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Abstract
The focus of this paper was to investigate the spatial and temporal variability of dry and wet events using the standard
precipitation and evapotranspiration index (SPEI) in the Tana River Basin (TRB) in Kenya. The SPEI is a new drought index
which incorporates the effect of evapotranspiration on drought analysis thus making it possible to identify changes in water
demand in the context of global warming. The SPEI was computed at 6- and 12-month timescales using a 54-year long monthly
rainfall data from the Global Precipitation and Climate Center (GPCC) and temperature data from the Climate Research Unit
(CRU) both recorded between 1960 and 2013. Both datasets have a spatial resolution of 0.5° by 0.5° and were extracted for every
grid point in the basin. The SPEI was used to assess the temporal and spatial evolution of dry and wet events as well as determine
their duration, severity, and intensity. The evolution of significant historical dry and wet events and the frequency of occurrence
were clearly identified. The index showed that the period between 1960 and 1980 was dominated by dry events while wet events
were dominant in the period between 1990 and 2000. The SPEI6 had the longest duration of dry events of 30months and severity
of 44.67 which was observed at grid 5while the highest intensity was 2.18 observed at grid 31. Grid 19 had the longest duration
(52 months) and highest severity (88.08) of dry events for SPEI12 and the intensity was highest (1.94) in grid 31. The longest
duration (23) and highest severity (40.03) of wet events for SPEI6 were recorded in grid 39. The highest intensity of wet events
for SPEI6 was 1.91 at grid 23 and 1.81 at grid 37 for SPEI12. The principal component analysis (PCA) was applied to the SPEI
time series in order to assess the spatial pattern of variability of the dry and wet events in the basin. The PCA showed that there
were two leading components which explained over 80% of the spatial variation of dry and wet events in the basin. Further, the
continuous wavelet transform (CWT) was applied to the PCA scores in order to capture the time-frequency dynamics. The
wavelet transform of the SPEI6 and SPEI12 identified significant periodicities of 1 to 2 years across the spectrum.

1 Introduction

Currently, there is great concern that climate change coupled
with human-induced environmental degradation is a major

threat to contemporary water resources management in the
world (Githui et al. 2009; Huang et al. 2012). Many studies
have indicated that global warming alters the patterns of rain-
fall resulting into more frequent extreme weather events such
as droughts and floods (Zhang et al. 2009). Climate models
predict that climate change is expected to increase the risk of
drought in some areas of the world and the risk of extreme
precipitation and flooding in others (IPCC 2007).

Kenya has frequently witnessed prolonged and severe
droughts leading to electric power and water rationing with
negative impacts on the economy (The World Bank 2011).
Power rationing and reduction in water supplies (especially
to Nairobi and the environs) have been attributed to a reduc-
tion in available surface water resources in the TRB
(Nakaegawa and Wachana 2012). Moreover, increasing water
demands lead to conflicts among competing water users that
are mostly pronounced during drought periods (Hisdal and
Tallaksen 2003; Santos et al. 2010). Studies have shown that
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drought in the country affects more than 3.7 million people
and its combined economic impact and related shocks run into
100 s of millions of dollars (TheWorld Bank 2011). Recently,
there have been debates on the apparent increase in intensity
and frequency of drought and its possible causes. Even though
projections by climate models depict a scenario of increase in
rainfall in the East African region (IPCC 2007), recent studies
(e.g., Rowell et al. 2015; Lyon and Dewitt 2012; Shongwe
et al. 2011; Liebmann et al. 2014; Lyon 2014; Ongoma and
Chen 2017) have shown a decline in temporal and spatial
distribution of rainfall in the region which has led to increased
intensity and frequency of drought. Some authors have attrib-
uted the drought condition to climate change effects caused by
the emission of anthropogenic greenhouse gases into the at-
mosphere (Williams and Funk 2011). This may increase the
uncertainty in the availability of surface water in Kenya espe-
cially because of the existing water scarcity problem coupled
with the high demand for agriculture, industry, and the
burgeoning population (Nakaegawa and Wachana 2012).
Hence, the assessment of climate variability in terms of dry
and wet events may contribute to a more prudent monitoring
of climate-related risks and develop appropriate adaptation
and mitigation strategies (Hayes et al. 2005).

