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Abstract
The target of the current paper was to examine the performance of three Markovian and seasonal based artificial neural network
(ANN)models for one-step ahead and three-step ahead prediction ofmonthly precipitation which is themost important parameter
of any hydrological study. The models proposed here are feed forward neural network (FFNN, as a classic ANN-based models),
Wavelet-ANN (WANN, as a hybrid model), and Emotional-ANN (EANN, as a modern generation of ANN-based models). The
models were used to precipitation prediction of seven stations located in the Northern Cyprus. Two scenarios were examined each
having specific inputs set. The scenario 1 was developed for predicting each station’s precipitation through its own data at
previous time steps, while in scenario 2, the central station’s data were also imposed into the models in addition to each station’s
data, as exogenous inputs. The obtained results showed the better performance of the EANN model in comparison with other
models (FFNN and WANN) especially in three-step ahead prediction. The superiorities of the EANN model over other models
are due to its ability in dealing with error magnification in multi-step ahead prediction. Also, the results indicated that the
performance of the scenario 2 was better than scenario 1, showing improvement of modeling efficiency up to 17% and 26%
in calibration and verification steps, respectively.

1 Introduction

Precipitation is the most vital part of the hydrological cycle, and
precise prediction of precipitation plays critical roles in design,
planning, and management of water resources and hydraulic
structures. However, due to complex, non-linear, and stochastic
nature of precipitation time series, its prediction is a quite difficult
task (Nourani et al. 2017; DanandehMehr et al. 2017; Danandeh
Mehr 2018; Nourani and Molajou 2017).

The models for prediction of hydroclimate parameters
(e.g., precipitation) are usually classified into two classes:
white box and black box models. The white box model em-
ploys physical rules for modeling most of the relevant physi-
cal processes involved in the precipitation procedure (Nourani
et al. 2018a). In contrast, the black boxmodels apply historical
data (observed data) to make predictions. Such black box
models are mainly developed on the basis of statistical ap-
proaches. Although conceptual approaches are dependable
methods to analyze the physics of the phenomena, they may
show restrictions such as complexity, time-consuming, lack of
enough data for modeling, and inaccurate results. So, once the
accurate estimations for the process are more crucial than the
physical interpretations, utilizing data-driven (black box)
methods will be better alternative (Chau 2017; Wu and Chau
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2011; Yaseen et al. 2019a, b; Danandeh Mehr et al. 2019a, b;
Nourani et al. 2019a, b). In the recent decades, artificial intel-
ligence (AI) techniques as black box methods indicated great
ability in modeling the dynamic precipitation process in the
presence of the non-linearity, irregularity, and uncertainty of
data (Ghorbani et al. 2018; Nourani et al. 2018a, b). Several
studies have indicated that the AI-based techniques can make
reliable outputs in precipitation predictions with regard to the
white box models (Abbot and Marohasy 2012). Feed forward
neural network (FFNN) is one of the commonly used AI-
based models for the precipitation modeling which is a com-
mon type of artificial neural network (ANN). Recently, FFNN
has become more popular due to its ability and robustness to
detect involved patterns in the various range of data. For ex-
ample, Guhathakurta (2008) employed ANN for prediction of
the monthly precipitation over 36 stations of India to forecast
the monsoon precipitation. The model could catch nonlinear
interactions among input and output data and forecast the
seasonal precipitation. It was found that the most dominant
input in modeling is precipitation at previous time steps (as a
Markovian process). Likewise, Abbot and Marohasy (2012)
predicted monthly and seasonal precipitations up to 3 months
in advance over Queensland, Australia, using dynamic, recur-
rent, and time-delay ANNs. More recently, Khalili et al.
(2016) employed the Hurst rescaled range statistical analysis
to evaluate the predictability of the available data for monthly
precipitation prediction for Mashhad City, Iran. Devi et al.
(2017) applied ANNs for forecasting the precipitation time
series using the temporal and spatial precipitation intensity
data and proved wavelet Elman models as the best model for
precipitation forecasting. Mehdizadeh et al. (2018) introduced
two novel hybrid models of artificial neural networks-
autoregressive conditional heteroscedasticity (ANN-ARCH)
and gene expression programming-autoregressive conditional
heteroscedasticity (GEP-ARCH) for forecasting monthly pre-
cipitation time series. They indicated that GEP-ARCH and
ANN-ARCH methods could lead to reliable outcomes for
the studied regions with different climatic conditions. They
also revealed that ANN-ARCH method can present more re-
liable results with regard to GEP-ARCH method.

Despite of the great ability of ANN in predicting of the
hydroclimate parameters (e.g., precipitation), this method
may show shortcomings in dealing with hydrological time
series which are generally non-stationary and include a wide
range of scales (from a few minutes to several decades).
Consequently, in this condition, data pre-processing may be
an essential step to overcome similar problems and defects
(Adamowski et al. 2012; Nourani et al. 2018a).

