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Abstract
Extreme event magnitude and frequency are prerequisites for accurately designing and managing various water infrastructure
systems. This paper studies precipitation extremes in the Amman Zara Basin (AZB) using daily precipitation records from 24
weather stations during a period that exceeds 50 years. Two extreme precipitation series (the annual maximum (AM) and the peak
over threshold (POT)), four generalized probability distributions (generalized extreme value (GEV), generalized Pareto (GP),
generalized lognormal (GLN), and generalized logistic (GLO)) and the L moment method for distribution parameter estimation
are used. A mix of increasing and decreasing trends is observed at different stations for both the AM and POT series over the
study period. Since the POT series considers up to the fifth largest precipitation in some years, in contrast to the AM series, and
skips the largest precipitation in the AM series in other years, the trend analysis results for the POTseries differ slightly from those
for the AM series. According to the goodness-of-fit (Kolmogorov-Smirnov test and L moment diagram), the probability distri-
butions GEV, GLN, and GLO can better fit the AM series, with no unique distribution among them consistently ranking the best
for all stations, while the POT series is better fitted by the GP distribution. The calculated extreme precipitation amounts of the
AM series are up to 18% greater than those of the POTseries for the same return period. Additionally, the AM series can describe
extreme precipitation events better than the POT series based on relative error calculations. The 50- and 100-year extreme
precipitation events occurred more frequently in recent years.
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Kolmogorov-Smirnov test . Mann-Kendall test

1 Introduction

Since as early as the middle of the last century, extreme hy-
drological events (i.e., high and low precipitation, flood and
drought) have been an active research subject. Extreme event
magnitude and frequency (return period) are prerequisites for
accurately designing and managing various water infrastruc-
ture systems (including dam spillways, culverts, storm sewer
systems, water supply systems, and flood control structures)
and in climate change and flood risk assessment studies. In its
fourth assessment report (IPCC 2007), the Intergovernmental
Panel on Climate Change (IPCC) stated that, influenced by
excessive greenhouse gas emissions, global temperatures are

likely to increase during the twenty-first century. This will
probably result in changing of the hydrological cycle.
Therefore, this changing climate is very likely to affect the
frequency and intensity of extreme events. In recent years, a
number of worldwide research studies have reported an in-
crease in extreme precipitation events in terms of frequency
and magnitude in most parts of the world, even in regions
where there has been a decreasing trend in total precipitation
(Arnone et al. 2013; Babar and Ramesh 2014; Douglas and
Fairbank 2011; Groisman et al. 2005; Lenderink and van
Meijgaard 2008; Ma et al. 2015; O’Gorman 2015).

Frequency analysis is a statistical technique that relates the
magnitude of extreme events to their frequency of occurrence
using an appropriate probability distribution function (Chow
et al. 1988). In this technique, a historical precipitation series
is used to select an appropriate probability distribution and its
associated parameters. In the literature, the analysis of extreme
events involves the use of annual maximum (AM) series
(Adamowski 2000; Guru and Jha 2015; Li et al. 2016; Saf
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2009; She et al. 2013; Xia et al. 2012a, 2012b) and peaks over
a threshold (POT) series (Adamowski 2000; Guru and Jha
2015; Li et al. 2014a, b, 2016; She et al. 2013; Xia et al.
2012a, 2012b), which are also known as partial duration
(PD) series, as the most common extreme precipitation data
series. While the AM series considers only the largest precip-
itation event in each year, the POT series involves more infor-
mation about the extremes because the second or third largest
precipitation amount may also cause extreme precipitation
events in some years (Xia et al. 2012b). For data series with
limited records, Madsen et al. (1997a) recommend using POT
data series. Madsen et al. (1997b) and others (Zin and Jemain
2010) also recommend the use of POT data series since this
approach could improve the parameter estimation of the prob-
ability distribution that represents the data.

Unfortunately, there is no unique probability distribution
that can be implemented over other distributions for at-site
or regional frequency analysis. Therefore, several possible
theoretical probability distributions have been used or sug-
gested to describe extreme precipitation amounts (e.g., ex-
treme value type I, called the Gumbel; generalized extreme
value (GEV); extreme value type III, called the Weibull; nor-
mal; lognormal; gamma; Pearson type 3; log Pearson type 3;
exponential; generalized Pareto (GP); and Wakeby), of which
the extreme value type I (Gumbel) distribution and log
Pearson type 3 distribution have found widespread application
in hydrological modeling (Haddad and Rahman 2011).

Al-houri et al. (2014) indicated that the lognormal distribu-
tion provides a better fit than a linear distribution to the annual
daily maximum precipitation in the Amman Zara Basin
(AZB), Jordan. Zhi Li et al. (2014a) found that the skewed
normal distribution performs the best among six probability
distributions (exponential, gamma, Weibull, skewed normal,
mixed exponential, and hybrid exponential/generalized
Pareto) in reproducing extreme precipitation events on the
Loess Plateau, China. However, Li et al. (2015) showed that
the GEV, Burr, andWeibull distributions provide the best fit to
both annual and seasonal maximum precipitation based on
daily precipitation data at 13 stations in the Heihe River and
Shiyang River basins. Beskow et al. (2015) compared four
probability distributions (kappa, GEV, Grumbel, and lognor-
mal) to identify the most appropriate distribution for the
modeling of extreme precipitation events in southern Brazil.
The GEV, among four other probability distributions, namely,
the generalized logistic (GLO), Weibull, gamma, and lognor-
mal distributions, represents the distribution with the most
accurate seasonal maximum precipitation estimates for south-
ern Quebec, Canada (Benyahya et al. 2014). Vahid Rahmani
et al. (2014) used the Weibull distribution to calculate the
extreme precipitation frequency using daily precipitation data
(1920–2009) from 24 stations in Kansas and 15 stations from
adjacent states. Some studies have used the GEV (Du et al.
2014; Madsen et al. 1997a, 1997b; Xia et al. 2012b) and

generalized GP (Du et al. 2014; Li et al. 2014a, b; Madsen
et al. 1997a, 1997b; Xia et al. 2012b) distributions to analyze
historical extreme precipitation events. Moreover, from these
studies, the conclusion that the GEV is expected to fit AM
series and that the GP is the expected distribution to better
fit the POT series is supported. The appropriate probability
distribution among candidate distributions is often selected
by either statistical tests (the chi-square test, Kolmogorov-
Smirnov (KS) test, Anderson-Darling test, Akaike informa-
tion criterion or Bayesian information criterion) or graphical
methods (the quantile-quantile plot or the L moment ratio
diagram).

Since it was introduced by Hosking (1990), due to its the-
oretical advantages listed below in the data and methodology
section, the L moment method has been increasingly used in
hydrological frequency analysis for the estimation of proba-
bility distribution parameters rather than other standard
methods, such as the moment method, maximum likelihood
method, and least-squares method (Gubareva and Gartsman
2010; Li et al. 2014a, b; Rahman et al. 2013; She et al. 2013;
Xia et al. 2012b; Yang et al. 2010; Zakaria et al. 2012).
Additionally, this method has been widely used for regional
flood (Adamowski 2000; Ellouze and Abida 2008; Noto and
Loggia 2009; Saf 2009; Yang et al. 2010) and precipitation
(Abolverdi and Khalili 2010; Hassan and Ping 2012; Parida
and Moalafhi 2008; Zakaria et al. 2012) frequency analysis,
for mapping extreme drought events (Núñez et al. 2011; She
et al. 2013; Zin and Jemain 2010) and for low-flow studies
(Chen et al. 2006).

