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Abstract
The stepwise regression model (SRM) is a widely used statistical downscaling method that could be used to establish a statistical
relationship between observed precipitation and predictors. However, the SRM cannot reflect the contributions of predictors to
precipitation reasonably, which may not be the best model based on several possible competing predictors. Bayesian model
averaging (BMA) is a standard inferencing approach that considers multiple competing statistical models. The BMA infers
precipitation predictions by weighing individual predictors based on their probabilistic likelihood measures over the training
period, with the better-performing predictions receiving higher weights than the worse-performing ones. Furthermore, the BMA
provides a more reliable description of all the predictors than the SRM, leading to a sharper and better calibrated probability
density function (PDF) for the probabilistic predictions. In this study, monthly precipitation at fifteen meteorological stations over
the period of 1971–2012 in the Heihe River basin (HRB), which is located in an arid area of Northwest China, was simulated
using the Bayesian model averaging (BMA) and the stepwise regression model (SRM), which was then compared with the
observed datasets (OBS). The results showed that the BMA produced more accurate results than the SRM when used to
statistically downscale large-scale variables. The multiyear mean precipitation results for twelve of the fifteen meteorological
stations that were simulated by the BMAwere better than those simulated by the SRM. The RMSE and MAE of the BMA for
each station were lower than those of the SRM. The BMA had a lower mean RMSE (− 13.93%) and mean MAE (− 14.37%)
compared with the SRM. The BMA could reduce the RMSEs and MAEs of precipitation and improve the correlation coefficient
effectively. This indicates that the monthly precipitation simulated by the BMA has better consistency with the observed values.

1 Introduction

Statistical downscaling techniques are important to sim-
ulate future climate scenarios at the regional scale, as it
establishes statistical relationships between the outputs of
large-scale GCMs or reanalysis data (predictors) and
local-scale meteorological variables (predictands) to ob-
tain future predictands from predictors based on these
relationships (Spak 2007). Statistical downscaling can

be classified into three approaches: regression methods
(Kim et al. 1984; von Storch et al. 1993; Maraun et al.
2011), weather-type approaches (Hay et al. 1991; Vrac
and Naveau 2007; Cheng et al. 2011; Osca et al. 2013),
and stochastic weather generators (Wilby and Wigley
1997; Murphy 1999; Fatichi et al. 2011, 2013). Several
statistical downscaling methods have been applied to
simulate precipitation at the basin scale in many foreign
countries. Campozano et al. (2016) used the statistical
downscaling model (SDSM), artificial neural network
(ANN), and the least squares support vector machine
(LS-SVM) approaches to simulate monthly precipitation
in the Paute River basin in southern Ecuador. The clas-
sification and regression tree (CART) method was used
to simulate precipitation in the Mahanadi River basin in
India (Kannan and Ghosh 2010). Singh et al. (2015)
simulated precipitation in the Tapi basin in India using
the kernel-regression (KR) method. In China, there are
also a large number of studies focused on simulating
precipitation at the basin scale. Liu et al. (2016) com-
pared the simulated precipitation of the Hanjiang River
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basin using the support vector machine (SVM), weather
generators (WGs), and the statistical downscaling model
(SDSM) and assembled these models based on BMA.
Wang et al. (2015) used empirical statistical downscaling
methods to simulate the daily precipitation of the Huaihe
River basin. Huang et al. (2012) applied the statistical
downscaling model (SDSM) to simulate extreme precip-
itation in the Yangtze River basin. However, the statisti-
cal downscaling technique has scarcely been applied to
simulate precipitation at the basin scale in arid areas. Liu
et al. (2016) evaluated the nonhomogeneous hidden
Markov model (NHMM) and the statistical downscaling
model (SDSM) for daily precipitation in the Tarim River
basin, which is located in an arid area of Northwest
China. Research on statistically downscaled precipitation
in the Heihe River basin (HRB) is also being conducted.