The ability of wavelet transforms (WTs) in decomposing the
non-stationary hydrological time series to sub-series at several
time scales can be an effective tool for the interpreting of hydro-
logical phenomena. WTas a mathematical function is utilized to
decompose the main signals into some sub-signals and elevates

the ability of the model by extracting the useful information at
different scales (Nourani et al. 2019a, b). In predicting precipita-
tion, the hybrid Wavelet-ANN (WANN) as a hybrid model is a
useful method which applies the WT to get the several frequen-
cies of the precipitation time series and ANN to forecast the
future precipitation. Previous studies highlighted the great abili-
ties of the hybrid WANN models in the optimization and fore-
casting of the hydrological processes such as precipitationmodel-
ing (Nourani et al. 2019a, b).

Notwithstanding the reliable performance of hybrid WANN
model in precipitation modeling, there are some flaws which can
be addressed in WANN modeling. For example, the data-
processing phase should be performed separated from ANN
model’s framework (Sharghi et al. 2018, 2019). Furthermore,
while previous studies demonstrated that the data pre-processing
viaWTcould modify the efficiency of the model through diverse
timescales, the improvements in small timescales (like daily or
hourly) are not quite tangible as it is in large-scale time series
(such as monthly and seasonally). The reason of the difference
in tangibility is that the seasonal patterns in most of the hydrolog-
ical processes especially precipitation have more domination in
large timescales (see Shiri and Kisi 2010; Kisi and Cimen 2012).

Recently, emotional artificial neural network (EANN)models
have been developed and applied as a modern generation of
classic ANN-based models by combining the artificial emotions
and ANN technique (Lotfi and Akbarzadeh 2014, 2016). From
the biological perspective, neurophysiological reactions of ani-
mals can be influenced by hormonal processes. Hence, animals
may respond different behaviors to the same event at different
moods. According to the biological concept, the incorporation of
artificial emotion and ANN can improve the performance of the
network via the feedback loop between neuron and hormone
systems (Nourani et al. 2019c).

The current study represents the first application of EANN
model in multi-step ahead prediction of precipitation. To dem-
onstrate the precision of the EANN model, the results of the
single-step-ahead and multi-step-ahead precipitation forecast
generated by EANNwere compared with the results of FFNN
(as a Markov model) andWANNmodels. The combination of
inputs used in the mentioned models is proposed in two dif-
ferent scenarios. In scenario 1, the precipitation for each sta-
tion forecasted using its previous time steps data. In scenario
2, the inputs which used in forecasting models consist of
multi-station data from previous time steps.

2 Materials and methods

2.1 Used data and efficiency criteria

Cyprus is a quite large island with a land area of approximate-
ly 9250 km2 which is located in the south of Turkey and east
of the Mediterranean Sea (see Fig. 1). Cyprus has two main
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mountain ranges—the Troodos Massif in the southwest and
the Pentadaktylos (Kyrenia) range along the northern coast,
which gives Cyprus high topographical variability (Price et al.
1999; Griggs et al. 2014).

Since in the proposed methodology, it was tried to find rela-
tionship between the precipitation patterns of different stations,
consideration of data from far away stations over the whole
islandmay lead to poor performance of modeling and therefore,

Fig. 1 (a) Situation map of study area. (b) Location of stations
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only a few stations scattered in the northern part of Cyprus were
considered in the modeling. In this way, the data from seven
main stations of Northern Cyprus which are freely available in
meteorological service agency of Northern Cyprus used to pre-
dict the precipitation (see Fig. 1). (1) At Ercan International
Airport, the summer seasons are arid, hot, and clear, and the
winter seasons are windy, cold, and mostly clear. During a year,
the temperature characteristically differs from 4 to 35 °C and is
hardly below 0 °C or above 37 °C. (2) Famagusta’s
(Gazimağusa) climate is classified as warm and temperate. In
winter, there is much more precipitation in Famagusta than in
summer. The average temperature in Famagusta is 19.3 °C, and
the mean precipitation is 407 mm. (3) The prevailing climate in
Lefkoniko (Geçitkale) is known as a local steppe climate.
During the year, there is little precipitation in Lefkoniko, and
the mean annual temperature is 19.1 °C. (4) Kyrenia (Girne)
station’s climate is warm and temperate, and the mean annual
precipitation is 382 mm. The winters are rainier than the sum-
mers. In Kyrenia, the mean annual temperature is 19.6 °C.
Precipitation has an average of 449 mm. (5) Gelveri
(Guzelyurt) has a local steppe climate. There is little precipita-
tion throughout the year. In Gelveri, the mean annual values of
temperature and precipitation are respectively 18.5 °C and
363 mm. (6) Nicosia (Lefkoşa) has a hot semi-arid climate
because of its low annual temperature and precipitation range.
Nicosia experiences long, hot, dry summers, and cool to mild
winters, with most of the precipitation occurring in winter. (7)
Gialousa (Yeni Erenkoy)’s climate is classified as warm and
temperate. There is more precipitation in the winter than in
the summer in Gialousa. The mean temperature in Gialousa is
18.7 °C, and about 520 mm of precipitation falls annually.

The data averaged over a month (as ∑Pi
Nm

, where Pi is daily

precipitation and Nm is the number of days of each month)
were obtained from these seven meteorological stations for
36 years (1982–2017), from January 1, 1982, to December
31, 2017. The characteristics of the stations and also the sta-
tistics of the data from the stations are presented in Table 1.