The TRB is a vital resource for socio-economic develop-
ment of Kenya and for the sustenance and preservation of eco-
logical systems in the basin. It supplies about 95% of the water
needs of the capital city of Nairobi and contributes 65–75% of
the hydropower production in the country (Baker et al. 2015;
Oludhe et al. 2013; Jacobs et al. 2007; Gichuki and Vigerstol
2014). Recently, the government has put in place significant
development targets for hydropower, domestic water provision,
and irrigated agriculture in the basin as part of the Vision 2030
development plan (Baker et al. 2015). However, the basin has
been experiencing frequent hydrological extremes in terms of
droughts and floods which have been attributed to climate
change and environmental degradation (Nakaegawa and
Wachana 2012). A recent study by Kerandi et al. (2016) con-
cluded that precipitation over the TRB has generally been de-
creasing since the 1997/1998 El Niño rains in Kenya, with 2011
to 2014 recording below normal mean annual precipitation.
This means that the increasing water demand in the TRB
coupled with climate variability is exerting a lot of pressure
on the water resources of the basin. Therefore, it is crucial for
water resource managers and developers to understand how
climate variability, on both long and short timescales, will affect
water availability. This further reinforces the need for studies
that will attempt to understand the possible consequences of
climate change processes on the future availability of water
resources in the basin and to determine the current relationship
between climate variability and water resources. In this regard,
the significance of a drought index such as the SPEI would be
its applicability in drought monitoring, risk assessment and
planning, and management of water resources of the TRB.

There are a number of quantitative drought indices that
have been proposed by the research fraternity for assessing
the severity of droughts in regard to water resources planning
and risk assessment (Burke et al. 2006; Gao et al. 2017).
Among these indices is the recently developed SPEI which
is an improved drought index well suited for studies of the
effect of global warming on drought severity (Vicente-Serrano
et al. 2010). The SPEI is good at detecting, monitoring, and
exploring the consequences of global warming on drought
conditions (Dubrovsky et al. 2009). The SPEI is superior to
other widely used drought indices and it is capable of identi-
fying the role of evapotranspiration and temperature variabil-
ity with regard to drought assessment in the context of global
warming (Vicente-Serrano et al. 2010; Potop et al. 2012; Wu
et al. 2016). Furthermore, it is now well known that although
the primary cause of drought is rainfall deficiency, tempera-
ture plays an important role in initiating drought (Shi et al.
2017; Chen and Sun 2015). Due to this, the SPEI has been
recommended as an alternative to other drought indices to
quantify anomalies in accumulated climatic water balance,
incorporating potential evapotranspiration (Stagge and
Tallaksen 2014). A number of studies have investigated the
occurrence of drought using the SPEI. Yu et al. (2014) calcu-
lated the SPEI based on monthly precipitation and air
temperature values and found an increase in severe and
extreme droughts for the whole of China. Potop et al. (2012)
used the SPI and SPEI to study the evolution of secular
drought from 1901 to 2010 in the lowland regions of the
Czech Republic. Their study explored the relationship be-
tween extreme dry and extreme wet episodes with vegetable
yields in the lowland regions of the Czech Republic and found
that more than 40% of the months during the vegetable-
growing season can be affected by moderate and severe
drought. Lorenzo-Lacruz et al. (2010) applied the SPI and
SPEI to analyze the influence of climate variation on the
availability of water resources in the headwaters of the
Tagus River basin. Among their findings was that the
responses in river discharge and reservoir storage were
slightly higher when based on the SPEI rather than the SPI,
indicating that although precipitation had a major role in
explaining temporal variability in the analyzed parameters,
the influence of temperature was not negligible. Chen and
Sun (2015) in their study of drought characteristics over
China found differences in the estimates of SPEI calculated
using different evapotranspiration parameterizations. Vicente-
Serrano et al. (2012) compared the performance of several
drought indices for ecological, agricultural, and hydrologic
studies and concluded that SPEI was the best index to capture
the effects of summer droughts. Moreover, a recent study on
temperature and precipitation variability over the East African
region by Ongoma and Chen (2017) showed that there has
been an increase in temperature in the region with significant
positive changes observed from the year 1992.
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The goal of this study is to determine the historical and recent
climatic variability in the TRB based on the assessment of spatial
and temporal variability of dry and wet events in the basin.
Specifically the study will (1) analyze the temporal and spatial
evolution and variation of the SPEI over the basin, (2) use the
PCA to identify the spatial and temporal patterns of dry and wet
events, and (3) apply continuous wavelet transform to identify
cycles of dry and wet events in the temporal patterns. To the best
of our knowledge, no other study of this kind has been conduct-
ed in the region and thus it will go a long way in contributing to
the body of literature in the region. Further, the study is intended
to be used for drought monitoring, risk assessment, and water
resources planning. Themajor challenge to prudent riskmanage-
ment approaches is the lack of reliable and updated climatolog-
ical records that are suitable for risk analysis (Raziei et al. 2011;
Hayes et al. 2005). Data availability is the most important limi-
tation that hinders establishing a drought monitoring and early
warning system in developing countries (Worqlul et al. 2014). To
overcome this obstacle, this study used high spatial resolution
gridded datasets from the GPCC (rainfall) and the CRU
(temperature) for the analysis of dry and wet events in the TRB.