The HRB, which is located in an arid area of Northwest
China, is the second largest inland river region in China. A
shortage of water resources leads to ecological deterioration
and restricts the economic development of the HRB; thus,
water resources have become the core of research on the
HRB (Lan et al. 2005). As the main source of water resources
for this area, future precipitation in the HRB has become a
problem of concern. There are only 19meteorological stations
in the HRB, and they are unevenly distributed. Therefore, a
statistical downscaling technique is a necessary tool to obtain
precipitation data with high spatial and temporal resolutions.
Su et al. (2016) used the stepwise regressionmethod (SRM) as
a statistical downscaling method and a regional climate model
based on the regional integrated environmental model system
(RIEMS 2.0) as a dynamical downscaling model to simulate
rainy season precipitation over the period of 2003–2012 in the
HRB, and the results showed that the SRM could reasonably
simulate monthly precipitation. For statistical downscaling
methods, the stepwise regression model (SRM) is a widely
used statistical downscaling method (Huth 1999; Wilby
et al. 1999) that is powerful in simulating precipitation at the
regional scale, in which some predictors (e.g., sea level pres-
sure, geopotential height, and specific humidity) that highly
influence local precipitation are selected to establish linear
relationships with precipitation data from meteorological ob-
servation stations. However, information from other predic-
tors that influence local precipitation are ignored in this statis-
tical model. Even more crucially, we do not know the contri-
butions of each predictor to precipitation, whichmaymake the
SRM unstable. In a previous study, biases in the SRM for
some stations were larger than 50%, and the correlation be-
tween the simulations and observed datasets for some stations
is not significant, which illustrates that the linear regression
model applied to this region should be improved.

To achieve this goal, Bayesian model averaging (BMA), a
standard inference approach using multiple competing statis-
tical models, was proposed for postprocessing of the SRM.

The BMA has been widely applied to research in social and
health sciences. Viallefont et al. (2001), Raftery and Zheng
(2003), Raftery et al. (2005) and Duan et al. (2007) extended
the BMA to the study of multimodel ensembles. Recently,
Zhang and Yan (2015) applied the BMA to the study of sta-
tistical downscaling to simulate monthly precipitation in
China, and the results showed that the BMA obtained better
results than the linear regression method. The BMA assigns a
weight to each predictor, which reflects the degree of influ-
ence of that predictor on precipitation during the training pe-
riod. The SRM was calibrated by assigning higher weights to
the better-performing predictors instead of the worse-
performing predictors. Thus, the precipitation simulated by
the BMA is the weighted average of predictors.

In this study, monthly precipitation over the period of
1971–2012 at 15 meteorological stations around the HRB
was simulated using the SRM and BMA and then compared
with the observed datasets (OBS). The main goal was to sys-
tematically compare the skill of the BMA with that of the
SRM to simulate monthly precipitation at the basin scale in
arid areas of Northwest China.

2 Datasets and methods

2.1 Predictor selection and observed datasets

The HRB is located at 98–101.5° E, 38–42° N, with a drain-
age area of approximately 290,000 km2 and a total length of
approximately 810 km (Fig. 1).Monthly precipitation from 15
meteorological observation stations in the HRB (Table 1) was
used to establish statistical models for the period 1971–2012,
and data were obtained from the Chinese Meteorological Data
Sharing Service System (http://cdc.cma.gov.cn).

There are obvious differences in surface types and topog-
raphy in the HRB; the factors affecting regional precipitation
are complex. Therefore, the selection of potential predictors
should be adequate and appropriate. The National Centers for
Environmental Prediction and the National Center for
Atmospheric Research (NCEP/NCAR) distribute a reanalysis
data set, where the time resolution varies from hours to
months and the spatial resolution is 2.5° that presents atmo-
spheric conditions at different levels of the atmosphere
(Kalnay et al. 1996). The NCEP/NCAR reanalysis data have
been used to simulate precipitation in different regions world-
wide (e.g., Sachindra et al. 2014; Su et al. 2016; Li and Smith
2009). After a series of tests, the predicted variables extracted
from the NCEP/NCAR reanalysis data set include sea level
pressure (SLP); wind speed and direction at 850, 700, and
500 hPa (U/V850, U/V700, and U/V500, respectively);
geopotential height at 1,000, 850, 700, and 500 hPa (H1000,
H850, H700, and H500, respectively); and specific humidity
at 850, 700, and 500 hPa (S850, S700, and S500,
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respectively), which were obtained from the website http://
www.cdc.noaa.gov/. Spatial domains of predicted variables
influence the establishment of statistical models, which
depends on subjective selection. To be physically
reasonable, several grids around station were selected as the
predictor domain, which may be adjusted appropriately to
make all the models to pass the significance test.