Usually, as a conventional method, linear correlation coef-
ficient (CC) is computed between potential inputs and output

to select most dominant input variables for the AI methods
such as FFNN (Partal and Cigizoglu 2008; Danandeh Mehr
et al. 2019a, b). However, implementation of CC for dominant
input selection has been already criticized (e.g., see Nourani
et al. 2018b) since for modeling a nonlinear process by a
nonlinear approach like FFNN, it will be more feasible to
employ a non-linear criterion (e.g., Mutual Information, MI).
This is because that despite a weak linear relation, strong non-
linear relationships might be existing among input and output
parameters. TheMI value between random variables ofM and
N can be written in the form of Yang et al. (2000):

MI m; nð Þ ¼ E mð Þ þ E nð Þ−E m; nð Þ ð1Þ

where m and n are the probability distributions of variablesM
and N; E(m) and E(n) show respectively the entropies of dis-
tributions m and n, and E(m,n) is their joint entropy as:

E m; nð Þ ¼ −∑mϵM∑nϵNpMN m; nð ÞlogpMN m; nð Þ ð2Þ
where PMN (m,n) is the joint distribution. The normalized MI
values between the observed precipitation time series of all
seven stations relative to each other were calculated and tab-
ulated in Table 2. According to Table 2, overall, Ercan’s pre-
cipitation data are more non-linearly correlated with the pre-
cipitation time series of other stations, maybe due to its central
position with regard to the others.

For instance, the auto-correlation function (ACF) plots
(correlogram) of Ercan and Nicosia precipitation time series
are presented in Fig. 2. According to Fig. 2, the precipitation
time series of some stations such as Ercan station are more auto-
correlated with 1- and 12-month lags, whereas the precipitation
time series of some other stations such as Nicosia station are
more auto-correlated with 1-, 2-, and 12-month lags. As noticed
previously, CC is unable to recognize the non-linear relation
between time series. Therefore, in the following, the normalized
MI was employed to determine the non-linear relation between
precipitation time series and their lag times. So, it was recog-
nized that the precipitation time series are mostly correlated
non-linearly with 1- and 12-month lags in all stations which

Table 1 The characteristics of stations and statistics of the precipitation data

Station Altitude (m) Longitude Latitude Max precipitation (mm) Mean precipitation
(mm)

Std. deviation of
precipitation (mm)

Ercan 123 33°29′59.99″ E 35°09′21.00″ N 275.4 26.45 26.78

Famagusta 1.8 33°56′20.18″ E 35°07′13.94″ N 319.3 27.69 38.83

Lefkoniko 44 33°23′15″ E 34°49′30″ N 369.6 34.13 47.94

Kyrenia 0 33°19′2.24″ E 35°20′10.82″ N 334.2 38.79 56.06

Gelveri 65 32°59′36.17″ E 35°11′55.28″ N 159 23.47 31.49

Nicosia 220 33°21′51.12″ E 35°10′31.12″ N 178 24.64 20.35

Gialousa 22 34°11′30″ E 35°31′60″ N 343.3 40.63 58.27
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denotes to both auto-regressive (Markovian) and seasonality of
the process (see Fig. 2).

Prior to the modeling, the monthly average precipitation
data were first normalized by (Bisht et al. 2015):

Pnorm ¼ P tð Þ−Pmin tð Þ
Pmax tð Þ−Pmin tð Þ

≤1 ð3Þ

where Pnorm is the normalized value of the P(t); and Pmax(t) and
Pmin(t) are the max and min values of the observed data, re-
spectively. For training and verifying purposes, the data were
divided to two sub-sets. About 75% of whole data were used
for calibration, and the rest 25% of data were utilized for
verifying the trained methods.

The Broot mean square error (RMSE)^ and Bdetermination
coefficient (DC)^ were utilized to assess the efficiency of the
prediction models as (Sharghi et al. 2018):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Oi−Cið Þ2
n

s
ð4Þ

DC ¼ R2 ¼ 1−
∑n

i¼1 Oi−Cið Þ2

∑n
i¼1 Oi−Ô̂

� �2 ð5Þ

where n is the number of data, Oi is the observed value, Ci is
the predicted (computed) value, and Ô is the average amount
of the observed data. Previous studies indicated that any
hydro-environmental method may be adequately evaluated

Table 2 The normalized MI
between the observed
precipitation time series of statins

Station Ercan Famagusta Lefkoniko Kyrenia Gelveri Nicosia Gialousa

Ercan 1 – – – – – –

Famagusta 0.682 1 – – – – –

Lefkoniko 0.593 0.617 1 – – – –

Kyrenia 0.745 0.701 0.705 1 – – –

Gelveri 0.703 0.687 0.692 0.715 1 – –

Nicosia 0.712 0.675 0.718 0.697 0.677 1 –

Gialousa 0.678 0.644 0.578 0.654 0.661 0.589 1

Fig. 2 ACF plot and Normalized MI diagram for (a, b) Ercan station and (c, d) Nicosia station
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by DC and RMSE criteria (Legates and McCabe 1999).
Also, due to the critical role of the extreme (peak) values in

precipitation predicting, Eq. 6 was applied to measure the
performance of the model to take the extreme (peak) values
of precipitation time series as (Sharghi et al. 2018, 2019):

DCpeak ¼ 1−
∑N

i¼1 Opi−Cpi
� �2

∑N
i¼1 Opi−Ô̂

� �2 ð6Þ

where DCpeak denotes to DC of peak data; N stands for the

number of peak data; and Opi, Cpi, and Ô show the observed,
predicted, and average amount of the observed peak (extreme)
data, respectively.

