al. 2012) or 51-year (Kharin and Zwiers
2005) moving window method. The 30-year moving window
method (30YM) is more widely used to investigate historical
changing trends and spatial heterogeneity because it requires a
shorter time series. Additionally, the 30-year standard can
provide higher confidence for low-frequency extremes than
the 20-year standard previously proposed by the World
Climate Research Program’s (WCRP’s) Coupled Model
Intercomparison Project Phase 3 (CMIP3) (Kharin et al.
2007). Moreover, according to the World Meteorological
Organization (WMO) (http://www.wmo.int/pages/prog/wcp/

ccl/faqs.php), the classical period of climate is defined as
30 years. Therefore, considering the effects of potential
nonstationarity, we used 30YM to investigate the historical
continuous changing trend and the spatial variability trend of
the design rainstorm for mainland China from 1961 to 2013.

For a total of AMP series (i.e., RX1DAYand RX5DAY in
this study), X = {X1, X2,⋯Xi,…, Xn}(0 < i < n& i ∈ N+) ,
where n is the total length of the series, Xi is the AMP of the
ith year, and N+ represents the natural number set.

For 30YM, a total of (n−29) of AMP sub-series with a
fixed temporal length of 30 years can be obtained:

T1; T2; :::;T j:::;Tn−29
� �

0 < j < n−29& j∈Nþð Þ ð2Þ

where Tj can be expressed as

T j ¼ X j;X jþ1:::;X jþ29

� �
0 < j < n−29& j∈Nþð Þ ð3Þ

In this study, the total length of the series is 53 years (1961–
2013, n = 53) and the number of the sub-series in both 30YM
and 30YBI is 24 (i.e., n−29 = 24). The sub-series of Tj is
utilized to estimate the GEV parameters (i.e., μ, σ, and k)
based on the MLE method (a detailed estimation of GEV
parameters in 30YM and 30YBI is shown in Supplementary
File), and the return period value yTi related to a T-year return
period is calculated from the function of GEVaccording to Eq.
(1):

yTi ¼
u−

k
σ

1− −ln 1−
1

T

� �� �−k( )
; k≠0

u−σln −ln 1−
1

T

� �� �
; k ¼ 0

8>>><
>>>:

ð4Þ

Fig. 1 Spatial distribution of
3825 grid points and the 50
homogeneous regions across
mainland China. The Arabic
numerals in each region represent
the serial number of the
homogeneous region
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Based on 30YM, the design rainstorm value series of dif-
ferent return periods can then be arranged in chronological
order and can be described as

yT ¼ yT1 ; y
T
2 ; :::; y

T
n−29

� � ð5Þ

In addition to applying the 30YM, this study also created a
newmethod called the 30-year-based increasingwindowmethod
(30YBI) to analyze the differences between nonstationary and
stationary assumptions when calculating the design rainstorm
values and the continuously changing trends of extreme precip-
itation. The 30YBI, since 1990, differs from 30YM which al-
ways uses the most recent 30-year AMP series (ignoring the
AMP sub-series from more than 30 years ago). Instead, the
30YBI always adopts all available historical AMP series (from
1961 to that year) for each year. Details of 30YBI are presented
in the Supplementary File. According to the extreme value the-
ory, the series utilized to estimate GEV distribution should be in
accordance with the stationary assumption. Thus, 30YM indicat-
ed that the latest 30-year series is in accordance with the station-
ary assumption, and 30YBI indicated that the whole series was
stationary. Therefore, 30YM has weakened the influence of po-
tential nonstationarity to some degree.

2.3.3 Linear regression method

Linear regression is utilized to illustrate the temporal trend of
design rainstorm values and their spatial variance (i.e., quan-
tification of spatial heterogeneity) as calculated from GEV
estimation. The linear regression equation is as follows:

ŷ¼ âþ b̂x ð6Þ

b̂¼
∑
n

i¼1
xi−x

� 	
yi−y

� 	
∑
n

i¼1
xi−x

� 	2 ð7Þ

â¼ y−b̂x ð8Þ
where â is the intercept and b̂ represents the slope; x is the
independent variable (time) and y is the dependent variable
(precipitation depth or its spatial variance); xi represents the i

th

year and x is the arithmetic mean of xi; yi represents the pre-
cipitation depth of ith year and y is the arithmetic average of yi.