2 Data and methodology

2.1 Study area

The TRB lies between the latitudes 0° 0′ 53″ S and 3° 0′ 00″ S
and between the longitudes 37° 00′ 00″ E and 41° 00′ 00″ E.
The basin is marked by a complex terrain with a very steep
topography which rises from sea level in the coastal plains
along the Indian Ocean to over 5000 m above sea level in
Mount Kenya (Fig. 1). The size of the basin ranges between
100,000 and 126,000 km2 (Baker et al. 2015). The Tana River
which forms the basin is the longest river in Kenya at approx-
imately 1000 km. Its headwaters are on Mt. Kenya and the
Aberdare Range and winds through a densely forested eco-
system to agricultural and rangeland areas and ultimately
discharging into the Indian Ocean (Okazawa et al. 2009).
The river is a vital resource for the socio-economic develop-
ment of the country and is important for the sustenance and
preservation of ecological systems in the basin. The basin is
the source of about 95% of the water needs of the capital city
of Nairobi and is also a major source of hydropower and
irrigation-fed agriculture production in Kenya (Baker et al.
2015). The basin has a varied climate ranging from humid in
the highlands to arid and semi-arid in the lowlands, with a
close correlation of elevation and climatic zones. Rainfall
characteristics are primarily influenced by topography and
the proximity to the Indian Ocean (Kerandi et al. 2016). The
long-term annual average and long-term monthly average dis-
tribution of rainfall and long-term monthly average minimum
and maximum temperature in the basin is given in Fig. 2.

2.2 Data

This study utilized the monthly gridded rainfall data at 0.5° ×
0.5° resolution for 54 years (1960–2013) covering the entire
TRB acquired from the Global Precipitation and Climate
Center (GPCC) version 7 (http://gpcc.dwd.de). The
temperature data that was used for calculating potential
evapotranspiration was acquired from the CRU dataset
based on a similar resolution as the rainfall data. The GPCC
provides an updated and globally gridded precipitation
estimate extracted from surface rain gauge observations with
a minimum of 90% data availability over the years 1951–
2000. The GPCC Reanalysis (V7) for the period 1901 to
2013 is based on quality-controlled data from all stations in
GPCC’s database. This product is optimized for best spatial
coverage and is recommended for water-budget studies
(Schneider et al. 2014). The gridded reanalysis data were
adopted as a substitute to the scarce rain gauge climatological
data. A simple evaluation of the GPCC and CRU datasets with
the observed rainfall data measured at six (6) World
Meteorological Organization synoptic stations within the ba-
sin showed that GPCC had higher positive correlation of
above 0.9 in all the stations and therefore the GPCC data
was used for rainfall, and CRU data was solely used for
temperature-based derivation of potential evapotranspiration.
Gridded rainfall data have been widely used in various hydro-
climatological analyses in different parts of the world
(Rajeevan et al. 2006; Caramelo and Orgaz 2007; Jury 2010;
Raziei et al. 2011; Mahfouz et al. 2016). Jury (2010) used 0.
5° × 0.5° gridded precipitation data for the period between
1901 and 2007 from the GPCC dataset to study decadal
climate variability in Ethiopia. Likewise Wagesho et al.
(2013) successfully used the GPCC data to determine the tem-
poral and spatial variability of annual and seasonal rainfall
over Ethiopia. In this study, the gridded data was extracted
from 43 grid cells within the basin as shown in Fig. 1.

2.3 Methodologies

2.3.1 Calculation of the SPEI

SPEI is a drought index based on precipitation and PET,
which describes the degree of deviation of dry and wet
conditions by standardizing the difference between PET
and precipitation. It can describe water deficit effectively
with multiple timescales, reflecting the lag relation be-
tween different water resources, precipitation, and evapo-
transpiration (Liu et al. 2015). The SPEI is calculated
using the difference between monthly (or weekly) precip-
itation and potential evapotranspiration data which is ag-
gregated over the time period and fitted to a probability
distribution function (Vicente-serrano et al. 2010). The dif-
ference between precipitation and evapotranspiration (i.e.,
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moisture deficit) can be negative and is commonly so in
semi-arid and arid regions and therefore, a three-parameter
distribution is needed to model the deficit values
(Hernandez and Uddameri 2014). The log-logistic three-
parameter distribution is commonly applied as it fits the
extreme values better, and the fitted cumulative probability
density function is transformed to the standard normal
distribution, which is also the SPEI (Vicente-Serrano

et al. 2010; Zambreski 2016). Positive values of SPEI
indicate above average moisture conditions while negative
values indicate below normal (dry) conditions.