Intensive storms often cause property damage and loss of
life. The November 5, 2015 flash flood in the capital of
Jordan, Amman, resulting from approximately 45 mm of pre-
cipitation over 40 min, caused four deaths and caused hun-
dreds of vehicles to be washed away or left stranded.
Additionally, as many as 20 families were left without houses.
However, studies about precipitation frequency analysis and
the selection of an appropriate probability distribution to fit
available historical data have received very limited attention
from researchers in Jordan. However, most of the precipitation
data are not analyzed comprehensively. The focus in studies
has been on the general aspects of precipitation (Dahamsheh
and Aksoy 2007; Salahat and Al-qinna 2015) (pattern, trend,
and variability) and climate change impact (Matouq et al.
2013; Salahat and Al-qinna 2015; Törnros and Menzel
2014) and adaptation scenarios. To the best of my knowledge,
only the study performed by Al-houri et al. (2014) has pre-
sented the application of the normal and lognormal distribu-
tions to fit only the AM data series in the AZB, Jordan.
Accordingly, there is a need for reliable estimates of extreme
precipitation events. Thus, the major objective of the present
study was to examine the applicability of generalized proba-
bility distributions (GEV, GP, generalized lognormal (GLN),
and GLO) to reliably represent the AM and POT data series at

1076 M. N. Ibrahim



each of a number of selected weather stations in AZB, Jordan.
The method of L moments was applied for parameter estima-
tion of each aforementioned distribution. The applicability of
the probability distributions was measured by using the
Kolmogorov-Smirnov goodness-of-fit test and the L moment
ratio diagram. Special emphasis was placed on the investiga-
tion of extreme precipitation trends over time using the Mann-
Kendall (M-K) test. A secondary objective was to determine
the precipitation amount at each selected weather station for
the AM and POT data series under return periods of 5, 10, 25,
and 50 years based on the best-fitted distribution. The results
of this research will provide valuable information and consti-
tute the basis for future studies on extreme precipitation anal-
ysis and climate change assessments in the AZB.

2 Data and methodology

2.1 Study area and datasets

The Amman Zara Basin (AZB), located in the northwest part
of Jordan between 213000 to 319000 east and 1140000 to
1220000 north (according to the Palestine grid), was selected
as the study area. The total basin area is approximately 4150
km2, of which 3725 km2 is located in Jordan, and the remain-
ing area is in Syria (Fig. 1). The population density in AZB is
relatively high, including the two largest urban cities in
Jordan: Amman (the capital) and Zara. The AZB also contains
most of Jordan’s commercial and industrial activities.

The elevation of the AZB ranges from 350 m below mean
sea level at the Jordan River to 1100 m above mean sea level
near Sweilih. The eastern margin of the basin is part of the
desert plateau. Toward the west, the basin changes to highland

and then becomes progressively steeper until it reaches the
Jordan valley.

Daily precipitation records from 24 weather stations spread
across the AZB during a period that exceeds 50 years (1940–
2015 for most stations), collected from theMinistry ofWater and
Irrigation in Jordan, were used in this study. The locations of
these stations across the basin are shown in Fig. 1, with the
reference station ID, station name, station coordinates, and statis-
tical characteristics of each station given in Table 1. The selected
stations have relatively complete records for the whole period.

The climate in AZB is considered a semiarid type with
uneven spatial and temporal distributions of precipitation
amounts. The bulk of this amount is concentrated between
October and May (i.e., in the winter season). Statistically,
the largest precipitation frequencies occur in January or
February, with the maximum precipitation usually occurring
in December or January. With decreasing altitude, the precip-
itation amount decreases toward the east from approximately
500 mm average annual precipitation in the west (Sweilih
station) to approximately 100 mm in the east (Sabha and
Subhiyeh station) (Table 1).

The coefficient of variation (CV), a statistic measuring the
relative deviation from the average, is calculated in Table 1
based on annual precipitation and is an indicator of the inter-
annual precipitation variation (i.e., year-to-year variability)
throughout the basin. The spatial distribution of the CV, with
values ranging from 0.32 to 0.51, indicates high interannual
variability, which becomes more variable in the middle and
east parts of the basin as aridity increases.

In this study, both the annual maximum (AM) series and
the peak over threshold (POT) series are considered at each
station. The AM series consists of the annual maximum daily
precipitation, while the POT series contains all the daily
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precipitation whose magnitude exceeds the predefined thresh-
old value for all values of recorded daily precipitation. More
details on the selection of the threshold value will be given
below in the results and discussion section (i.e., Section 3.1).

2.2 The Mann-Kendall test

The Mann-Kendall (M-K) test (Kendall 1975; Mann 1945) is
the most widely used nonparametric statistical test for tempo-
ral trend detection in meteorological and hydrological data
series (Ahmad et al. 2015; Arnone et al. 2013; Atta-ur-
Rahman and Dawood 2017; Deni et al. 2010; Douglas and
Fairbank 2011; Fiala et al. 2010; Haktanir et al. 2013; Ouarda
et al. 2014; Porto de Carvalho et al. 2013; Xia et al. 2012b),
such as temperature, precipitation, and streamflow. The test is
rank-based, powerful when data are skewed, allows missing
values and does not require that the data conform to the nor-
mal probability distribution (Yue et al. 2002).

The M-K test involves testing of the hypothesis in which
the null hypothesis,H0, assumes that the data are independent,
identically distributed, and not correlated (i.e., no trend will be

observed). The alternative hypothesis, Ha, is that the data fol-
low a monotonic trend over time (i.e., there will be either a
significant positive or a significant negative trend). The calcu-
lation of the M-K test statistics S and V(S) and standardized
test statistics ZMK for a time series of n observation data points
are defined as follows (Kendall 1975).

S ¼ ∑
n−1

i¼1
∑
n

j¼iþ1
sign x j−xi

� � ð1Þ

where S computes the difference between a later-measured
value and all earlier-measured values, (xj − xi), by assigning
integer values for (xj − xi) as follows: (xj − xi) = {1 for (xj − xi)
> 0; 0 for (xj − xi) = 0; and − 1 for (xj − xi) < 0}.

For large values of n, the statistic S is approximately nor-
mally distributed (Kendall 1975) with a mean, E(S) equal to

zero, and the variance is given by V Sð Þ ¼ n n−1ð Þ 2nþ5ð Þ
18 .

Therefore, the standardized M-K test statistic ZMK is given
by ZMK ¼ S−1ffiffiffiffiffiffiffi

V Sð Þ
p for S > 0, ZMK = 0 for S = 0, or ZMK ¼

Sþ1ffiffiffiffiffiffiffi
V Sð Þ

p for S < 0 and follows a standard normal distribution.