In this study, the modeling was done via two scenarios. In
scenario 1, each station’s own data at pervious time steps were
used for predicting the same station’s precipitation at a current
time step, while in scenario 2, another station’s data in addi-
tion to each station’s data were used for modeling to enhance
the prediction performance.

Scenario 1:

In scenario 1, it is tried to predict the precipitation using its
previous time steps data. So, the prediction of the precipitation
could be patterned as:

Pi
t ¼ f Pi

t−1;P
i
t−2;P

i
t−12

� � ð7Þ

where Pi
t−1;P

i
t−2;P

i
t−12 are the precipitation data of ith station

corresponding to time steps t-1, t-2, and t-12 (or 1, 2, and
12 months (1 year)) ago. Thus, predicted precipitation data
Pi
t at time step t is computed as a function of previously pre-

cipitation at time steps t-1, t-2, and t-12.

Scenario 2:

In scenario 2, the prediction Eq. 7 is modified by introduc-
ing precipitation data PErcan

t from Ercan precipitation station.
Hence, the general mathematical of the scenario 2 can be
formulated as:

Pi
t ¼ f Pi

t−1;P
i
t−2;P

i
t−12;P

Ercan
t

� � ð8Þ

Even though the scenario 2 with a more complex formula
utilizes more input data, it is expected that this scenario has
more accurate outputs with regard to scenario 1.

2.2 FFNN and EANN models

The feed forward neural network (FFNN) as a branch of ANN
models has been extensively applied to model different com-
ponents of the hydrologic cycle (Anmala et al. 2000). A
FFNN with three layers of input, output, and hidden, trained

by back propagation (BP) algorithm has shown appropriate
efficiency in nonlinear hydrological modeling tasks (ASCE
2000; Hornik et al. 1989). It should be noted that NNTOOL
of MATLAB was used for ANN modeling and a code was
developed for EANN. On the other side, an EANN model is
the improved version of a conventional ANN including an
emotional systemwhich emits artificial hormones to modulate
the operation of each neuron, and in a feedback loop, the
hormonal parameters are also adjusted by inputs and output
of the neuron (Nourani et al. 2019c; Sharghi et al. 2018,
2019). The schematic of an inner neuron from FFNN and
EANN has been depicted in Fig. 3.

By comparison of these two neurons, it is deduced that in
contrast to the FFNN in which the information flows only in
the forward direction, a neuron of EANN can reversibly get
and give information from inputs and outputs and also can
provide hormones (e.g., Ha, Hb, and Hc). These hormones as
dynamic coefficients are initialized according to the pattern of
input (and target) samples and then are modified through the
training iterations. Through training phase, they can impact on
all components of the neuron (i.e., weights, I, net function, II,
and activation function, III, in Fig. 2). In Fig. 3b, the solid and
dotted lines respectively show neural and hormonal routs of
information. In the EANN model, the output of the ith node
with three hormones of Ha, Hb, and Hc is computed as
(Nourani et al. 2019c):

Y i ¼ γi þ ∑
h
∂i;hHh

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

� f ∑
j

h
βi þ ∑

h
χi;hHh

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

� αi; j þ ∑
h
Φi; j;kHh

� �
X i; j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3

0
B@

1
CA

þ μi þ ∑
h
ψi;hHh

� �i�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4

ð9Þ

where the artificial hormones are calculated as (Nourani et al.
2019c):

Hh ¼ ∑
i
H i:h h ¼ a; b; cð Þ ð10Þ

In Eq. 9, the applied weight to the activation function ( f ) is
shown by Term (1). It involves the constant neural weight of γi
as well as the dynamic hormonal weight of ∑

h
∂i;hHh. The

applied weight to the summation function is shown by Term
(2), the applied weight to the Xi,j (an input from jth node of the
former layer) is shown by Term (3), and the bias of the sum-
mation function (including both constant neural weight

(μi) and dynamic hormonal weight ∑
h
ψi;hHh

� �
) is shown

by Term (4).
The sharing of the overall hormonal level of EANN

model (i.e., Hh) among the hormones should be controlled
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by ∂i, h, χi, h, Φi, j, k, and ψi, h factors which in turn, the ith
node output (Yi) will make hormonal feedback of Hi,h to
the network as (Nourani et al. 2019c):

H i;h ¼ glandityi;h � Y i ð11Þ

where the glandity factor should be calibrated in the train-
ing stage of the EANN model to prepare suitable hormone
size to the glands. Several designs could be applied to
initialize the hormonal values of Hh according to the input
samples. Subsequently, considering the output of the net-
work (Yi) and Eqs. 10 and 11, the hormonal values are
updated through the learning process to get a suitable
match between calculated and observed time series.