In this study, the SPEI values are calculated for 6- and 12-
month timescales for each grid cell. Calculations were per-
formed using the BSPEI package^ available in R-program
(Beguería and Vicente-Serrano 2013). The calculation of the
SPEI is briefly described as follows;

Fig. 1 The map of the study area showing the topography, the location of the meteorological stations, and the sampled grid cells in the TRB
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Fig. 2 The spatial and temporal patterns of annual mean rainfall, minimum, and maximum temperature over the basin (1960–2013)
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(1) Calculate the difference between precipitation and PET
on monthly basis (Eq. 1);

Dj ¼ Pj−PET j ð1Þ

The PET was calculated using the Hargreaves equation
which has limited data requirements and does not suffer the
inherent limitations of the Thornthwaite equation and it per-
forms relatively close to the standard FAO PM equation
(Beguería et al. 2014; Droogers and Allen 2002; Hargreaves
and Allen 2003).

(2) The next step is to calculate the accumulated difference
between precipitation and PET at different timescales.

The accumulated difference X k
i; j

� �
at the k-month time-

scale is calculated using Eq. 2;

X k
i; j ¼ ∑

12

l¼13−kþ j
Di−1;l þ ∑

j

l¼1
Di; j

X k
i; j ¼ ∑

j

i¼ j−kþ1
Di; j

if j ⊲ k
if j ≥ k

8>>><
>>>:

ð2Þ

where X k
i; j is the accumulated difference between precipitation

and the PETat the k-month timescale in the j-month of the i-th
year; Di, l is the monthly difference between the precipitation
and the PET in the l-month of the i-th year.

(3) Normalize the X k
i; j data sequence. Because there may be

negative values in the original data sequence X k
i; j, there-

fore, the SPEI uses the three-parameter log-logistic prob-
ability distribution (Vicente-Serrano et al. 2010). For the
data sequence of all timescales, the accumulative func-
tion of the log-logistic probability distribution F(X) is as
given in Eq. 3;

F Xð Þ ¼ 1þ α
x−γ

� �β
" #−1

ð3Þ

where α, β, and γ are scale, shape, and position parameters,
respectively, which can be calculated using the equations pro-
posed by Vicente-Serrano et al. (2010).

p is the probability of a definite X k
i; j value:

p ¼ 1−F Xð Þ ð4Þ

If p ≤ 0.5,

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−2lnp

p
ð5Þ

SPEI ¼ w−
C0 þ C1wþ C2w2

1þ d1wþ d2w2 þ d3w3
ð6Þ

If p > 0.5,

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln 1−pð Þ

p
ð7Þ

SPEI ¼ C0 þ C1wþ C2w2

1þ d1wþ d2w2 þ d3w3
ð8Þ

where C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 =
1.432788, d2 = 0.189269, and d3 = 0.001308 (Gao et al.
2017).

The calculated values of the SPEI are classified as shown in
Table 1 and are used to analyze for the characteristics of dry
and wet events in the basin in terms of the duration, severity,
intensity, and frequency of occurrence of dry and wet events.
The duration of an event is the length of time (months) that the
SPEI is consecutively at or below a truncation level. In this
study, the threshold used for the SPEI ≤ − 1 for dry event and
SPEI ≥ 1 for wet event. The frequency is the number of
months that the SPEI value meets a set value (Table 1) divided
by the number of months in the entire series. The severity and
intensity were calculated for all the grid cells sampled
according to Zambreski (2016) as shown below:

(i) Severity is the cumulative sum of the index value based
on the duration extent

S ¼ ∑
Duration

i¼1
Index ð9Þ

(ii) Intensity of an event is the severity divided by the dura-
tion. Events that have shorter duration and higher sever-
ities will have large intensities.

I ¼ Severity
Duration

ð10Þ

Table 1 Classification of
the severity of dry and
wet events based on the
calculated SPEI

Category SPEI value

Extreme dryness Less than − 2
Severe dryness − 1.99 to − 1.5
Moderate dryness − 1.49 to − 1.0
Near normal − 0.99 to 0.99
Moderate wetness 1.0 to 1.49

Severe wetness 1.5 to 1.99

Extreme wetness More than 2.0
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2.3.2 Principal component analysis

The principal component analysis (PCA) is a common way of
identifying patterns in climatic data and expressing the data in
such a way as to highlight their similarities and differences
(Santos et al. 2010; Zhao et al. 2012). It is basically a data
reduction method, which explains the correlation among sev-
eral random uncorrelated variables in terms of a small number
of underlying factors or principal components without ex-
treme loss of information. This study uses the PCA to capture
the spatial patterns of co-variability of dryness/wetness based
on SPEI series at each grid cell. The original inter-correlated
SPEI variables at different grid cells areXi, 1, Xi, 2,….., Xi, k
where k is the number of the grid cells in the basin (=43) and i
represents the length of SPEI series at each grid cell. The
principal components (PCs) are produced for the same time
Yi, 1, Yi, 2,… . , Yi, k using linear combinations of the first ones
according to Eq. 9;