The temporal trend and spatial variance trend of the design
rainstorm based on the series (Eq. (5)) can be calculated ac-
cording to Eq. (7), and the slope can be expressed as

b̂T ¼
∑

n−29

j¼1
x j−x

� 	
yTj −yT

� 	

∑
n−29

j¼1
x j−x

� 	2
ð9Þ

2.4 Uncertainty analysis

The main sources of uncertainty of design rainstorm values
include the goodness of fit of the GEV distribution and the
uncertainty in the estimation of GEV parameters. For the
goodness-of-fit test for GEV distribution, this study adopted
the Kolmogorov-Smirnov (KS) test, and an empirical distri-
bution was considered fitted if the significance of the KS test
was lower than 1% (Kao and Ganguly 2011; Ghosh et al.
2012).

To study the uncertainty of estimated GEV parameters,
given the relatively limited number of samples from each
30YM window on each grid point, a 1000-member
bootstrapping method (Efron and Tibshirani 1994; Johnson
2001) was adopted. Among the 1000 members, bootstrapping
was performed by randomly sampling 30 times from each
30YM series with replacement. In this way, 1000 groups of
sub-series can be obtained and each sub-series includes 30
values. Next, each group of sub-series can be utilized to fit
the GEV distribution and the 1000 groups of values of the
design rainstorm and the GEV parameters can be finally ac-
quired. The uncertainty of the design rainstorm values based
on the 1000-member bootstrapping at each 30YM can be cal-
culated as

U ¼ R90−R10ð Þ
R50

� 100% ð10Þ

where U is the quantized value of uncertainty, where a bigger
value corresponds to greater uncertainty; R90, R10, and R50 are
the 90th, 10th, and 50th percentiles of the 1000 groups of
design rainstorm values, respectively.

3 Results and analysis

3.1 Trend analysis of AMP based on the 30-year
moving average

Based on the 53-year AMP (RX1DAYand RX5DAY) series,
the successive 30-year moving average trend and 30-year
moving variance trend of mainland China were determined
and are shown in Fig. 2. Both the trend lines and their 95%
confidence bounds of the 30-year moving average (Fig. 2 a
and c) and 30-year moving temporal variance (Fig. 2 b and d)
show an increasing trend for both the RX1DAYand RX5DAY
data. In detail, the trend line shows that the 30-year moving
average values increased about 0.48 mm/decade (RX1DAY)
or 0.55 mm/decade (RX5DAY) over recent decades. These
significant growing trends indicate significantly intensified
extreme precipitation and enhanced interannual difference
for mainland China during 1961–2013. Similar temporal
trends of extreme precipitation were also reported in a related
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study conducted by Sun et al. (2017b), supporting the ratio-
nality of these results. However, whether the intensified AMP
together with the increasing interannual difference suggests
that the design rainstorm has changed requires further inves-
tigation by exploring the changing trend and spatial heteroge-
neity of the design rainstorm.

3.2 Variation of design rainstorm on the national
and gridded scale

The temporal trend of the design rainstorm values (20-, 50-,
and 100-year period) for each grid point is shown in Fig. 3 and
Fig. S1. The temporal trend of the design rainstorm values
showed no spatially uniform or coherent trends in 30YM.
However, some grid points with the same positive or negative
trend implied occasional spatial coherence (especially for the
RX5DAY data). Specifically, in southeast and northeast
China, the majority of grid points showed increasing trends
with high growth rates, other increasing trends with lower
growth rates were mainly distributed in the west and north-
west China, and the grid points with rapid decreasing trends
were mainly found in southwest and central China, as well as
the southern coastal area.

According to the statistical percentage of the design rain-
storm trend over all grid points (Fig. 4), approximately 75% of
the grid points showed significant trends (including significant
increasing or decreasing trend, at the 5% significance level).
Among the grid points across mainland China, the significant
increasing trends were dominant (more than 40%), and ap-
proximately one-third of grid points presented significant de-
creasing trends. Although their spatial distributions presented
diverse characteristics, most grid points of mainland China
showed statistically significant trends with homogeneity ob-
served in local regions (e.g., southeast, northeast, and south-
west China).