Table 1 Selected weather stations basic information (ID, name, coordinates, and elevation) and their statistics based on annual precipitations

Coordinates a Annual precipitation

No. Station ID Station name Latitude Longitude Elevation Mean STD Skewness Kurt CV (%)

1 AL0002 Midwar 1188500 244000 760 230.06 98.00 0.74 0.59 42.6

2 AL0003 Bal’ama 1182800 252700 695 201.68 77.26 0.26 0.07 38.3

3 AL0004 Jarash 1187500 234500 585 350.15 121.65 0.46 0.16 34.7

4 AL0005 Kitta 1187000 229500 665 534.55 186.21 0.16 − 0.39 34.8

5 AL0010 Deir Alla agr. station 1178000 208500 − 224 269.60 92.13 0.76 0.19 34.2

6 AL0012 Sukhna 1171000 250700 500 145.30 61.41 0.57 0.34 42.3

7 AL0013 Nawasif 1166500 267500 590 126.72 52.07 0.12 − 0.67 41.1

8 AL0015 Zara 1163800 253000 610 118.53 61.02 0.19 0.14 51.5

9 AL0016 Ruseifa 1158500 248500 655 147.36 58.34 0.39 0.13 39.6

10 AL0017 Sweilih 1159000 229500 1000 488.85 180.11 0.95 0.89 36.8

11 AL0018 Jubeiha 1159200 232000 980 463.18 165.61 0.38 0.41 35.8

12 AL0019 Amman airport 1153800 243500 790 262.55 92.63 0.42 − 0.44 35.3

13 AL0022 Amman Hussein college 1152000 238200 834 373.00 137.82 0.65 0.06 36.9

14 AL0027 Subeihi 1173000 216500 500 403.46 157.87 0.73 1.19 39.1

15 AL0028 Rumeimin 1168500 225500 675 357.90 135.26 0.59 0.80 37.8

16 AL0035 K. H. nursery evap. St. (Baq’a) 1165400 230000 700 327.64 115.33 0.80 1.02 35.2

17 AL0036 Prince Feisal nursery 1180500 234500 300 329.24 131.10 0.79 − 0.01 39.8

18 AL0045 Um Jauza 1167000 220000 860 495.72 180.06 0.86 1.73 36.3

19 AL0047 Sihan 1171800 221600 495 378.51 121.58 0.43 − 0.55 32.1

20 AL0048 Khaldiya 1177000 276000 630 124.91 62.91 0.92 1.76 50.4

21 AL0053 King Talal Dam 1178000 228600 218 254.62 104.42 0.39 0.91 41.0

22 AL0054 Hashimiya 1171700 255200 550 120.55 50.94 0.40 − 0.08 42.3

23 AL0058 Sabha and Subhiyeh 1194000 291800 850 106.17 54.37 0.77 1.01 51.2

24 AL0059 Um El Jumal evap. St. 1190400 276800 650 114.7 47.9 0.2 − 0.07 41.7

a Palestine coordinates
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The null hypothesis is rejected (i.e., a significant trend ex-

ists that is either positive or negative) if ZMK
�� �� > Zcritical

1−α=2 in a

two-sided test. The critical value Zcritical
1−α=2 determined from the

standard normal table at a significance level α of 0.05 is 1.96.
Thus, a positive ZMK value (ZMK > 1.96) denotes a significant
increasing trend at the 5% significance level, and a negative
value (ZMK < − 1.96) denotes a significant decreasing trend at
the 5% significance level.

2.3 Extreme precipitation probability distribution
models

In this research, four generalized probability distributions
(namely, GEV, GP, GLN, and GLO) are used to fit the AM
and POT data series. Table 2 presents the probability density
functions (PDFs) and the cumulative density functions
(CDFs) of these distributions with their domains. In these
distributions, the random variable x represents an extreme
precipitation amount, ξ is the location parameter, α is the scale
parameter, and k is the shape parameter.

Fitting each of the aforementioned probability distributions
to the observed data set can be accomplished by estimating its
parameters (i.e., shape, location, and scale parameters). In this
study, parameters are estimated using the L moment method.

2.4 L moment method

The main role of L moments is in estimating parameters for
probability distributions. Additionally, Lmoments are consid-
ered another way to describe the shape of a probability and
data samples (Hosking 1990) (i.e., provide measures of loca-
tion, dispersion, skewness, and kurtosis). L moments, as

defined by Hosking (1990) and Hosking and Wallis (1997),
appeared to be a modification of probability-weighted mo-
ments (PWMs) as proposed by Greenwood et al. (1979).
Essentially, L moments are linear combinations of
probability-weighted moments.

The main advantage of L moments over conventional
moments is that the former are linear functions of the data
(Hosking 1990). The conventional moment estimators in-
volve squaring, cubing, and quadrupling the observed data,
as in the sample variance, sample coefficient of skewness
and sample coefficient of kurtosis, respectively, which
gives greater weight to observed data far from the mean
value, leading to high bias and variance. Thus, L moment
estimators of the dimensionless coefficients of variation
and skewness and kurtosis are almost unbiased (Hosking
1990; Stedinger et al. 1993). Additionally, L moments suf-
fer less from the effects of sampling variability (Hosking
1990) and are therefore not as sensitive to extreme values
(maximum and minimum), and L moment estimates from
small samples are subject to small bias. Furthermore, the
required computation is quite limited compared with other
traditional techniques, such as maximum likelihood and
least-squares (Pandey et al. 2001). L moments are capable
of characterizing a wider range of distributions compared
to conventional moments. A distribution may be specified
by its L moments, even if some of its conventional mo-
ments do not exist (Hosking 1990). Accordingly, the meth-
od of L-moments has found wide application in the field of
hydrology, especially in the case of parameter estimation
of probability distributions in frequency analysis studies
(Gubareva and Gartsman 2010; Li et al. 2014a, b;
Rahman et al. 2013; She et al. 2013; Xia et al. 2012b;
Yang et al. 2010; Zakaria et al. 2012; Hosking 2006).