Y i;1 ¼ a11X i;1 þ a12X i;2 þ…þ a1kX i;k

Y i;2 ¼ a21X i;1 þ a22X i;2 þ…þ a2kX i;k

⋮
Y 1;k ¼ ak1X i;k þ ak2X i;2 þ…þ akkX i;k

8>><
>>:

ð11Þ

In the combination, the Y values are orthogonal and an
uncorrelated variable, such that Yi, 1 explains most of the var-
iance, Yi, 2 explains the remainder and so on. The coefficients
of the linear combinations are called Bloadings^ and represent
the weights of the original variables in the PCs (Santos et al.
2010). A detailed methodology of the PCA procedure is abun-
dant in the literature (e.g., Santos et al. 2010; Bordi et al.
2004).

2.3.3 Wavelet transform analysis

Wavelet transform is a powerful method to characterize the
frequency, intensity, time position, and duration of the varia-
tions in a climate data series by revealing the localized time
and frequency information (Zhao et al. 2012). The wavelet
transform can be used to analyze time series that contain
non-stationary power at many different frequencies
(Torrence and Compo 1998; Santos and Ideião 2005). The
wavelet transform has been widely applied to the fields of
climatic and hydrological changes. The wavelet transform
was computed using the BWaveletComp^ package available
in R-program (Rosch and Schmidbauer 2014).

In the continuous wavelet transform, it is assumed thatXn is
the time series with equal time interval Δt (1 month in this
study). One particular wavelet, the Morlet, is defined as pre-
sented in Eq. 10;

ψ0 nð Þ ¼ π−1=4eiω0ηe−η
2=2 ð12Þ

where ω0 is the dimensionless frequency and η denotes the

non-dimensional time frequency (Torrence and Compo 1998;
Zhao et al. 2012). The continuous wavelet transform of a
discrete sequence Xn is defined as the convolution of Xn with
a scale and translated version of φ0(n):

Wn sð Þ ¼ ∑
N−1

n0
X nψ

* n
0−n

� �
δt

s

" #
ð13Þ

where the asterisk represents the complex conjugate, s is the
dilation parameter used to change the scale, and n is the trans-
lation parameter. By varying the wavelet scale s and translat-
ing along the localized time index n, one can construct a pic-
ture showing both the amplitude of any features versus the
scale and how this amplitude varies with time (Torrence and
Compo 1998).

The significance of wavelet power can be assessed relative
to the null hypothesis that the signal is generated by a station-
ary process with a given background power spectrum. The
distinctive red noise characteristics of the time series are
modeled by a first-order auto-regressive process. Torrence
and Compo (1998), and Lau and Weng (1995) give detail
description of wavelet transform analysis. Significance testing
of the wavelet transform is based on the assumption that the
time series has a mean power spectrum and the significance of
a peak in the wavelet power spectrum in relation to the back-
ground spectrum is used to determine the confidence level
regarding the evaluation of potential periodicities (Hartmann
et al. 2012). In this study, the periodicities were analyzed with
a confidence level of 90%.

3 Results and discussion

3.1 Temporal evolution and frequency of occurrence
of dry and wet events in the basin

The time series of the SPEI at 6- and 12-month timescales were
calculated using a 54-year-long series of rainfall and temperature
data (1960–2013) over 44 grid cells in the basin. Figure 3 shows
the evolution of the SPEI for 6- and 12-month timescales aver-
aged over all the grid cells in the TRB. The evolution of the
mean SPEI over different parts of the TRB with similar climatic
and physiographic features was computed and is shown in
Fig. 4. It is evident that the shorter timescale (SPEI6) showed
a higher temporal frequency of dry and wet events but the tem-
poral frequency stabilizes for the 12-month timescale. This
shows that the SPEI at a longer timescale responds more slowly
and coherently to changes in monthly rainfall and temperature
revealing clear periods of annual and multiple year dry and wet
events. This means that longer timescales are better suited for the
detection of historically significant events while shorter time-
scales show the frequent seasonal and inter-annual variations
(Łabedzki 2007). It is seen that there are three contrasting
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periods in the evolution of dry andwet events for both the 6- and
12-month SPEI. The dry events dominated the period between
1960 and 1980 while the wet events were dominant from 1980
to the later part of the 1990s even though there was amix of both
dry and wet events between the late 1990s and 2000s (although
dry events were evidently dominant). Both timescales showed
that the 1970s had the longest duration of dry events (consecu-
tive negative SPEI values) implying that the dry events were
dominant. The SPEI was able to identify some of the document-
edmajor drought and flood episodes in Kenya (e.g., 1964–1965,
1973–1974, 1983–1984, 1999–2000 and 2009–2011 (for
drought), and 1978–1979 and 1997–1998 (for floods))
(Wambua et al. 2015; Mwale and Gan 2004). The driest month
for both timescales of SPEI was recorded in grid cell 31 which
occurred in August 1971 while the wettest month occurred in
March 1998 in grid cell 7. In general, the wettest period was
between 1997 and 1998 in the entire basin clearly showing the
effects of the El Niño rainfall that were experienced during that
period. It can be seen from the variations in the occurrence of
dry and wet events that the basin is prone to hydrological ex-
tremes in terms of both drought and floods during the study
period. The SPEI is able to clearly indicate the onset and cessa-
tion of a dry and/or wet event and this is found to vary from one
grid cell to the other and also from one timescale to the other.
Tables 2 and 3 show the duration, severity, and intensity of