The temporal trends of the national scale design rainstorm
values based on 30YM are shown in Fig. 5 and Fig. S2. The
trend of the 30YM design rainstorm values and their spatial
variance both were significantly increasing (5% significance
level). In detail, the trend lines show that the design rainstorm
values increased about 0.84–1.25 mm/decade (20-, 50-, and
100-year return periods of RX1DAY) and 1.52–2.82 mm/de-
cade (20-, 50-, and 100-year return periods of RX5DAY) over
the 24 years. Due to the neutralization of increasing and de-
creasing trends, these changes seem somewhat negligible at
the national average level, but the trends in many grid points

(a) 30-year moving average of RX1DAY (b) 30-year moving variance of RX1DAY 

(c) 30-year moving average of RX5DAY (d) 30-year moving variance of RX5DAY 

Fig. 2 The successive 30-year
moving average trend and 30-year
moving variance trend of main-
land China. The bold solid
straight lines are the trend lines;
the fuzzy solid straight lines are
their bounds (5% significance
level); kmean, kup, and klow repre-
sent the slope of trend lines, upper
bounds, and lower bounds, re-
spectively; similarly hereinafter
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with high nonstationarity show even more than 3–8 mm/de-
cade (20-, 50-, and 100-year return periods of RX1DAY) and
5–10 mm/decade (20-, 50-, and 100-year return periods of
RX5DAY). The significant growing trends suggest that sig-
nificantly intensified design rainstorm and enhanced spatial
heterogeneity can be observed, indicating that the increasing
risk of suffering heavy extreme rainfall, flooding, and drought
events may show geographic diversity across mainland China.

3.3 Spatial heterogeneity of the design rainstorm
on the regional scale

The 30YM spatial (regional) variance trends of design rainstorm
values in different homogeneous regions (Wang et al. 2017c)
were determined and are shown in Fig. 6 and Supplementary
File (Fig. S3 and Table S1). Other than a few regions showing

no statistically significant trend, most regions presented either a
positive or negative trend (5% significance level).

Generally, more regions showed a positive trend (especial-
ly for RX1DAY) than negative ones, which is similar to the
results of Fig. 5 and Fig. S2. Regions in the southeast, north-
east, and northwest China were mainly dominated by a posi-
tive trend, suggesting enhanced spatial heterogeneity over the
last decades, and regions in southwest and western China
mainly showed a negative trend, indicating decreasing spatial
heterogeneity. Some regions (e.g., regions 37 and 26) present-
ed significantly increasing intensity and spatial variance, and
these changes may cause more extreme rainfall depth.
Decreasing intensity and spatial variance were significantly
observed in local regions (e.g., region 20), implying lower
flooding risk and fewer impacted areas. Some regions (e.g.,
region 38) exhibited increasing intensity but decreasing spatial

Fig. 4 Statistical percentages
(95%) of 30YM temporal trends
of design rainstorm in 5%
significance level

Fig. 3 Spatial distribution of 30YM temporal trends of design rainstorm (20-year return period) on gridded scale. Black solid dots represent the grid
points that fail to pass the 5% significance test
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variance, which may lead to heavy droughts or flood disasters
becoming more homogenously widespread (Liu et al. 2015).

Accordingly, we can see that not only the intensity of ex-
treme precipitation but also the spatial variation can directly
influence the determination of the design rainstorm standard.
Ignoring spatial variation and the use of a single design stan-
dard may not be appropriate for some particular sub-regions
located within a homogeneous region. Overall, spatial

variation is a significant concern even in some homogeneous
regions where the intensity and spatial heterogeneity of ex-
treme precipitation show obviously enhanced trends.

3.4 Uncertainty analysis for design rainstorm values

A total of 1000 bootstrapping iterations were conducted
for each 30-year window to explore the uncertainties and

(a) RX1DAY 

(b) RX5DAY 

Fig. 5 Temporal trends and
spatial variance trends of design
rainstorm (20-year return period)
on a national scale