2.2 Stepwise regression model

The fourteen predicted variables and the observed precipita-
tion data over the period 1971–2002 were used as training
samples to fit the SRM and are standardized as follows:

Y ¼ X−X
σ

ð1Þ

where Y is the standard value, X is the monthly mean value of

the predicted variables or the predictand (monthly rainfall), X
is the mean monthly value of X, and σ is the standard devia-
tion of X (Zhang and Yan 2015).

Principal component analysis (PCA) is used to decrease the
dimensionality of these fourteen predicted variables, which
can be achieved by including only the first few PCs (Ruping
and Straus 2002). In the study, the first four PCs of every
potential predictor are selected to establish the SRM.

Fifty-six variables are used as potential predictors to devel-
op models by the stepwise regression method as follows:

Y tð Þ ¼ ∑N
n¼1αnX n tð Þ þ εt ð2Þ

where Y is the monthly mean observed precipitation, X is the
potentially predicted variable, α is the regression coefficient,
and εt is the residual not described by the statistical model.

Fig. 1 Spatial distribution of meteorological stations in the HRB

Table 1 Coordinates and altitudes of stations

Station No. Longitude (°N) Latitude (°E) Altitude (m)

Anxi 52424 95.77 40.53 1170.9

Yumenzhen 52436 97.03 40.27 1526.0

Dingxin 52446 99.52 40.30 1177.4

Jinta 52447 98.90 40.00 1270.5

Jiuquan 52533 98.48 39.77 1477.2

Gaotai 52546 99.83 39.37 1332.2

Alashanyouqi 52576 101.68 39.22 1510.1

Tuole 52633 98.42 38.80 3367.0

Yeniugou 52645 99.58 38.42 3320.0

Zhangye 52652 100.43 38.93 1482.7

Qilian 52657 100.25 38.18 2787.4

Yongchang 52674 101.97 37.85 3173.2

Minqin 52681 103.08 38.63 1367.5

Dachaidan 52713 95.37 38.23 1976.9

Menyuan 52765 101.62 37.38 2850.0
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Precipitation over the periods 1971–1982, 1983–1992, and
1993–2002 is simulated using the method we mentioned
above. All of the models reached a significance level of
0.05%.

2.3 Bayesian model averaging

The lower reaches of the HRB is located in a desert area, with
a typical continental arid climate and little precipitation,
especially in winter. It is difficult to establish a statistical
relationship between the observed data and the predicted
variables that strongly influences precipitation in other
regions. We selected the PCs of many variables from the
NCEP/NCAR reanalysis data set and used the SRM to select
appropriate predictors. However, this may lead to overfitting
by the SRM. Raftery et al. (2005) noted that the linear regres-
sion method may not obtain the best model from among sev-
eral possible competing models. Other plausible models could
give different answers to the scientific question at hand, which
is a source of uncertainty in drawing conclusions. Bayesian
model averaging overcomes this problem by conditioning the
entire ensemble of statistical models first considered.
Therefore, we used the BMA to simulate precipitation in the
HRB and compare it with the SRM.

The BMA scheme, which is extended to statistical down-
scaling, is briefly described as follows: consider that a quantity
y is the precipitation to be simulated, where yT represents
training data with data length T and x1…xn represents the N
predictors. The probability density function (PDF) p(y| x1…
xn) simulated by the BMA can be represented as:

p yjx1…xnð Þ ¼ ∑
N

n¼1
wnpn yjxnð Þ ð3Þ

where pn(y| xn) is the simulated PDF based on the predictor xn
and training data yT. xn represents the PCs of the monthly
mean value of the predicted variables; thus, p(y| x1…xn) often
seems reasonable to approximate the conditional PDF by a
normal distribution centered at a linear function of the predic-
tor anxn + bnwith variance σ2

n, where an and bn can be obtained
by the regression between the predictor and the predictand.wn

is the posterior probability of predictor xn, which add up to

one, namely, ∑
N

n¼1
wn ¼ 1; the results can be considered the

weights for the predictors influencing precipitation.
The deterministic Bayesian precipitation prediction is the

conditional expectation of y given the simulation, which is
calculated as:

E yjx1…xnð Þ ¼ ∑
N

n¼1
wn anxn þ bnð Þ ð4Þ

where the parameters wn and σ2
n could be estimated by the

expectation-maximization (EM) algorithm (Zhang and Yan
2015; Duan et al. 2007; Raftery and Zheng 2003).