occurrence of some of the major dry and wet events. The dura-
tion (persistence) of dry/wet event is given by the cumulative
time that the SPEI is consecutively greater or less than a desig-
nated truncation value. In this study, the threshold value for dry
event is SPEI ≤ − 1 and SPEI ≥ 1 for wet event. The severity of
an event is the cumulative sum of the index value based on
duration extent while the intensity of an event is the event se-
verity divided by the event duration (Zambreski 2016) as given
in Eqns. 9 and 10. The longest duration of dry events for SPEI6
was 25monthswhichwas observed in grid cells 18 and 19while
for that for SPEI12 was 52 months observed in grid cell 19. The
longest duration of wet events for SPEI6 was 23 months ob-
served in grid cells 13 (May 1982–March 1984) and 39 (Dec
1988–Oct 1990) while for SPEI12, the longest duration was
observed in grid cell 21 and 39 between November 1992 and
January 1996. It can be seen in Table 2 that the most severe dry
event for SPEI6 was observed in grid cell 31 while for SPEI12 it
occurred in grid cell 19. The most intense event was observed in
grid cell 31 for both SPEI6 and SPEI12. As shown in Table 3,
the most severe wet event occurred in grid cell 39 between
December 1988 and October 1990 and had a magnitude of
40.03. For SPEI12, the most severe wet event occurred in grid
cell 21 (Nov 1992-Jan 1996) with a magnitude of 57.22.

Usually, the extreme dry and wet events are the rep-
resentative indicators of a changing climate and are the

Fig. 3 The evolution of the mean SPEI for 6- and 12-month timescale over the TRB showing the variation in the duration, severity and intensity of dry
and wet events
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dominant factors that affect socio-economic and ecolog-
ical development. The number of months in which the
various categories of events (Table 1) occur during the
study period is given in Table 4. It can be seen that on a
given timescale, near normal and moderate events occur
most frequently and extreme events occur least frequent-
ly. The number of extreme dry events ranged from 3 to
16 for SPEI6 and 0 to 19 for SPEI12. The severe dry
events occurred in the range of 18 and 49 for SPEI6 and
23 and 48. The occurrence of extreme wet events ranged
from 6 to 22 events for SPEI6 and from 7 to 19 events
for SPEI12. The prevalence of the of the dry and wet
events was investigated for each timescale based on the
percentage occurrence of each event (within each

category) for all the grid cells with respect to the total
number of months in the same category and timescale.
The aim is to identify areas that frequently encounter
extreme and severe weather events at comparable time-
scales, based on their percentage occurrence. The fre-
quency of occurrence is the number of months that the
SPEI value attains a set threshold value (see Table 1)
divided by the number of months in the entire series.
The spatial pattern of the frequency of extreme dry and
wet events and severe dry and wet events for the 6- and
12-month timescales is shown in Figs. 5 and 6. The
frequency of extreme dry events for SPEI6 ranged from
0.16 (in grid cell 5 and 17) to 2.49% (in grid cells 11, 19
and 31) and 0 to 2.98% for SPEI12. As shown in Fig. 5,

Fig. 4 The evolution of the dry events (red color) andwet events (blue color) for SPEI6 (left panels) and SPEI12 (right panels) over (I) the highlands, (II)
coastal, (III) northern and (IV) southern parts of the TRB
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the frequency of extreme dry events for SPEI6 extended
from the southwestern through the middle to northern
part of the basin. The extreme wet events were mainly
found in the southeastern part (stretching from the coast
towards the interior) and the northeast part of the basin.
The extreme dry events for SPEI12 showed a high fre-
quency in the northern part of the basin while the ex-
treme wet events had a higher frequency in the north-
eastern and southeastern parts of the basin. The frequen-
cy of occurrence of severe dry events ranged between
2.8 and 7.62% for SPEI6 and 3.61 to 7.54% for
SPEI12 as shown in Fig. 6. For SPEI6, the severe dry
events had a high frequency of occurrence in the eastern
part of the basin while the severe wet events showed a
higher frequency of occurrence in the southwestern part
and a few isolated grids in the eastern part of the basin.
The severe dry events for SPEI12 also affected the east-
ern part of the basin albeit on a larger scale than the
SPEI6 events. The severe wet events showed a high fre-
quency of occurrence in the southwestern and to a less
extent, the southern parts of the basin.