Fig. 6 Spatial distribution of 30YM spatial variance trends of design rainstorm (20-year return period) on a regional scale. The regions failing to pass the
5% significance test are labeled by the bold polylines
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their spatial distribution of design rainstorm values
across mainland China. This study utilized three repre-
sentative 30-year windows (i.e., 20-, 50-, and 100-year
return periods) to analyze the spatial distribution of un-
certainty, and the results are shown in Fig. 7 and the
Supplementary File (Fig. S7, Fig. S8, and Fig. S9).
Generally, the quantized values of uncertainty (the U
values) of the three return periods posed similar spatial
distribution characteristics. The U values in northwest
China were generally larger than the values of other re-
gions, and the smallest U values were generally detected
in southwest regions, implying an increasing trend from
south to northwest China. Taking the 20-year return pe-
riod as an example (Fig. 7 and Fig. S7), the U values in
most grid points were less than 30% (especially in south-
west and southern China). However, the grid points with
large U values were mainly concentrated in northwest
China, and most U values exceeded 50%. In addition,
we found that the U values showed an increasing trend
as the return period increased from a 20-year to 100-year
period, similar to the findings of Zhu et al. (2016).

In most of China, it is reasonable to use the GEV dis-
tribution in frequency analysis and to calculate design
rainstorm values with large return periods (i.e., 20-, 50,
and 100-year in this study) based on AMP series generat-
ed by the annual maximum method. However, calculating
large return periods of design rainstorm results in great
uncertainties for all of mainland China, especially in
northwest China where much greater uncertainties will
occur even if a small return period was calculated. This
phenomenon can likely be explained by two factors: the
AMP values in northwest China are relatively small, and
the AMP series for the 30-year analysis may not be suf-
ficiently long for the high return period. Accordingly, the
uncertainty analysis method including 1000 bootstrapping
iterations can identify potential uncertainty.

4 Discussion

4.1 Comparison of results with those from other
studies

We observed significantly increasing intensity and an increas-
ing spatial heterogeneity trend of the design rainstorm on a
national scale. Additionally, even in geographically neighbor-
ing regions and grid points (Fig. 3, Fig. S1, Fig. 6, and Fig.
S3), the spatial distribution of temporal trend showed no sta-
tistically significant spatial uniformity, although occasional
spatial coherence was observed. Generally, the increasing
trends of intensity and spatial heterogeneity of the design rain-
storm were significant across mainland China. These charac-
teristics are similar to those of another large country, India,
which lacks uniform trends and exhibits increasing spatial
variability (Ghosh et al. 2012), suggesting that the spatial
characteristic of heterogeneity of extreme precipitation may
be more obvious in larger countries.

We looked at southwest China (SW, including Yunnan,
Guangxi, and Guizhou provinces) to further verify the reason-
ability of these results. The spatial distribution of the 30YM
temporal trend of intensity (e.g., 100-year return period of
RX5DAY) was determined and is shown in Fig. S4.
Obviously, except a few scattered grid points, nearly all the grid
points exhibited a significant trend. The southwest of Yunnan
and the northeast and southwest of Guangxi were more likely
to exhibit a significant increasing trend, meaning increased inten-
sity and frequency of extreme precipitation in these areas in
recent decades. Significant decreasing trends were widespread
in the middle and north parts of the SW, indicating decreased
intensity and frequency of extreme precipitation during 1961–
2013. Generally, this spatial distribution of changing trend in
southwest China was extremely similar to the findings reported
by Liu et al. (2015), who found that atmospheric circulations led
to such characteristics of extreme precipitation.

Fig. 7 Spatial distribution of U values (20-year return period) in the first (1961–1990) 30-year window
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4.2 Spatial distribution of design rainstorm trend
based on 30YBI

The spatial distribution of 30YBI temporal trends of design
rainstorm across mainland China is shown in Fig. 8 and Fig.
S5, and the statistical percentages of 30YBI temporal trends
are summarized in Fig. S6.

Figure 8 and Fig. S5 show that the spatial distribution of the
30YBI temporal trends showed no statistically significant spa-
tial uniformity. In detail, in the south, east, and northeast
China, increasing trends are more likely to be observed, mean-
ing that intensified design rainstorm appeared based on the
stationarity assumption. An obvious decreasing trend can be
mainly observed in southwest and north China, indicating that
the design rainstorm shows a decreasing trend based on the
stationarity assumption. These spatial distribution characteris-
tics were extremely similar to those for 30YM, but with small-
er absolute values of the maximal and minimal trends in
30YBI than those in 30YM, suggesting that the 30YBI meth-
od somewhat underestimates the impact of nonstationarity.