2.3 WANN model

Both the FFNN and WANN models are included of three
layers, training of error back propagation algorithm. The input
layer of the WANN model includes the precipitation time
series de-composed to several sub-time series by wavelet
transform. It should be noticed that the WT deals with differ-
ent time scales. The approximation sub-series known as a
large-scale sub-signal and the dith/djth detailed sub-series
which state short-scale sub-signals are the components of the

WT that follows the superposition principle (the combination
of them sets the main signal). It should bementioned that there
are different types of mother wavelet which are used in accor-
dance with the type of the process. In this study, BDaubechies-
4 (db4)^ mother wavelet was used which is more appropriate
for hydrological time series decomposition (Danandeh Mehr
et al. 2013). Figure 4 shows the schematic structure of the
WANN model. After decomposition of the time series by
WT, the obtained sub-series are fed into an ANN model.

3 Results and discussion

FFNN, WANN, and EANN models were separately created
via the proposed scenarios 1 and 2. For precipitation predic-
tion of the stations, monthly precipitation data were separately
imposed into FFNN,WANN, and EANNmodels to predict 1-
month-ahead precipitation values. Therefore, the structure set
of the FFNN, WANN, and EANN models depends on the
preference of the precipitation process. The monthly precipi-
tation values are described by both Markovian and seasonal
properties (Kisi and Cimen 2012). For this reason, the current
precipitation P(t) is related to its previous time steps, P(t-1)
and P(t-2), as well as its value at 12 months ago, P(t-12).

Fig. 3 A node of (a) FFNN
model and (b) EANN and
emotional unit (Sharghi et al.
2018, 2019)
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Consequently, the input values as P(t-1), P(t-2), and P(t-12)
were applied to the FFNN, WANN, and EANN models to
predict precipitation at time step t (P(t)) for scenario 1 (includ-
ing more lagged precipitation values, i.e., P(t-3) and P(t-4) did
not show higher MI with output and could not improve the
efficiency of the modeling). For scenario 2, one more input,

Ercan’s station precipitation value as exogenous input, was
also considered (in addition to the input of scenario 1) as
another input neuron to enhance the prediction performance.

The type of the neural network employed in the FFNN
models was a three-layer feed-forward perceptron (with input,
output, and hidden layers). To access the best performance of

Fig. 4 The schematic diagram of
WANN model

Table 3 Results of one-step ahead predictions of monthly precipitation by FFNN via both scenarios 1 and 2

Station Scenario Epoch no. Network structurea DC RMSE (mm) DCpeak

Calibration Verification Calibration Verification Verification

Ercan 1 40 (3.6.1) 0.693 0.652 12.51 12.98 0.603

Famagusta 1 80 (3.5.1) 0.526 0.494 18.08 21.10 0.429

2 60 (4.11.1) 0.669 0.630 12.54 15.37 0.625

Lefkoniko 1 100 (3.4.1) 0.653 0.511 15.75 18.78 0.521

2 70 (4.9.1) 0.745 0.679 12.03 12.95 0.658

Kyrenia 1 90 (3.7.1) 0.599 0.536 18.01 23.18 0.537

2 90 (4.8.1) 0.747 0.728 15.37 9.90 0.693

Gelveri 1 70 (3.3.1) 0.707 0.523 12.24 21.91 0.409

2 40 (4.12.1) 0.854 0.689 9.17 12.21 0.586

Nicosia 1 110 (3.10.1) 0.527 0.545 18.26 16.79 0.554

2 80 (4.10.1) 0.776 0.668 12.45 9.80 0.651

Gialousa 1 40 (3.9.1) 0.602 0.519 18.01 15.89 0.485

2 60 (4.5.1) 0.835 0.706 12.57 9.93 0.648

aOnly the results of the optimum models have been tabulated. In network structure (a, b, c), a, b, and c respectively show the numbers of input, hidden
and output neurons
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the FFNN model in precipitation simulation, the Levenberg-
Marquardt scheme of backpropagation algorithm has been
utilized for training FFNN because of its higher convergence
rate. Also, the sigmoid Tangent activation function has been
utilized as the non-linear kernel of neural networks in this
research. The network training process was stopped when
the error rate was increased in the verification data. A notice-
able issue, particularly in FFNN modeling, which should be
considered, is selecting the suitable architecture of mentioned
models, i.e., the number of hidden neurons and the number of
iterations. It should be noted that 10–1000 training epoch
numbers and 1–60 hidden neurons were examined to find

the optimum FFNN models. The best elements were obtained
by trial-error. The best results by FFNN models for one-step-
ahead and three-step-ahead precipitation predictions of all sta-
tions are shown in Tables 3 and 4 for both scenarios 1 and 2,
respectively. It is evident that the low number of training iter-
ations may cause incomplete training and on the other hand, a
large number of epoch can lead to the over-fitting issue.

As it can be seen in Table 4, similar to the single step ahead
forecasting, the same input data were considered to be applied
to the FFNN model to perform the multi-step ahead (3-month
ahead) forecasting. According to the results presented in
Tables 3 and 4, the accuracy of the classic FFNN is reduced

Table 4 Results of three-step ahead predictions of monthly precipitation by FFNN via both scenarios 1 and 2