3.2 Spatial patterns of SPEI in the TRB

The SPEI series calculated for the 43 grid cells in the basin
between 1960 and 2013 were used to analyze for spatial pat-
terns of distribution of dry and wet events based on the prin-
cipal component analysis (PCA). From the results of the PCA,
the first two leading components which altogether accounted
for 84% for SPEI6 and 87% for SPEI12, respectively, of the
total explained variance were retained. The first principal
component PC1 explains 73% and 79% for the two SPEI
classes and has spatially homogenous negative values over
the whole basin while the second loading showed both posi-
tive and negative values across the basin. The second principal
component for both timescales explained a smaller percentage
of variance (10.3% and 8.2% for SPEI6 and SPEI12 respec-
tively) suggesting that this component represents more local-
ized spatial patterns of SPEI (Santos et al. 2010). This means
that it is possible to have extremely dry areas during specific
periods, while other areas are wet. The spatial patterns of the
factorial loadings obtained from the two PCAs for each time-
scale are presented in Fig. 7.

The first loading for SPEI6 characterizes the southeastern
and the western part of the basin whereas the loading for
SPEI12 highlights the middle part. The southeastern part is
the area adjoining the Indian Ocean and the western part of
the basin encompasses regions of high elevation. These two
parts of the basin receive relatively higher rainfall compared
with other parts of the basin. The PC1 loading for SPEI12
shows high values in the middle part of the basin. This region
is mainly arid and semi-arid with low rainfall and high tem-
peratures. The corresponding PC scores of the loadings for

Table 2 The duration, severity and intensity of occurrence of some of
the major dry events (SPEI ≤ − 1) in the basin

Grid cell Period of occurrence Duration Severity Intensity

Dry events for SPEI6

1 Dec 1973–Apr 1975 17 − 26.27 − 1.56
5 Nov 1964–Oct 1965 12 − 19.42 − 1.62
5 Dec 1973–May 1976 30 − 44.67 − 1.49
16 Sep1964–Sep 1965 13 − 19.72 − 1.52
18 Oct 1971–Oct 1973 25 − 43.07 − 1.72
19 Oct 1971–Oct 1973 25 − 46.21 − 1.85
30 Oct 1970–Sep 1972 24 − 47.2 − 1.97
31 Sep 1970–Sep 1972 25 − 54.54 − 2.18
39 Oct 1964–Jan 1966 16 − 25.14 − 1.57
Dry events for SPEI12

6 Nov 1969–Jun 1973 44 − 66.23 − 1.51
4 Apr 1074–Jul 1977 40 − 51.2 − 1.28
3 May 1974–Mar 1977 35 − 48.53 − 1.38
18 Nov 1969–Oct 1973 48 − 76.98 − 1.6
19 Nov 1969–Feb 1974 52 − 88.08 − 1.69
20 Dec 1969–Feb 1974 51 − 78.45 − 1.54
23 Aug 1970–Feb 1974 43 − 61.37 − 1.43
25 Aug 1970–Feb 1974 43 − 62.53 − 1.45
31 Oct 1970–Feb 1974 41 − 79.46 − 1.94

Table 3 The duration, severity, and intensity of occurrence of some of
the major wet events (SPEI ≥ 1) in the basin

Grid cell Period of occurrence Duration Severity Intensity

Wet events for SPEI6

13 May 1982–Mar 1984 23 30.16 1.31

13 Jun 1997–Sep 1998 15 27.84 1.86

14 Jun 1997–Sep 1998 15 28.88 1.93

23 Jul 1997–Sep 1998 15 28.65 1.91

26 Apr 1989–Sep 1990 18 31.75 1.76

29 Apr 1989–Oct 1990 19 28.85 1.52

30 Apr 1989–Sep 1990 18 27.8 1.54

36 Apr 1989–Sep 1990 18 30.76 1.71

37 Apr 1989–Sep 1990 18 33.59 1.87

39 Dec 1988–Oct 1990 23 40.03 1.74

Wet events for SPEI12

21 Nov 1992–Jan 1996 39 57.22 1.47

25 Jan 1978–Dec 1979 24 37.75 1.57

26 Apr 1989–Nov 1991 32 52.93 1.65

27 Oct 1989–Nov 1991 26 42.91 1.65

29 Feb 1978–Dec 1979 23 36.35 1.58

37 Dec 1988–Mar 1991 28 50.76 1.81

39 Oct 1988–Mar 1991 30 52.45 1.75

40 Oct 1988–Mar 1991 29 40.48 1.41
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the two timescales are given in Fig. 8. The associated PC1
scores for both timescales describe the temporal behavior of

the SPEI in the basin. The scores show a pattern of downward
(negative) trend from 1960 to 1995 and thereafter the series