According to the statistical percentage of design rainstorm
trend in 30YBI (Fig. S6), a majority of grid points (more than
75% grid points) showed significant trends (at the 5% signif-
icance level). The percentage with significant increasing trend
became approximately equal to that with decreasing trend,
which indicates that some grid points showed an increasing
trend in 30YM but showed a decreasing trend in 30YBI.
Overall, it is adverse to the accurate and effective design of
water conservancy projects to underestimate nonstationarity.

4.3 Calculation differences of design rainstorm values
by applying stationarity and nonstationarity
assumptions

To further analyze the difference in the calculation of design
rainstorm values based on nonstationarity and stationarity

assumptions, all the grid points in mainland China were divid-
ed into six classes according to the given standard (Fig. 9).
The spatial distributions for the classes are displayed in Fig. 10
and Fig. S10.

According to the data presented in Fig. 9, Fig. 10, and Fig.
S10, over 85% of the grid points (involving four classes)
showed similar characteristics both in 30YM and 30YBI,
and can be classified as |30YM+|>|30YBI+|, |30YM+
|<|30YBI+|, |30YM−|>|30YBI−|, and |30YM−|<|30YBI−|.
However, the grid points in the four classes have a common
feature in that the absolute values of trends in 30YM were
generally larger than those in 30YBI, which may be because
the percentage of |30YM+|>|30YBI+| (over 40%) was much
larger than that of |30YM+|<|30YBI+| (less than 6%), and the
percentage of |30YM−|>|30YBI−| (over 30%) was also much
larger than that of |30YM−|<|30YBI−| (approximately 8%).
The remaining two classes (i.e., (30YM+) and (30YBI−),
(30YM−) and (30YBI+)) were approximately 15% or lower,
and showed opposite trends between 30YM and 30YBI. This
means that the difference (the absolute value of 30YM and
30YBI) of the design rainstorm values based on
nonstationarity and stationarity assumptions may increase
year by year.

For water conservancy project design based on historical
rainfall data, if the actual design rainstorm values underesti-
mate the impacts of historical nonstationarity and are lower
than the expected design rainstorm values, there may be an
increased risk of heavy extreme flood events. In particular, the
three classes (i.e., |30YM+|>|30YBI+|, |30YM−|<|30YBI−|,
and (30YM+) and (30YBI−)) should be carefully considered
because they would become more dangerous with time. For
the class |30YM+|>|30YBI+| (over 40%), the absolute value
of the increasing trend based on the stationarity assumption
was lower than that based on the nonstationarity assumption,
causing underestimation of the design rainstorm. For the class
|30YM−|<|30YBI−| (approximately 8%), although the points

Fig. 8 Spatial distribution of 30YBI temporal trends of design rainstorm (20-year return period) on a gridded scale. The black solid dots represent the
grid points without passing the 5% significance test
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in both 30YM and 30YBI presented decreasing trends, the
decreasing trend based on the stationarity assumption was
more significant than that based on the nonstationarity as-
sumption, leading to a larger reduction and the underestima-
tion of the design rainstorm in 30YBI. For the class (30YM+)
and (30YBI−) (approximately 8~10%), unlike the increasing
trend based on the nonstationarity assumption, there was a
decreasing trend based on the stationarity assumption, which
may underestimate the design rainstorm. Overall, the design
rainstorm of approximately 57% grid points may be
underestimated in 30YBI (stationarity assumption), and these

grid points were mainly distributed in southeastern, northeast-
ern, and western China (Fig. 10 and Fig. S10).

From the 50 homogeneous regions (Fig. 1), we can exam-
ine region 12 (northeast of mainland China) as an example.
The design rainstorm values of the 20-, 50-, and 100-year
return periods (RX1DAY) in the first 30YM and 30YBI win-
dow (the first 30-year window) were 59.3, 68.3, and 75.2 mm,
respectively, and the design storm values based on the last
30YM window were 71.6, 91.4, and 109.3 mm, respectively.
The results of 30YM were significantly larger than those of
30YBI (65.4 mm, 79.3 mm, and 90.8 mm), and the increase