Station Scenario Epoch no. Network Structurea DC RMSE (mm) DCpeak

Calibration Verification Calibration Verification Verification

Ercan 1 50 (3.9.1) 0.423 0.394 15.55 18.53 0.469

Famagusta 1 120 (3.7.1) 0.453 0.269 15.82 18.52 0.327

2 70 (4.5.1) 0.579 0.524 12.44 12.92 0.563

Lefkoniko 1 90 (3.9.1) 0.320 0.281 18.89 27.86 0.412

2 40 (4.5.1) 0.610 0.576 9.84 15.00 0.601

Kyrenia 1 70 (3.6.1) 0.362 0.331 27.25 27.48 0.439

2 40 (4.6.1) 0.579 0.602 18.68 15.01 0.498

Gelveri 1 110 (3.11.1) 0.470 0.465 14.41 14.68 0.319

2 70 (4.9.1) 0.627 0.561 9.47 14.00 0.527

Nicosia 1 130 (3.10.1) 0.323 0.299 15.83 16.01 0.398

2 60 (4.7.1) 0.516 0.512 15.15 14.36 0.534

Gialousa 1 70 (3.4.1) 0.349 0.301 20.94 21.67 0.408

2 40 (4.8.1) 0.557 0.538 18.08 18.20 0.511

aOnly the results of the optimum models have been tabulated. In network structure (a, b, c), a, b, and c respectively show the numbers of input, hidden,
and output neurons

Table 5 Results of one-step ahead predictions of monthly precipitation by WANN via both scenarios 1 and 2

Station Scenario Hidden neuron no. Epoch no. DC RMSE (mm) DCpeak

Calibration Verification Calibration Verification Verification

Ercan 1 12 40 0.934 0.865 6.66 9.01 0.689

Famagusta 1 10 60 0.852 0.802 6.74 9.46 0.673

2 6 30 0.900 0.856 6.20 6.93 0.732

Lefkoniko 1 9 50 0.834 0.732 9.15 15.24 0.668

2 11 30 0.889 0.795 7.56 12.65 0.713

Kyrenia 1 11 30 0.865 0.801 9.47 12.62 0.638

2 5 40 0.904 0.838 9.03 9.94 0.682

Gelveri 1 6 70 0.821 0.769 6.57 9.23 0.592

2 9 30 0.871 0.816 6.02 6.94 0.698

Nicosia 1 10 50 0.862 0.753 6.10 7.79 0.559

2 8 40 0.831 0.852 6.44 6.20 0.755

Gialousa 1 9 60 0.869 0.767 9.42 9.92 0.612

2 9 30 0.930 0.816 6.62 9.02 0.811
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significantly in the three-step ahead prediction of monthly
precipitation due to non-linearly magnification of the error at
each time step when the predicted value, which is involved a
small error at each time step, is used in the next time step as the
current input. For an instant, in Gelveri station, the perfor-
mance of FFNN model was reduced in training phase by
35% and 27%, for three-step ahead prediction compared to
1-month ahead prediction for scenarios 1 and 2, respectively.

The Markovian characteristic of the precipitation phenome-
non was considered by the classic FFNN model, while the sea-
sonality was ignored. To handle the seasonal properties of the
precipitation process, the wavelet analysis was linked to the
FFNN as hybrid WANN model. Via the WANN modeling, the

precipitation time series were decomposed at level 4 into 5 sub-
time series (one approximation and four detailed sub-series) by
the WT in order to consider the seasonal pattern of the process.
WTwas used to decompose precipitation time series at level 4 in
monthly modeling since 24 = 16 months mode is near to 12. The
obtained sub-series were then considered as the candidate inputs
of the ANN (FFNN) model. Based on the past studies, the de-
composition levels mentioned above and mother wavelet db4
were used with the discrete wavelet-transform (Danandeh
Mehr et al. 2013). In order to reduce the dimension of the input
vector, occasionally the generated outcomes of the wavelet-
transform necessitate feature extraction or interpretation before
the mathematical modeling. It should be noted that the feature

Table 6 Results of three-step ahead predictions of monthly precipitation by WANN via both scenarios 1 and 2

Station Scenario Hidden neuron no. Epoch no. DC RMSE (mm) DCpeak

Calibration Verification Calibration Verification Verification

Ercan 1 9 70 0.766 0.697 9.12 9.86 0.609

Famagusta 1 12 110 0.698 0.622 12.92 12.16 0.582

2 8 70 0.738 0.671 6.90 9.73 0.643

Lefkoniko 1 11 150 0.684 0.569 14.08 17.05 0.589

2 6 100 0.720 0.625 3.17 13.56 0.627

Kyrenia 1 9 90 0.706 0.633 11.47 14.84 0.561

2 4 130 0.752 0.696 9.94 12.55 0.612

Gelveri 1 10 80 0.689 0.607 9.47 13.23 0.525

2 9 50 0.709 0.650 9.11 9.63 0.614

Nicosia 1 6 120 0.678 0.603 9.32 9.78 0.499

2 6 100 0.683 0.615 6.92 9.30 0.646

Gialousa 1 8 90 0.698 0.629 9.96 12.77 0.549

2 5 110 0.753 0.701 9.20 9.49 0.710

Table 7 Results of one-step-ahead predictions of monthly precipitation by EANN via both scenarios 1 and 2