Similar to the SRM, first, the observed precipitation and
fourteen predicted variables were standardized; then, the PCA
was applied to decrease the dimensionality of these predicted
variables. The first four PCs of every predicted variable were
selected as potential predictors. Finally, the correlation coeffi-
cient between the observed data and the PCs reached a signif-
icance level of 0.05 and was selected as a predictor in the
BMA. The precipitation values over the periods 1971–1982,
1983–1992, 1993–2002, and 2003–2012 were simulated by
the BMA.

3 Results

3.1 Comparison of the spatial distributions
of precipitation

The landscape patterns in the upper, middle, and lower
reaches of the HRB comprise glaciers and permafrost, alpine
meadows and forests, and deserts, respectively. Therefore, the
HRB is divided into three subregions based on the spatial
distribution of precipitation: upper reaches (Tuole,
Yeniugou, Qilian, Yongchang, andMenyuan stations), middle
reaches (Jiuquan, Gaotai, Alashanyouqi, Zhangye, Minqin,
and Dachaidan stations), and lower reaches (Anxi,
Yumenzhen, Dingxin, and Jinta stations) (Cheng et al. 2006).

Table 2 shows the regional mean precipitation. From
Table 2, it can be observed that precipitation values in the
three subregions and the HRB as a whole are underestimated

Table 2 The OBS and regional
mean precipitation (mm) simulat-
ed by the BMA and the SRM.
Biases, RMSEs (mm), and MAEs
(mm) of the two models

OBS BMA SRM Bias RMSE MAE

BMA (%) SRM (%) BMA SRM BMA SRM

Upper 373.68 365.37 360.75 − 2.22 − 3.46 36.11 37.04 27.52 29.51

Middle 110.00 106.62 105.90 − 3.07 − 3.72 19.88 19.87 15.23 16.27

Lower 60.16 59.66 57.69 − 0.83 − 4.11 15.74 16.52 11.55 11.24

HRB 184.60 180.35 178.00 − 2.31 − 3.58 18.23 17.89 13.79 14.31
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by the BMA and the SRM, and the two models can simulate
the spatial distribution of observed precipitation, with a high-
value center being concentrated predominantly over the upper
reaches of the Qilian Mountain and a low-value center
appearing predominantly over the lower reaches of the desert
area. In the upper reaches, the observed precipitation is 373.68
mm, while precipitation simulated by the BMA is 365.37mm;
the bias of the BMA is − 2.22%, with an RMSE and MAE of
36.11 mm and 27.52 mm, respectively, whereas precipitation
simulated by the SRM is 360.75 mm, and the bias of the SRM
is − 3.46%, with an RMSE and MAE of 37.04 mm and 29.51
mm, respectively. In the middle reaches, the observed precip-
itation is 110.00 mm, while precipitation simulated by the
BMA is 106.62 mm; the bias of the BMA is − 3.07%, with
an RMSE andMAE of 19.88mm and 15.23 mm, respectively,
whereas the precipitation simulated by the SRM is 105.90
mm, and the bias of the SRM is − 3.72%, with an RMSE
and MAE of 19.87 mm and 16.27 mm, respectively. In the
lower reaches, the observed precipitation is 60.16 mm, and the
precipitation simulated by the BMA is 59.66 mm; the bias of

the BMA is − 0.83%, with an RMSE and MAE of 15.74 mm
and 11.55 mm, respectively, whereas the precipitation simu-
lated by the SRM is 57.69 mm, and the bias of the SRM is −
4.11%, with an RMSE andMAE of 16.52 mm and 11.24 mm,
respectively. Over the entire HRB, the observed precipitation
is 184.60 mm, and the precipitation simulated by the BMA is
180.35 mm; the bias of the BMA is − 2.31%, with an RMSE
and MAE of 18.23 mm and 13.79 mm, respectively, whereas
precipitation simulated by the SRM is 178.00 mm, and the
bias of the SRM is − 3.58%, with an RMSE and MAE of
17.89 mm and 14.31 mm, respectively.