Table 2 The probability density functions (PDF), cumulative distribution function (CDF) and domain for selected extreme probability distribution in
this study

Distributions PDF CDF Domain

GEV f xð Þ ¼ α−1e− 1−kð Þy−e−y F xð Þ ¼ e−e
−y − ∞ < x ≤ ξ + α/k if k > 0

− ∞ < x < ∞ if k = 0
ξ + α/k ≤ x < ∞ if k < 0

GP f (x) =α−1e−(1− k)y F(x) = 1 − e−y ξ < x ≤ ξ + α/k if k > 0
ξ ≤ x < ∞ if k ≤ 0

GLO f xð Þ ¼ α−1e− 1−kð Þy

1þe−yð Þ2 F xð Þ ¼ 1
�

1þe−yð Þ ∞ < x ≤ ξ + α/k if k > 0
− ∞ < x < ∞ if k = 0
ξ + α/k ≤ x < ∞ if k < 0

GLN f xð Þ ¼ eky−y
2=2

α
ffiffiffiffi
2π

p F(x) = ϕ(y) − ∞ < x ≤ ξ + α/k if k > 0
− ∞ < x < ∞ if k = 0
ξ + α/k ≤ x < ∞ if k < 0

Where ϕ( )is cumulative distribution function of standard normal distribution and y ¼ −k−1ln 1−k x−ξð Þ=αf g; k≠0
x−ξð Þ=α ; k ¼ 0

�
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In practice, Lmoments are estimated using the observation
data x(i) from a finite sample of size n that have been arranged
in ascending order. The first four L moments are given by

λ1 ¼ b0 ¼ X , λ2 = 2b1 − b0, λ3 = 6b2 − 6b1 + b0 and λ4 =
20b3 − 30b2 + 12b1 − b0, where b0, b1, b2, and b3 are sample
unbiased estimators of the PWMs and defined by:

b0 ¼ ∑
n

i¼1

1

n
x ið Þ ; b1 ¼ ∑

n

i¼2

i−1ð Þ
n n−1ð Þ x ið Þ ;

b2 ¼ ∑
n

i¼3

i−1ð Þ i−2ð Þ
n n−1ð Þ n−2ð Þ x ið Þ;

b3 ¼ ∑
n

i¼1

i−1ð Þ i−2ð Þ i−3ð Þ
n n−1ð Þ n−2ð Þ n−3ð Þ x ið Þ

According to terminology in Hosking (1990), λ1 is the L
location, a measure of central tendency, and represents the
mean of the distribution. λ2 is the L scale, analogous to the

standard deviation. Additionally, other dimensionless quanti-
ties called Lmoment ratios, defined as L skewness τ3 (τ3 = λ3/
λ2) and L kurtosis τ4 (τ4 = λ4/λ2), are measures of skewness
and kurtosis, respectively. Finally, the dimensionless ratio
called the coefficient of L variation, defined as τ2 (τ2 = λ2/
λ1), is analogous to the conventional CV. The estimates of the
scale, location, and shape parameters of the GEV, GP, GLO,
and GLN distributions by L moments are given in Table 3 as
developed by Hosking (1990).

2.5 Return period

In hydrology, the return period (T), also known as the average
recurrence interval, is a means to express exceedance proba-
bilities. The return period is defined as the average length of
time in years in which an event of a given magnitude is to be
equaled or exceeded on average once. Mathematically, the
return period of an event of a given magnitude is equal to

Table 3 The L moments estimates of parameters and predicted precipitation amount associated with return period T years for selected extreme
probability distribution in this study

Distributions L moments parameters estimators Predicted rainfall amount associated with return period T years (the quantiles)

GEV k̂≈7:8590cþ 2:9554c2

c ¼ 2
3þτ3

− log2
log3

α̂ ¼ λ2 k̂
1−2−k̂ð ÞΓ 1þk̂ð Þ

ξ̂ ¼ λ1−α 1−Γ 1þ k̂
� 	n o

=k̂

X T ¼ ξ̂ þ
α̂ 1− −ln 1− 1

T


 �� �^k� �

k̂
; k̂≠0

ξ̂−α̂ ln −ln 1−
1

T

 �� �
; k̂ ¼ 0

8>>>><
>>>>:

GP k̂ ¼ 1−3τ3ð Þ�
1þτ3ð Þ

α̂ ¼ 1þ k̂
� 	

2þ k̂
� 	

λ2

ξ̂ ¼ λ1− 2þ k̂
� 	

λ2

XT ¼ ξ̂ þ
α̂ 1− 1− 1− 1

T


 �� �^k� �

k̂
; k̂≠0

ξ̂−α̂ ln 1− 1−
1

T

 �� �
; k̂ ¼ 0

8>>>><
>>>>:

GLO k̂ ¼ −τ3
ξ̂ ¼ λ1 þ λ2−α̂ð Þ

k̂
α̂ ¼ λ2

Γ 1þk̂ð ÞΓ 1−k̂ð Þ
XT ¼ ξ̂ þ

α̂ 1− 1− 1− 1
T


 �� �
= 1− 1

T


 �
 �^k� �

k̂
; k̂≠0

ξ̂−α̂ ln 1− 1−
1

T

 �� �
= 1−

1

T

 �� �
; k̂ ¼ 0

8>>>><
>>>>:

GLN k̂ ¼ −τ3
2:0466−3:6544τ23þ1:8397τ43−0:2036τ

6
3

1−2:0182τ23þ1:242τ43−0:21742τ
6
3

α̂ ¼ λ2 k̂exp −k̂
2
=2

� �
1−2ϕ −k̂=

ffiffi
2

pð Þ

ξ̂ ¼ λ1− α̂
k̂

1−exp −k̂
2
=2

� 	� 	

The quantiles of GLN has no explicit analytical form

Where Γ() is gamma function and ϕ( ) is cumulative distribution function of standard normal distribution
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the reciprocal of the probability of exceedance, expressed as a
fraction, of that event; i.e., T = 1/p, where p denotes the ex-
ceedance probability P(X ≥ x). In terms of F, the cumulative
density function evaluated for a particular event is given by T
= 1/(1 − F). Table 3 gives the precipitation amount (i.e., the
quantile) of GEV, GP, and GLO for a specified return period of
T years.

To accomplish the second objective, the best fitted proba-
bility distribution among GEC, GLO, GP, and GLN for a
particular AM or POT data series was used to predict the
precipitation amount at each station when the return period T
was 5, 10, 25, and 50 years.

2.6 Assessment of goodness-of-fit

The goodness-of-fit of a probability distribution describes its
consistency with an observed data set. Most of the procedures
that test goodness-of-fit are presented as special
implementations of a more general method of comparing data
with a distribution. This kind of comparison can be framed in
terms of a hypothesis test in which the null hypothesis (Ho) for
the test is the hypothesized probability distribution that fits the
data adequately at a particular significance level. In this study,
nonparametric Kolmogorov-Smirnov (KS) goodness-of-fit
tests at the 5% significance level were employed to identify
the applicability of the aforementioned probability distribu-
tions to fit the AM and POT data series. Moreover, the prob-
ability distribution that best fit the data among the applicable
distributions was the one with the minimum value of the KS
test statistic. In addition, a graphical assessment known as the
L moment ratio diagram was employed to further evaluate
whether the AM and POT data series conformed to specific
probability distributions.

2.6.1 KS goodness-of-fit test:

The KS goodness-of-fit test is a nonparametric test based on a
comparison of the cumulative distribution functions of the
hypothesized distribution F0(x) and the empirical stepwise
distribution Fn(x) mathematically expressed in Eq. (2) after
the data series is sorted in ascending order. The KS test statis-
tic (Dn) is the maximum absolute difference between the hy-
pothesized and empirical values of the cumulative distribution
over the entire range of X, Dn =max |F0(x) − Fn(x)|. The null
hypothesis is rejected if the calculated Dn value exceeds a
tabulated critical value (Dn-critical) for the sample size n and
5% significance level.