Station Scenario Hidden neuron no. Hormone no. Epoch no. DC RMSE (mm) DCpeak

Calibration Verification Calibration Verification Verification

Ercan 1 8 6 40 0.905 0.856 3.87 6.06 0.741

Famagusta 1 7 9 50 0.884 0.827 6.18 6.76 0.702

2 5 3 20 0.919 0.873 3.27 6.04 0.784

Lefkoniko 1 10 9 50 0.829 0.789 9.62 11.43 0.685

2 6 5 30 0.920 0.821 3.61 5.39 0.820

Kyrenia 1 9 12 60 0.858 0.863 9.85 6.97 0.722

2 4 4 20 0.922 0.906 3.34 3.93 0.798

Gelveri 1 9 8 50 0.839 0.802 3.79 6.78 0.676

2 5 6 30 0.887 0.849 3.52 6.23 0.776

Nicosia 1 12 7 30 0.902 0.820 3.43 6.26 0.701

2 6 4 30 0.936 0.869 3.19 3.41 0.871

Gialousa 1 11 10 30 0.792 0.837 6.92 6.35 0.698

2 5 3 40 0.921 0.930 3.56 3.18 0.872
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Table 8 Results of three-step-ahead predictions of monthly precipitation by EANN via both scenarios 1 and 2

Station Scenario Hidden neuron no. Hormone no. Epoch no. DC RMSE (mm) DCpeak

Calibration Verification Calibration Verification Verification

Ercan 1 9 9 60 0.769 0.753 12.07 12.83 0.644

Famagusta 1 6 11 80 0.763 0.702 6.92 9.54 0.607

2 4 4 40 0.801 0.743 3.78 6.45 0.692

Lefkoniko 1 10 8 90 0.712 0.667 12.50 15.49 0.603

2 5 3 30 0.785 0.712 6.24 12.13 0.711

Kyrenia 1 8 10 60 0.726 0.703 12.21 9.77 0.635

2 4 4 30 0.782 0.779 3.87 6.24 0.699

Gelveri 1 11 9 80 0.701 0.681 9.71 12.15 0.594

2 6 5 30 0.753 0.722 6.68 9.01 0.682

Nicosia 1 12 8 60 0.755 0.706 3.95 6.40 0.617

2 8 6 40 0.812 0.739 3.57 6.18 0.766

Gialousa 1 11 12 70 0.662 0.628 9.69 9.76 0.615

2 7 4 50 0.792 0.807 6.93 6.47 0.759

Fig. 5 (a) Observed versus computed precipitation time series by FFNN, WANN, and EANN models. (b) Observed versus computed (a detail) and
scatter plots for verification step for (c) EANN and (d) WANN models via scenario 1 for Nicosia station
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extraction in this study has done through the application of MI.
The best results byWANNmodels for one-step-ahead and three-
step-ahead precipitation predictions of all stations are shown in
Tables 5 and 6 for both scenarios 1 and 2, respectively.

The most significant point that can be inferred from the
single-step ahead forecasting of the WANN performance is
its efficiency with regard to the non-stationary nature of the
input time series of the process, which may be resolved by
employing the wavelet transform as a suitable data pre-
processing tool. It is obvious that the monthly time series
not only include fewer samples, but also their seasonal behav-
ior is much remarkable than the Markovian feature (the cur-
rent precipitation value has the highest relation with the same
month’s value in the previous year). Therefore, WANN could
overcome both seasonal and autoregressive (Markovian) char-
acteristics of the process. Therefore, WANN showed an ac-
ceptable performance for monthly modeling via both scenar-
ios 1 and 2 (see Table 5).

As it can be seen in Table 6, similar to FFNN model, the
performance of the WANN model reduced as the prediction
horizon is increased because the error is overstated non-linearly
and effects the overall accuracy of the modeling. For an instant,
in Yeni erenköy station, the accuracy of theWANNwas reduced
in training phase by 19% and 20%, for three-step ahead predic-
tions of monthly precipitation compared to 1-month ahead pre-
diction for scenarios 1 and 2, respectively.

In spite of the relative efficiency of WANN, the increment of
the input data has been caused the considerable increase of the
calculation time. Another issue noticed is the diversity of DCs
among the verification and training steps. Although in the veri-
fication step, the precision of the WANN model has been in-
creased slightly compared to the FFNN model, its precision is
still far from the training stage. It should be noted that the
WANNmodel is highly dependent on the number of input data,
and the number of samples which is generally fewer in the ver-
ification step than the training step.

Fig. 6 (a) Observed versus computed precipitation time series by FFNN, WANN, and EANN models. (b) Observed versus computed (a detail) and
scatter plots for verification step for (c) EANN and (d) WANN models via scenario 2 for Nicosia station
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Thereafter, the EANNmodels (as another Markov algorithm)
with the identical structure (same input and output) were created
to predict the precipitation time series of the stations. As it was
mentioned in Sect. 2.2, the incorporation of artificial emotion
and ANN can improve the performance of the network via the
feedback loop between neurons and hormones systems. The
EANN model was utilized for precipitation predicting of the
stations, and the results are presented in Tables 7 and 8 for
one-step ahead and three-step ahead prediction, respectively.
As it can be seen in Tables 7 and 8, the number of the hormone
for scenario 1 is higher than scenario 2 because of employing the
observed data from the Ercan station as exogenous input in
simulating other stations’ precipitation.