Figure 2 shows the mean monthly precipitation in the three
subregions and the entire HRB region. In the upper reaches,
the biases of the BMA are in the range of − 8.70% (Sep)–
2.99% (Jun), whereas biases of the SRM are in the range of −
12.38% (Nov)–13.51% (Jan). Precipitation simulated by the
BMA is better than that by the SRM, except for in Mar, Jun,
and Oct. In the middle reaches, biases of the BMA are in the
range of − 31.39% (Nov)–5.15% (Feb), whereas biases of the
SRM are in the range of − 45.99% (Nov)–8.21% (Feb).

Fig. 2 The mean monthly precipitation (mm) in a upper reaches, b middle reaches, c lower reaches, and d the HRB
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Precipitation simulated by the BMA is better than that by the
SRM, except for in Mar, Jun, Oct, and Dec. In the lower
reaches, biases of the BMA are in the range of − 22.33%
(Jan)–18.88% (Nov), whereas biases of the SRM are in the
range of − 29.86% (May)–9.69% (Aug). Precipitation simu-
lated by the BMA is better than that by the SRM over 6
months. In the entire HRB, biases of the BMA are in the range
of − 14.76% (Jan)−2.74% (Jun), whereas biases of the SRM

are in the range of − 25.15% (Nov)−4.34% (Feb).
Precipitation simulated by the BMA is better than that by the
SRM, except for Jun and Oct. Precipitation in the three sub-
regions and the entire HRB region simulated by the BMA is
better than that simulated by the SRM for most months.

Figure 3 shows the time series of annual precipitation. Two
models could reasonably reproduce the time series of annual
precipitation in different regions. The correlation coefficients

Fig. 3 The time series of mean annual precipitation (mm) in a upper reaches, b middle reaches, c lower reaches, and d the HRB. The red line is the
precipitation simulated by the BMA, the green line is the precipitation simulated using the SRM, and black line is the OBS
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between the BMA and OBS in the three subregions and the
entire HRB are 0.50, 0.49, 0.43, and 0.56, and the correlation
coefficients are 0.55, 0.56, 0.43, and 0.65 between the SRM
and OBS, respectively.

3.2 Comparison of stations

Monthly precipitation simulated by the BMA and the SRM is
compared with the observed datasets (OBS). Table 3 shows
the mean multiyear precipitation at fifteen stations. From
Table 3, it can be observed that both models reasonably sim-
ulate the mean multiyear precipitation at each meteorological
station, and precipitation simulated by the two models at most
meteorological stations is underestimated. Precipitation in the
HRB has a minimal value of 50.81 mm (Anxi station) and a
maximal value of 522.95 mm (Menyuan station).
Precipitation simulated by the BMA ranges from 53.98 mm
(Anxi station) to 520.45mm (Menyuan station), with biases in
the range of − 4.79% (Jiuquan station) to 6.23% (Anxi sta-
tion). Precipitation simulated using the SRM is in the range of
51.10 mm (Dingxin station) to 518.24 mm (Menyuan station),
with biases in the range of − 7.92% (Alashanyouqi station) to
4.11% (Gaotai station). Precipitation simulated by the BMA is
better than that by the SRM, except at the Anxi, Jiuquan, and
Yeniugou stations. The RMSEs and MAEs of the BMA are in
the range of 20.20–72.41 mm and 15.03–60.77 mm, while
those of the SRM are in the range of 21.23–82.42 mm and
16.70–64.15mm, respectively. The RMSE andMAE between
the BMA and the OBS for each station were lower than those
between the SRM and OBS. The mean RMSE and MAE of
the BMA are 36.03 mm and 27.98 mm, respectively, and

those of the SRM are 41.86 mm and 32.68 mm, respectively.
The mean RMSEs and MAEs for the BMA are 13.93% and
14.37% lower than those of the SRM, respectively.