Fig. 9 Statistical percentage of temporal trend of different classes.
According to the positive or negative of temporal trend in both 30YM
and 30YBI methods, all the grid points are divided into six classes: (1)
grid points showed increasing trend in both 30YM and 30YBI method
while the absolute value of 30YM trend was larger (i.e., |30YM+
|>|30YBI+|); (2) grid points showed increasing trend in both 30YM and
30YBI while the absolute value of 30YBI trend was larger (i.e., |30YM+
|<|30YBI+|); (3) grid points showed decreasing trend in both 30YM and

30YBI while the absolute value of 30YM trend was larger (i.e., |30YM
−|>|30YBI−|); (4) grid points showed decreasing trend in both 30YM and
30YBI while the absolute value of 30YBI trend was larger (i.e., |30YM
−|<|30YBI−|); (5) grid points showed increasing trend in 30YM but
showed decreasing trend in 30YBI (i.e., (30YM+) and (30YBI−)); (6)
grid points showed decreasing trend in 30YM but showed increasing
trend in 30YBI (i.e., (30YM−) and (30YBI+)). The symbols “+” and
“−” represent the increasing and decreasing trends, respectively

Fig. 10 Spatial distribution of temporal trend of design rainstorm (20-year return period) and classes
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rates respectively reached 9.4%, 15.3%, and 20.4%. Sub-
regions 8, 50, and 7 had increasing rates that were more than
6% (20-year), 8% (50-year), and 10% (100-year). In terms of
the capability to limit the effects of rare extreme precipitation
events, the infrastructure of water conservancy projects de-
signed during 1961–2013 may not be sufficient in these
regions.

Accordingly, for regions with significant increasing trends,
the use of the entire precipitation series to determine the design
of hydraulic engineering may cause the actual design standard to
be lower than the expected design standard. However, if the
increasing historical trend continues in the future, the capability
of old infrastructure to resist rare extreme precipitation events
would also decrease year by year. For these structures (e.g., key
water control projects), the regional precision of real-time predic-
tion for extreme precipitation and flooding events should be im-
proved, and the plans for reservoir regulation, river and lake
control, and water sources management should be optimized to
reduce the probability of floods induced by the ultra-expected
extreme precipitation events.

Given the differences between using the most recent precipi-
tation sub-series and using the entire precipitation series, we can
see that the use of the most recent sub-series (e.g., 30YM) to
compute the design rainstorm values may decrease the potential
nonstationarity problem more than the use of the entire precipi-
tation series (e.g., 30YBI), especially in regions that exhibit in-
creasing trends of intensity and frequency of extreme precipita-
tion. Accordingly, it may imply that the method that uses the
most recent sub-series (e.g., 30YM) to calculate the design rain-
storm values in southeastern, northeastern, and western China
may better guarantee the safety of infrastructure.

5 Conclusions

This study investigated the historical changing trends and spa-
tial heterogeneity of the design rainstorm with a focus on the
effects of potential nonstationarity and stationarity assump-
tions. The conclusions can be summarized as follows:

(a) For the changing trend of the design rainstorm in 30YM,
a significant increasing intensity of the design rainstorm
can be detected on the national scale. For the gridded and
regional scale, the distribution of the design rainstorm
changing trend showed no spatial uniformity: the south,
east, and northeast parts of China are dominated by a
significant intensified trend and the southwest and north
parts of China showed a decreasing trend. Additionally,
the calculation of the design rainstorm value in northwest
China showed large uncertainty. Generally, the calcula-
tion of the design rainstorm value presented large uncer-
tainty across mainland China when utilizing a large re-
turn period of the design rainstorm.

(b) In 30YM, the spatial variance trend showed a significant
increasing trend on the national scale, indicating an in-
creasing spatial heterogeneity of the design rainstorm.
On the regional scale, southeast, north, northeast, and
northwest China mainly presented an increasing trend
and southwest and west China showed a decreasing
trend, indicating that spatial heterogeneity has great re-
gional differentiation. This heterogeneity should be con-
sidered when designing the infrastructure of a water con-
servancy project, formulating water resource manage-
ment policies, and preventing and mitigating disaster.

(c) The spatial distribution of temporal trends in 30YBI
showed similar characteristics to that in 30YM, but the
design rainstorm values in 30YBI somewhat
underestimated the impacts of nonstationarity.
Adopting the design rainstorm value calculated by the
most recent precipitation sub-series data (e.g., 30YM)
would be a more reasonable strategy for most areas of
mainland China, especially in southeastern, northeastern,
and western China.
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