Fn xð Þ ¼
0 ; x < x1
k
n

; xk < x < xkþ1

1 ; x > xn

8><
>: ð2Þ

where x1, x2,… . . , xn are the values of the ordered extreme
precipitation amount and k is the rank of the precipitation
amount in the data series organized in ascending order.

2.6.2 L Moment ratio diagram

The L moment ratio diagram is a graphical method for the
evaluation of the goodness-of-fit. This method was introduced
by Hosking (1990) as a useful tool for the selection of a suit-
able distribution among alternative distribution functions to
describe observed data. The L moment ratio diagram contains
the L kurtosis value (τ4) plotted against the L skewness value
(τ3). For various distributions, the theoretical relationship of
τ4 as a function of τ3 is available in the form of polynomial
approximation expressions, as suggested by Hosking and
Wallis (1997). The L moment diagram is usually constructed
in practical ranges of 0 < τ3 < 0.5 and 0 < τ4 < 0.4 (Hosking
and Wallis 1997). For the considered distributions in this
study, these expressions are given as follows:

τGEV4 ¼ 0:10701þ 0:11090τ3 þ 0:84838τ23−0:06669τ
3
3

þ 0:00567τ43−0:04208τ
5
3 þ 0:03763τ63 ð3Þ

τGP4 ¼ 0:20196τ3 þ 0:95924τ23−0:20096τ
3
3 þ 0:04061τ43 ð4Þ

τGLO4 ¼ 0:16667þ 0:83333τ23 ð5Þ
τGLN4 ¼ 0:12282þ 0:77518τ23 þ 0:12279τ43−0:13638τ

6
3

þ 0:11368τ83 ð6Þ

For each station, the sample estimates of L skewness (t3)
and L kurtosis (t4) for the AM and POT data series were
calculated and represented as point coordinates (t3, t4) in the
L moment diagram. The best-fitted distribution function can
be selected by comparing the vertical distance from the point
(t3, t4), representing the station, to various candidate distribu-
tion function curves. The nearest curve to the point (i.e., the
minimum vertical distance) can be chosen as the best-fitted
distribution function for that station (She et al. 2013; Xia et al.
2012b; Zin and Jemain 2010).

3 Results and discussion

3.1 POT series threshold selection

The POTseries contains all the daily precipitation whose mag-
nitude exceeds a predefined threshold value for all values of
recorded daily precipitation. The selection of the most proper
threshold value to be used for generating the POT series re-
mains a crucial task. A low threshold value can violate the
underlying assumption of the serial independence of POT
series (Zin and Jemain 2010), while a high threshold value
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will generate few extreme data points, is inadequate for prob-
ability distribution parameter estimation (Li et al. 2014a, b)
and leads to high variance (Coles 2001). Several methods
have been introduced for the selection of an optimal threshold
value, such as the percentile value method, mean excess plot
method, absolute critical value method, and Hill plot method.

In this study, the threshold is determined by the percentile
value method together with the annual average occurrence
number (AAON) criterion. AAON is defined as the number
of data points in the POT data set divided by the timespan of
data (Li et al. 2014a, b). Four POT extreme data series were
constructed based on the 90th, 95th, 97.5th, and 99th percen-
tile values. The optimal threshold value is the percentile value
corresponding to the POT data series with an AAON criterion
between 1 and 2 (Li et al. 2014a, b; Liu et al. 2017). Table 4
shows the potential threshold values based on the percentile
method, as well as AAON values at each weather station in
AZB. As illustrated, the 95th percentile of the recorded daily
precipitation can be considered the optimal precipitation
threshold for all weather stations in AZB except for three
weather stations, AL0010, AL0018, and AL0019. The
97.5th percentile is a more suitable optimal precipitation
threshold for these three stations. These percentile values

(95th and 97.5th) as optimal precipitation thresholds are not
surprising results for a semiarid climate region with rare pre-
cipitation events, as in AZB. Additionally, as the AAON value
increases, the threshold value decreases.

3.2 The distribution and variation of AM and POT

Figure 2 illustrates the AM and POT series for the Sweilih
(AL0017) and Sabha and Subhiyeh (AL0058) weather sta-
tions as an example since these series include the highest
and lowest annual precipitation averages, respectively. In the
POT series at the Sweilih weather station, the tenth largest
precipitation in 1992 was included, and up to the fifth largest
precipitation in some other years was also included (i.e., 1951,
1971, and 1991). Additionally, the maximum precipitation
amount of 44.5 mm in 2006 is lower than the tenth largest
precipitation amount in 1992 of 45.5 mm in the POT series at
the Sweilih weather station. Moreover, 21 out of 50 extreme
values in the AM series are not included in the POT series for
the Sabha and Subhiyeh weather station. These observations
confirm previous findings in the literature, for instance (Xia
et al. 2012b), that the POT series must also be considered

Table 4 The precipitation 90th,
95th, 97.5th, and 99th percentile
values and AAON values, in
curly brackets, at each weather
station in AZB