Figure 4 shows the meanmonthly precipitation obtained by
the BMA and the SRM at six stations that was selected for
comparison with the OBS. From Fig. 4, it can be observed that
two models could simulate the mean monthly precipitation
with a high level of skill, and precipitation simulated by the
BMA is better than that simulated by the SRM in most
months. Biases of the BMA at the Tuole station are in the
range of − 17.86% (Dec) to 19.40% (Feb), whereas biases of
SRM at the same station are in the range of − 24.22% (May) to
19.40% (Feb). Precipitation simulated by the BMA at the
Tuole station is better than that simulated by the SRM, except
for in Feb, Apr, and Dec. Biases of the BMA at the Qilian
station are in the range of − 28.49% (Dec) to 9.01% (July),
whereas biases of SRM at the same station are in the range of
− 35.84% (Dec) to 13.50% (Feb). Precipitation simulated by
the BMA at the Qilian station is better than that simulated by
the SRM, except for in Jan, May, Jun, and Sep. Biases of the
BMA at the Gaotai station are in the range of − 36.88% (Jan)
to 12.35% (Jul), whereas biases of SRM are in the range of −
60.00% (Nov) to 50.62% (Jul). Precipitation simulated by the
BMA at the Gaotai station is better than that by the SRM,
except for in Mar, Apr, Oct, and Dec. Biases of the BMA at
the Minqin station are in the range of − 46.23% (Jan) to
13.32% (Mar), whereas biases of the SRM at the same station
are in the range of − 63.20% (Jan) to 2.75% (Mar).
Precipitation simulated by the BMA at Minqin is better than
that by the SRM, except for in Feb and Dec. Biases of the
BMA at the Yumenzhen station are in the range of − 29.09%

Table 3 OBS and mean multiple-
annual precipitation (mm) simu-
lated by the BMA and the SRM.
Biases, RMSEs (mm), and MAEs
(mm) of two models

Stations OBS BMA SRM Bias RMSE MAE

BMA (%) SRM (%) BMA SRM BMA SRM

Anxi 50.81 53.98 52.25 6.23 2.83 20.20 21.23 15.03 16.70

Yumenzhen 69.98 67.61 66.80 − 3.38 − 4.54 24.67 27.56 17.53 20.71

Dingxin 55.20 54.08 51.10 − 2.04 − 7.42 20.23 22.78 16.10 17.69

Jinta 64.66 62.98 60.60 − 2.59 − 6.27 22.60 26.70 17.47 18.71

Jiuquan 89.83 85.53 92.00 − 4.79 2.41 29.26 35.53 22.47 27.81

Gaotai 112.89 110.94 117.53 − 1.73 4.11 28.99 30.02 21.39 24.14

Alashanyouqi 118.00 113.70 108.65 − 3.64 − 7.92 28.43 35.90 21.75 29.35

Tuole 303.84 293.96 283.89 − 3.25 − 6.56 49.58 59.20 38.58 44.89

Yeniugou 426.01 407.59 408.08 − 4.32 − 4.21 72.41 82.42 60.77 64.15

Zhangye 132.40 129.90 123.22 − 1.89 − 6.94 35.31 38.68 26.36 30.41

Qilian 408.28 405.44 397.14 − 0.69 − 2.73 54.69 59.47 41.24 45.14

Yongchang 207.31 199.38 196.40 − 3.82 − 5.26 40.84 49.32 32.99 40.17

Minqin 116.65 113.37 109.40 − 2.81 − 6.21 27.34 37.41 22.02 30.51

Dachaidan 90.21 86.27 84.63 − 4.38 − 6.19 29.18 33.45 23.17 25.86

Menyuan 522.95 520.45 518.24 − 0.48 − 0.90 56.69 68.16 42.82 53.88
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(Jan) to 4.90% (Jul), whereas biases of the SRM at the same
station are in the range of − 35.19% (Nov) to 10.91% (Jul).
Precipitation simulated by the BMA at the Yumenzhen station
is better than that by the SRM, except for in Jan,Mar, Sep, and
Oct. Biases of the BMA at the Dingxin station are in the range
of − 30.08% (Jan) to 14.81% (Nov), whereas biases of the
SRM at the same station are in the range of − 99.22% (May)

to 32.53% (Aug). Precipitation simulated by the BMA at the
Dingxin station is better than that by the SRM, except for in
Jan and Dec. The SRM is unstable for simulating precipitation

Fig. 4 The mean monthly precipitation (mm) from six meteorological stations. a Tuole. b Menyuan. c Gaotai. d Minqin. e Yumenzhen. f Dingxin

�Fig. 5 The time series of annual precipitation (mm) from six meteorolog-
ical stations. a Tuole. b Menyuan. c Gaotai. d Minqin. e Yumenzhen. f
Dingxin
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in some months, with biases larger than 50% (e.g., May, Jul,
and Oct at the Gaotai station; Jan at the Minqin station; and
May at the Dingxin station). However, the BMA could effec-
tively overcome this defect.