As it is shown by Tables 3, 4, 5, 6, 7, and 8, the results of the
models (FFNN, WANN, and EANN) in scenario 1 show a bit
better performance for Ercan station than other stations in the
verification phase since this station is located in central and higher
parts of the island in contrast to the other stations which are
located in shore lines and are impacted more significantly by

the irregular variations of the sea condition. This can also be
confirmed by the standard variation values presented in Table 1
which show lower values for this station. Also, the results dem-
onstrated in the Tables 7 and 8 indicate that the epoch numbers of
both EANN and WANN models-based are remarkably lower
than the FFNN model. The difference between the epoch num-
bers of the models derives from the fast process of training in
EANN and WANN models. The external component of EANN
model (hormones) andwavelet decomposition part of theWANN
model may afford with the training iterations. The results indicat-
ed that the EANN model could deal with both seasonal and
autoregressive characteristics of the process and it can accurately
capture the signal features particularly peak values and obtained
comparatively high efficiency, while WANN and FFNN models
could not overcome the under/overestimation of the peak values.

In scenario 2, the models of the Kyrenia station in verification
step showed better efficiency than others. This can be due to its
proximity to Ercan station. In other words, not only the small
distance between Kyrenia and Ercan stations but also the

Fig. 7 (a) Observed versus computed precipitation time series by FFNN, WANN, and EANN models. (b) Observed versus computed (a detail) and
scatter plots for verification step for (c) EANN and (d) WANN models via scenario 1 for Gialousa station
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predominant wind direction over the island (which is from north-
west to southeast) make the precipitation pattern of both stations
more similar with regard to the others. This can also be clearly
seen from Table 2 which shows higher MI value between these
two stations.

Considering the outcomes of both scenarios, because of using
Ercan station’s data as exogenous input (in addition to each
station’s own data), the results of scenario 2 were better than
scenario 1, showing improvement of modeling efficiency up to
17% and 26% in calibration and verification steps, respectively.
For instance, Figs. 5, 6, 7, and 8 illustrate the results of the
models for the calibration and verification steps and scatter plots
for the verification step for Nicosia and Gialousa stations based
on scenarios 1 and 2, respectively.

As it can be seen fromTables 3, 4, 5, 6, 7, and 8 and Figs. 5, 6,
7, and 8, generally in most cases, the performance of EANN
model was better than other models; however, in some cases,
the WANN model’s performance was better than others.

According to Tables 3, 4, 5, 6, 7, and 8 and scatterplots in
Figs. 5, 6, 7, and 8, the superiority of EANN to capture the peak
points of precipitation time series in all of the stations compare to
FFNN has been illustrated in calculated values of DC peak.
Based on theMarkovian characteristic of the process, for predic-
tion of the system state at the upcoming time step, autoregressive
models use the states of the process at designated earlier time
steps. Therefore, the imposition of an instantaneous external
force to the network typically may lead to underrating the peak
values in autoregressive models. In this condition, the network
will experience an emotional situation which is dissimilar to
normal situations of the network. Therefore, in the training pro-
cess of the model, a hormone from the emotional part of EANN
acts as a dynamic component which reputedly sends the feed-
back to other parts of the system and adjusts the mode for the
emotional condition. From the mathematical perspective, the
dynamic hormones get activated in the occurrence of unusual
conditions. With no need for any external data processing unit,

Fig. 8 (a) Observed versus computed precipitation time series by FFNN, WANN, and EANN models. (b) Observed versus computed (a detail) and
scatter plots for verification step for (c) EANN and (d) WANN models via scenario 2 for Gialousa station
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the dynamic hormones magnify and modify the weights of the
network within the EANN framework. Conversely, during the
training process of FFNN, the network does not capture the
severe variations of the system. Consequently, when a statistical
component of the network begins the training using the data of
normal condition, an unexpected advent of severe precipitation
values in the input data can diversify the trained components.
Then, by returning the condition of the system to its normal state,
the confusion keeps continuing in the training process. This is
why appropriate training of FFNN models typically requires
long data sets with regard to the EANN method.

4 Conclusions

The current research has presented the first application of EANN
model (as a new generation of ANN-based models) for precipita-
tion forecasting. To assess the efficiency of the EANN model for
multi-step ahead prediction of monthly precipitation of the seven
stations located in the TRNC, its results were compared with the
results of hybrid WANN and conventional FFNN models. Two
scenarios were considered with different input variables that in
scenario 1, each station’s own pervious data were used for model-
ing, while in scenario 2, the central station’s (Ercan station) data
were also employed in addition to each station’s own data. The
results of two employed scenarios indicated that scenario 2 had
better performance and could enhance the modeling efficiency up
to 26%, in the verification step because of employing the observed
data from the Ercan station as exogenous input.

The analysis of the results in terms of computed DC, RMSE,
and DCpeak values shows that the EANN model provides better
results with regard to the other models (WANN and FFNN)
specially to capture the peak points. Also, the results derived
from the fast process of training in EANN and WANN models
with regard to the FFNNmodel. In other word, the hormones of
the EANNmodel andwavelet decomposition part of theWANN
model may afford with the training iterations.

With the recent developments in the ANN-based models,
although EANN model has been reliably employed to model
time series of various hydroclimatic variables (including precip-
itation), it is obvious that for a particular problem, different out-
comes may be obtained from different models over different
spans of the time series. With this regard, and as a research plan
for the future, it is suggested that different ensemble approaches
would provide the results with minimum error variance.
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