No. Station ID 90th 95th 97.5th 99th

1 AL0002 20.50 { 2.62} 28.46 { 1.30} 38.00 { 0.68} 48.98 { 0.27}

2 AL0003 19.00 { 2.63} 26.00 { 1.37} 35.00 { 0.67} 46.00 { 0.29}

3 AL0004 23.14 { 3.75} 33.41 { 1.88} 44.96 { 0.95} 56.19 { 0.39}

4 AL0005 39.00 { 3.39} 54.45 { 1.68} 68.00 { 0.87} 90.00 { 0.37}

5 AL0010 16.80 { 4.21} 23.40 { 2.11} 31.50 { 1.06} 42.00 { 0.44}

6 AL0012 13.00 { 2.82} 18.50 { 1.40} 24.09 { 0.70} 31.46 { 0.28}

7 AL0013 13.50 { 2.21} 18.83 { 1.11} 23.81 { 0.55} 28.93 { 0.23}

8 AL0015 12.17 { 2.49} 18.00 { 1.26} 24.07 { 0.62} 31.57 { 0.26}

9 AL0016 15.00 { 2.46} 21.10 { 1.21} 28.93 { 0.61} 36.05 { 0.24}

10 AL0017 32.40 { 3.76} 45.45 { 1.89} 59.49 { 0.94} 84.07 { 0.39}

11 AL0018 29.00 { 4.19} 40.00 { 2.30} 52.08 { 1.13} 69.96 { 0.49}

12 AL0019 16.30 { 4.47} 24.08 { 2.16} 31.70 { 1.09} 42.00 { 0.44}

13 AL0022 27.50 { 3.61} 40.05 { 1.79} 51.31 { 0.90} 67.51 { 0.36}

14 AL0027 31.00 { 3.09} 42.50 { 1.55} 55.00 { 0.82} 78.40 { 0.31}

15 AL0028 30.00 { 3.15} 41.65 { 1.47} 57.79 { 0.75} 72.43 { 0.31}

16 AL0035 23.33 { 3.76} 32.97 { 1.89} 40.87 { 0.94} 55.73 { 0.39}

17 AL0036 24.26 { 3.35} 35.00 { 1.70} 42.46 { 0.85} 55.19 { 0.35}

18 AL0045 40.00 { 3.20} 53.01 { 1.55} 68.73 { 0.78} 93.62 { 0.33}

19 AL0047 28.00 { 3.44} 38.32 { 1.68} 45.12 { 0.84} 65.00 { 0.36}

20 AL0048 13.00 { 2.35} 18.00 { 1.16} 22.04 { 0.57} 30.19 { 0.24}

21 AL0053 19.80 { 3.18} 27.03 { 1.58} 33.00 { 0.84} 40.00 { 0.40}

22 AL0054 11.50 { 2.51} 16.50 { 1.31} 20.00 { 0.76} 26.96 { 0.27}

23 AL0058 11.74 { 2.05} 16.00 { 1.06} 20.50 { 0.50} 30.00 { 0.22}

24 AL0059 9.00 { 2.94} 12.80 { 1.48} 16.00 { 0.78} 21.62 { 0.30}

The bold number is the selected optimal precipitation threshold value correspond to AAON criteria between 1 and
2
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when precipitation extremes are studied since the POT series
provides more information on extremes than the AM series.

Figure 3 depicts the spatial distribution of the mean
and the CVof the AM and POT series in AZB. The means
(Fig. 3a, b) for both the AM and POT series have similar
distributions with east-to-west gradients in which the
maximum values are almost observed in the western part
and the minimum values are almost observed in the east-
ern part. From Fig. 3c, d, a similar spatial pattern can be
observed for AM and POT for the CV values. Large CV
values are almost observed in the northeastern part and

western part of the basin, while minimum values are al-
most observed in the middle part. Additionally, the values
of the CV are larger than 0.37 in the whole area for AM,
while for POT, the values are smaller than 0.44 in most of
the region. It is also apparent that the mean of the POT
series is slightly higher than that of the AM series, which
indicates that the POT series considers more information
on extremes than the AM series. However, the CV of the
AM series is higher than that of the POT series. This
suggests that the majority of POT series values are near
the threshold level at each station.
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Fig. 2 AM and POT series of a Sweilih weather station (AL0017) and b Sabha and Subhiyeh weather station (AL0058)
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Fig. 3 The spatial distribution of the mean and the coefficient of variation (CV) of AM and POT series in AZB
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3.3 Trend analysis of extreme precipitation

Table 5 summarizes the results of the Mann-Kendall (M-K)
test. The table shows the test statistic value ZMK obtained at
each station for the annual maximum precipitation (AM) and
the POT. The ZMK values indicate that a mix of increasing and
decreasing trends is observed at different stations for both
series. However, not all trends are significant. For the AM
series, an increasing trend in extreme precipitation is detected
at 14 stations, among which three are significant at the 5%
significance level (i.e., the null hypothesisHo for the M-K test
is rejected since |ZMK| > 1.96), including AL0002, AL0045,
and AL0047. The first station is located in the northern part of
AZB, whereas the other two stations are located in the western
part of the basin. A decreasing trend is detected at 10 stations.
None of these decreasing trends is significant.

Since the POT series considers up to the fifth largest pre-
cipitation in some years, in contrast to the AM series, and at
the same time skips the largest precipitation in the AM series
in other years, the trend analysis results for the POT series

differ slightly from those for the AM series. For the POT
series, an increasing trend in extreme precipitation is detected
at 16 stations, 4 of which are significant at the 5% significance
level. These stations with significant increasing trends include
one more station, AL0003, in addition to those stations found
by trend analysis of the AM series reported earlier. A decreas-
ing trend is detected at eight stations, among which one station
(i.e., AL0054) indicates a significant decreasing trend. In con-
trast to the AM series, when the POTseries is considered, four
stations show increasing trends rather than decreasing trends
(AL0012, AL0015, AL0019, and AL0053), and two stations
show negative trends rather than positive trends (AL0004 and
AL0036).

Figure 4 illustrates the results of the M-K test. It is worth
noting that increasing-trend stations are mostly found in the
western part of the basin, while decreasing trends are found at
stations in the northwestern, middle and eastern parts of the
basin.

The occurrence date and amount of maximum precipitation
for each station throughout the entire study period are

Table 5 TheMann-Kendall (M-K) test statistic value (ZMK) and the Kolmogorov-Smirnov (KS) test statistic value (Dn) of AM and POTseries for each
weather station