The time series of annual precipitation at the six stations
mentioned above are shown in Fig. 5. The correlation coeffi-
cients between the BMA and the OBS for these stations are
0.40, 0.47, 0.51, 0.55, 0.31, and 0.37 and 0.30, 0.45, 0.51,
0.29, 0.28, and 0.33, respectively. In terms of the correlation
coefficient, the two models have their own advantages, which
depend on the meteorological station.

4 Discussion and conclusions

In this study, we extended the BMA to statistical downscaling
to simulate precipitation in the HRB, which is located in an
arid area of Northwest China. The observed monthly rainfall
in the HRB and fourteen reanalysis variables were used to
establish the SRM and BMA. Monthly precipitation in the
HRB over the period 2003–2012 was simulated using the
SRM and BMA to compare with the OBS. The results showed
the following: (1) the BMA and the SRM reasonably
reproduced the spatial pattern of precipitation in the HRBwith
a high level of skill. The biases of precipitation simulated by
the BMAwere in the range of − 3.07 to − 0.83%, with RMSEs
in the range of 15.74 to 36.11 mm and MAEs in the range of
11.55 to 27.52 mm in the three subregions and across the
entire HRB; the biases of the SRM were in the range of −
4.11 to − 3.46%, with RMSEs in the range of 16.52 to
37.04 mm and MAEs in the range of 11.24 to 29.51 mm.
Both models could reasonably reproduce the time series of
annual precipitation in the HRB. The correlation coefficients
between the BMA and the OBS in the three subregions and
across the entire HRB were 0.50, 0.49, 0.43, and 0.56, and
they were 0.55, 0.56, 0.43, and 0.65 between the SRM and
OBS. Two models could reasonably simulate the monthly
precipitation at single stations. The biases of multiyear mean
precipitation at the fifteen meteorological stations simulated
by the BMA were in the range of − 4.79 to 6.23%, and the
biases of the SRM were in the range of − 7.92 to 4.11%. (2)
The BMA produced more accurate results than the SRM. The
multiyear mean precipitation for twelve of the fifteen meteo-
rological stations that were simulated by the BMAwas better
than that simulated by the SRM. The RMSE and MAE of the
BMA for each station were lower than those of the SRM. The
BMA had a mean RMSE andMAE that were − 13.93% and −
14.37% less than those of the SRM, respectively. (3) The
BMA gave a weight to each predictor, which reflected the
degree of predictor influence on precipitation during the train-
ing period. The SRM was calibrated by the better-performing
predictors, which received higher weights compared with the
worse-performing predictors. Both methods could simulate

the monthly mean precipitation powerfully, and the BMA per-
formed slightly better than the SRM. However, the BMA
could effectively reduce the RMSE and MAE of precipitation
and improve the correlation coefficient. This indicates that the
monthly precipitation simulated by the BMA has better con-
sistency with the observed values. The BMA is more suitable
for studies with high-precision requirements.

In the SRM, using too many predictors to establish a sta-
tistical model may lead to overfitting and thus decrease the
predictive power, whereas using too few predictors would
cause information of other predictors influencing local precip-
itation to be ignored. The BMA (Leamer 1978; Kass and
Raftery 1995; Hoeting et al. 1999) overcomes this problem
by integrating the overall linear models of predictors influenc-
ing precipitation. Furthermore, in the study, it is assumed that
the predicted variables extracted from the NCEP/NCAR re-
analysis data sets are normal distribution. However, the mul-
tiyear mean precipitation values for three of the fifteen mete-
orological stations that were simulated by the SRM were bet-
ter than those simulated by the BMA, and some correlation
coefficients of the BMAwere lower than those of the SRM at
some stations. The cause of these issues may be that some
selected predictors for these stations did not follow a normal
distribution. Converting non-normal distribution predictors
into normal distribution predictors needs to be studied further.
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