AM series POT series

M-K GEV GLN GP GLO Best M-K GEV GLN GP GLO Best

Station ID Z value distribution Z value distribution

AL0002 2.16 0.054 0.053 0.118 0.059 GLN 2.82 0.052 0.055 0.065 0.047 GLO

AL0003 0.68 0.067 0.071 0.485 0.062 GLO 2.09 0.070 0.065 0.052 0.076 GP

AL0004 1.26 0.062 0.064 0.236 0.063 GEV − 0.06 0.048 0.048 0.059 0.052 GEV

AL0005 − 1.03 0.049 0.050 0.141 0.063 GEV − 0.08 0.108 0.097 0.071 0.122 GP

AL0010 0.62 0.036 0.034 0.179 0.041 GLN 1.03 0.124 0.113 0.085 0.133 GP

AL0012 − 1.23 0.065 0.069 0.527 0.053 GLO 0.54 0.077 0.059 0.068 0.083 GLN

AL0013 − 1.10 0.049 0.048 0.099 0.059 GLN − 1.25 0.106 0.093 0.065 0.116 GP

AL0015 − 0.20 0.081 0.077 0.274 0.096 GLN 0.62 0.121 0.109 0.088 0.130 GP

AL0016 − 0.18 0.101 0.103 0.285 0.120 GEV − 0.54 0.050 0.052 0.096 0.060 GEV

AL0017 0.46 0.078 0.077 0.109 0.091 GLN 0.27 0.075 0.062 0.040 0.088 GP

AL0018 1.93 0.069 0.067 0.101 0.066 GLO 0.21 0.070 0.066 0.059 0.078 GP

AL0019 − 0.73 0.069 0.043 0.244 0.060 GLN 1.17 0.054 0.052 0.072 0.059 GLN

AL0022 1.47 0.069 0.050 0.157 0.055 GEV 0.51 0.066 0.048 0.056 0.077 GLN

AL0027 1.74 0.069 0.072 0.162 0.093 GLN 1.29 0.074 0.056 0.049 0.083 GP

AL0028 1.45 0.069 0.067 0.183 0.078 GEV 0.49 0.111 0.101 0.069 0.125 GP

AL0035 0.94 0.069 0.056 0.242 0.078 GLN 1.02 0.107 0.092 0.074 0.114 GP

AL0036 0.15 0.069 0.071 0.110 0.092 GLN − 0.39 0.085 0.074 0.059 0.099 GP

AL0045 2.00 0.069 0.083 0.240 0.082 GEV 2.79 0.065 0.051 0.038 0.076 GP

AL0047 2.50 0.069 0.069 0.273 0.095 GLN 2.23 0.120 0.093 0.091 0.128 GP

AL0048 0.91 0.069 0.102 0.332 0.089 GLO 1.07 0.097 0.071 0.068 0.103 GP

AL0053 − 0.91 0.069 0.062 0.231 0.047 GLO 0.39 0.090 0.080 0.052 0.102 GP

AL0054 − 0.53 0.069 0.065 0.103 0.061 GLO − 2.42 0.109 0.090 0.086 0.114 GP

AL0058 − 0.05 0.069 0.072 0.355 0.058 GLO − 1.80 0.088 0.075 0.062 0.095 GP

AL0059 − 1.87 0.069 0.059 0.272 0.073 GLN − 1.20 0.088 0.072 0.066 0.098 GP

The bold number means that the null hypothesis (Ho) for the KS test is rejected for the hypothesized probability distribution under 5% significance level
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presented in Fig. 5. The highest values are mostly located in
the eastern part of AZB, and the smallest values are mostly
located in the western part. This accompanies the decrease in
elevation and transition from semiarid to arid climate zones.
The month with the most frequent occurrence of the maxi-
mum precipitation amount at most stations is January, follow-
ed by December (10 stations and 8 stations, respectively);
these stations are mostly located in the eastern and western
parts of AZB. In the middle part of the basin, the occurrence
months of maximum precipitation are distributed among
December, January, February, and March. Figure 5 further
reveals that maximum precipitation events at nine stations
occurred after 2009. Eight of these nine stations show positive
trend values (refer to the M-K test results in Table 5). Three
stations experience a significant trend. This suggests that the
number of extreme precipitation events increased slightly in
the last decade.

3.4 The best-fit probability distribution for extreme
precipitation

In this study, both the AM and POT extreme precipitation
series are fitted by GEV, GP, GLO, and GLN distributions.
The shape, location, and scale parameters for each distribution

are estimated by the L moment method. Table 5 summarizes
the results of the goodness-of-fit test (Kolmogorov-Smirnov
(KS) test). The table shows the test statistics valueDn obtained
at each station for the AM and POT series by using the four
distributions. The smaller the value of the test statistic Dn, the
better the probability distribution fits the extreme precipitation
data series. Table 5 presents the optimal distribution for each
station in AZB. Bold values in Table 5 indicate that the prob-
ability distribution is not adequate to fit the data series at the
5% significance level (i.e., the null hypothesis Ho for the KS
test is rejected) since the Dn values are greater than the related
critical value (Dn-critical = 1.36/

ffiffiffi
n

p
for a sample size n at the

5% significance level).
Based on the KS test (Table 5), for the AM series, out of 24

stations, 11 are best fitted by the GLN distribution, 7 are best
fitted by the GLO distribution and 6 are best fitted by the GEV
distribution. None of the stations are fitted by the GP distri-
bution. Most distributions passed the KS test at the 5% signif-
icance level, indicating that the sample distribution follows the
theoretical distribution, except for the GP distribution, which
failed to pass the test at 13 stations. However, for the POT
series, most stations (18 out of 24) follow the GP distribution.
A small number of stations can be better fitted by the GLN,
GEV, and GLO distribution (3, 2, and 1 stations, respectively).

Increasing trend
Decreasing trend

(a) AM Series (b) POT SeriesFig. 4 The spatial distribution of
the trends of AM and POT series
in AZB
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The four distributions passed the KS test at the 5% signifi-
cance level.

The graphical method for the evaluation of the optimal
distribution through L moment diagrams is illustrated in Fig.
6. In Fig. 6, the sample estimates and theoretical L skewness
and L kurtosis are compared for both the AM and POT series.
For the AM series, the weather station sample estimates of L
skewness (t3) and L kurtosis (t4) points (t3, t4) are scattered
widely around the theoretical curves of the four distributions.
Based on the criterion that the theoretical distribution curve
with the minimum vertical distance will be chosen as the best
optimal distribution, the number of stations that can be better
fitted by GEV, GLN, GLO, and GP is 9, 7, 7, and 1 out of 24,
respectively. For the POT series, most station sample estimate
points are concentrated near the GP distribution. There are 19
out of 24 stations that can be better fitted by the GP distribu-
tion, and the remaining stations are better fitted by the GLN
distribution. No station is fitted by either the GEV distribution
or GLO distribution.

The results of the goodness-of-fit tests (KS test and L
moment diagram) suggest that among the GEV, GLN, and

GLO distributions, there is no unique distribution that can
be consistently ranked best for all stations using the AM
series, while the POT series can be better fitted by the GP
distribution in AZB. Figure 7 presents the spatial distribu-
tion of best-fitted probability distributions for the (a) AM
series and (b) POT series according to the goodness-of-fit
KS test results in AZB. There is no clear pattern for the
best-fitted distribution connected with any spatial location
for the AM series.

The result that the best-fitted distributions vary among
the weather stations for the AM series could be due to the
uneven spatial variation in AM series characteristics (i.e.,
mean, standard deviation, skewness and kurtosis) within
AZB. These characteristics may influence the effectiveness
of the probability distributions to represent precipitation
extremes at the considered weather stations. For example,
GEV mostly ranks the best for stations with low skewness
(0.3 to 1.2) and low kurtosis (− 0.2 to 2.4), while GLO
mostly ranks the best for stations with high skewness (1.4
to 2.2) and high kurtosis (2.7 to 7.3). However, the influ-
ence of the aforementioned data series characteristics
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together with the optimal distribution parameters and the
size of the data series should be appropriately investigated
in future studies to obtain definitive conclusions.
Meanwhile, one can still depend on goodness-of-fit tests
(statistical tests or graphical methods) to identify the best
distribution among candidate distributions.

3.5 Extreme precipitation estimation under different
return periods

After obtaining the optimal distribution at each station, the
important question about the occurrence chance of precipita-
tion events larger than a certain amount in any given year in
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Fig. 8 The distribution of calculated extreme precipitations in millimeters under return periods of 5, 10, 25, and 50 years for AM (a–d) and POT (e–h)
series using the optimal distribution at each station in the AZB
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the future can be answered. This is accomplished through
return period (T) analysis, where the magnitude of an extreme
precipitation event is inversely related to its occurrence fre-
quency (i.e., the extreme precipitation value is defined as the
maximum value for which the probability that the annual
maximum exceeds this value is 1/T). Therefore, extreme pre-
cipitation values under return periods of 5, 10, 25, and 50
years for the AM and POT series using the optimal distribu-
tion at each station in the AZB were calculated (equations are
given in Table 3) and are illustrated in Fig. 8. For all consid-
ered return periods, the spatial variations in extreme precipi-
tation in both the AM and POT series show similar distribu-
tion patterns, with decreasing gradients from the west to the
east, which is in agreement with the spatial distribution of the
means of the AM and POT series given in Fig. 3a, b.
Additionally, considering the same return period, the calculat-
ed extreme precipitation values of AM are up to 18% greater
than those of POT.

Figure 9 presents the spatial distribution of the observed
extreme precipitation amount when the return period is 50

years. In this figure, the maximum observed precipitation
amount for each station over the last 50 years is assumed to
be the station-observed extreme precipitation value when the
return period is 50 years. From a comparison of the calculated
extreme precipitation values based on the optimal distribution
for both the AM (Fig. 8d) and POT (Fig. 8h) series under a
return period of 50 years with the corresponding observed
extreme values (Fig. 9), the observed values are higher than
the calculated extreme precipitation values of the AM and
POT series.

Figure 10 shows the changes in precipitation extremes (i.e.,
the quantiles or return values) with an increasing return period
(T) for the Sweilih (AL0017) weather station as an example.
In this figure, for both the AM and POT series, the calculated
precipitation extremes based on an optimal distribution to-
gether with the observed precipitation extremes are represent-
ed by the solid line and the circles, respectively. The return
periods (T) associated with observed precipitation extremes
are calculated by the Weibull plotting position formula,
T ¼ 1

1− i
nþ1
, where i is the rank of the extreme precipitation

Fig. 9 The spatial distribution of
observed extreme precipitation in
millimeters when the return
period is 50 years in the AZB
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amount in the data series organized in ascending order and n is
the length of data series. From this figure, the calculated pre-
cipitation amount based on the optimal distribution provides a
good match to those observed from the AM and POT series,
even for high return periods. Thus, the GLN and GP distribu-
tions can fit the observed extremes from the AM and POT
series well, respectively, at this particular station (the results
of the KS test, Table 5, are used to determine the optimal
distribution).

Moreover, the calculated extreme precipitation amount
from both the AM and POT series based on the optimal dis-
tribution can be compared with the observed value under a 50-
year return period in terms of relative error (i.e., the difference
between the calculated AM or POT value and the observed
value relative to the observed value for a specified return pe-
riod). The relative error values are illustrated in Fig. 11. From
Fig. 11, the relative errors for the AM series are less than those
for the POT series at most stations, suggesting that the AM
series and the corresponding optimal distributions at each sta-
tion can better model extreme precipitation events in the AZB
than the POT series. Furthermore, no correlation is found be-
tween the observed extreme precipitation amounts and the
relative error value at each station.

To obtain another representation of extreme precipitation at
each station, the calculated extreme precipitation based on the
optimal-distribution-fitted AM series for return periods of 10,
25, 50, and 100 years together with the corresponding total
exceedance numbers of precipitation extremes during the
study period of 1940–2015 are presented in Table 6. From
Table 6, most of the extreme precipitation from 1940 to
2015 at each station occurred within 1- to 10-year return pe-
riods (data for 1- and 2-year return periods are not shown in
Table 6). Moreover, the highest occurrence frequency of 10-
year precipitation extremes occurred during 2010–2015, with
19 occurrences out of 81. Additionally, as the return period
increases, extreme precipitation becomes rare. A total of 32,
17, and 12 events occurred within 25, 50, and 100 years,

respectively, of precipitation extremes at all stations. For 25-
year precipitation extremes, the number of occurrences in the
1980s is quite comparable to that occurring in the 2000s and
during 2010 to 2015, with 8, 6, and 7 out of 32 occurrences,
respectively. Eight out of 12 events and 8 out of 17 events
occurred after 1990 among 100- and 50-year precipitation
extremes, respectively. The 17 events for the 50-year return
period occurred only at 13 stations, while the 12 events for the
100-year return period occurred at 12 stations. However, for
50- and 100-year extreme precipitation events, each station
had at least one extreme precipitation event, either a 50- or
100-year amount, during its recorded data history, except sta-
tion AL0053. The 50- and 100-year extreme precipitation
events have occurred more frequently in recent years (i.e.,
after 1990) than in previous years. Higher precipitation ex-
tremes of 106.6 to 173.8 mm for the 50-year return period
are almost observed in the western part of AZB. High precip-
itation extremes of 127–194 mm for the 100-year return peri-
od are almost observed in the western (AL0017, AL0018, and
AL0027) and northern (AL0002 and AL0004) parts of AZB.
Stations AL0017 and AL0018 are located in the city of
Amman, the capital of Jordan.

4 Conclusions

In this paper, precipitation extremes are studied in the AZB,
Jordan. Daily precipitation records from 24 weather stations
spread across the basin during a period that exceeds 50 years
(during 1940–2015 for most stations) are used. Two extreme
precipitation series (AM and POT); four generalized probability
distributions (GEV, GP, GLO, and GLN); and the L moment
method for distribution parameter estimation are used. Based
on the results, the following specific conclusions can be drawn:

The trend analysis for the AM and the POT over the time
period 1940–2015 indicates that a mix of increasing and de-
creasing trends is observed at different stations. Since the POT
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series considers up to the fifth largest precipitation in some
years, in contrast to the AM series, and skips the largest pre-
cipitation in the AM series in other years, the trend analysis
results for the POT series differ slightly from those of the AM
series. For the AM series, extreme precipitation events at 14
stations, which are mostly found in the western part, show an
increasing trend. Among these 14 stations, three are signifi-
cant at the 5% significance level. The remaining 10 stations,
which are mostly found in the middle and eastern parts, show
insignificant decreasing trends. For the POTseries, an increas-
ing trend in extreme precipitation is detected at 16 stations, 4
of which are significant at the 5% significance level. A de-
creasing trend is detected at eight stations, among which one
station indicates a significant decreasing trend.

According to the Kolmogorov-Smirnov (KS) test and L
moment diagram, the probability distributions GEV, GLN,
and GLO can better fit the AM series with no unique distri-
bution among them consistently ranking the best for all sta-
tions, while the POT series is better fit by the GP distribution.

The extreme precipitation amounts under return periods of
5, 10, 25 and 50 years for the AM and POT series using the
optimal distribution at each station show similar spatial distri-
bution patterns with a decreasing gradient from west to east.
Additionally, by considering the same return period, the cal-
culated extreme precipitation amounts of the AM series are up
to 18% greater than those of the POT series. The AM series
can better model extreme precipitation events than the POT
series in AZB since the relative errors between observed
values and calculated values for the AM series are less than
those for the POT series at most stations.

From the return period analysis, most of the extreme precip-
itation from 1940 to 2015 at each station occurred within 1- to
10-year return periods. Additionally, as the return period in-
creases, extreme precipitation becomes rare. However, 23 sta-
tions experienced at least one extreme precipitation event, either
a 50- or 100-year event, during their recorded data history. The
50- and 100-year extreme precipitation events occurred more
frequently in recent years. For the 100-year return period, high
precipitation extremes of 127–194 mm are almost observed in
the western and northern parts of AZB at five stations, two of
which are located in the city of Amman, the capital of Jordan.

In terms of application, the findings of this study about the
best probability distributions for each of the data series and the
prediction of precipitation extremes amounts for several return
periods provide important and valuable information for water
resources planning and management tasks in AZB and nearby
basins in Jordan. Furthermore, these findings can be used to
provide a theoretical support to allow the water managers and
the policymakers in Jordan for proper actions such as construc-
tion of a proper drainage system and construction of flood con-
trol structures to control and minimize the risks of large dam-
ages caused by frequent precipitation extremes occurred in re-
cent years in AZB.
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