Table 4 The frequency (number of months in which the different classifications occur) of dry/wet events of SPEI6 and SPEI12 for all the grid cells in
the TRB

Grid cell Extreme dry Severe dry Moderate dry Near normal Moderate wet Severe wet Extreme wet

S6 S12 S6 S12 S6 S12 S6 S12 S6 S12 S6 S12 S6 S12

1 3 6 47 37 72 78 422 403 55 67 28 34 16 12

2 3 6 47 37 72 78 422 403 57 67 26 34 16 12

3 2 0 47 42 66 83 417 412 70 62 30 25 11 13

4 4 4 34 39 87 87 414 406 68 75 23 15 13 11

5 1 1 48 47 76 76 422 405 48 68 37 31 11 9

6 2 4 31 36 106 95 397 404 83 73 14 13 10 12

7 2 8 49 44 72 62 409 420 81 89 18 1 12 13

8 3 8 32 33 85 68 409 414 81 88 21 15 12 11

9 3 5 36 37 78 80 425 410 65 77 21 16 15 12

10 13 9 27 35 67 58 434 425 70 80 15 18 17 12

11 16 7 28 41 65 62 431 418 60 71 26 28 17 10

12 8 6 36 39 62 74 429 424 66 49 26 29 16 16

13 3 6 41 33 66 87 413 407 69 50 40 42 11 12

14 4 3 39 42 76 69 430 434 54 47 25 25 15 17

15 7 5 29 41 75 59 430 413 66 82 20 26 16 11

16 5 0 32 41 86 78 412 407 70 83 24 17 14 11

17 1 5 38 34 77 77 405 407 82 84 30 19 10 11

18 8 10 21 28 75 77 419 405 75 80 36 26 9 11

19 16 9 23 28 57 70 426 427 80 62 31 30 10 11

20 7 4 24 33 83 79 407 413 82 72 31 25 9 11

21 9 5 25 28 73 82 422 407 69 73 35 32 10 10

22 9 9 25 25 71 73 427 429 67 52 29 36 15 13

23 5 1 34 48 78 65 417 424 62 52 31 32 16 15

24 4 2 34 35 76 99 415 390 74 68 30 33 10 10

25 7 4 34 31 74 86 415 414 72 59 31 33 10 10

26 12 9 28 33 65 61 416 435 79 56 33 30 10 13

27 12 11 24 32 65 52 419 437 75 60 37 35 11 10

28 15 5 30 40 56 64 437 415 53 65 41 38 11 10

29 13 9 22 31 74 80 431 416 53 52 37 39 13 10

30 10 15 28 23 64 58 428 440 73 61 24 23 16 17

31 16 19 18 26 63 45 450 456 50 61 27 8 19 22

32 9 10 35 26 60 67 435 422 54 66 36 34 14 12

33 12 12 31 32 64 65 429 408 63 73 27 35 17 12

34 9 9 34 26 67 72 421 419 62 67 40 34 10 10

35 9 4 21 27 83 87 417 392 67 84 39 37 7 6

36 11 4 27 41 65 63 420 407 74 81 35 32 11 9

37 13 8 22 33 69 58 420 420 75 73 33 35 11 10

38 10 7 31 37 62 57 421 403 75 87 34 39 10 7

39 11 10 29 31 62 63 431 417 68 69 29 33 13 14

40 7 9 40 30 56 68 427 417 73 70 25 26 15 17

41 4 4 39 44 71 50 430 432 62 77 20 9 17 21

42 9 3 27 34 66 73 433 409 71 78 23 31 14 9

43 11 3 33 43 73 71 423 405 59 67 34 40 10 8
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stabilizes. The negative values of the PC1 loadings may mean
that these regions of the basin have been affected by more
frequent dry events. The second PC loading for both time-
scales is mainly representative of the eastern part of the basin.
The second PC scores for SPEI6 show high frequency oscil-
lation without any noticeable trend from 1960 to around 1992
followed by a noticeable upward trend from 1992 to 2000
and henceforth a downward trend to the end of the period.
The second PC scores for SPEI12 similarly did not feature
any noticeable pattern from 1960 to 1992. Thereafter, there
was a noticeable downward trend from 1992 to 2002 and
finally a sharp upward trend.

3.3 Wavelet transform of SPEI in TRB

Wavelet transform analysis of the PC scores was performed to
show the inter-annual variability of the SPEI in the basin. The
wavelet power spectra of the first two PC scores for the two
timescales (SPEI6 and SPEI12) are shown in Fig. 9. In this
study, the level of significance (confidence) was set to 90%. It

can be seen from Fig. 9 that the wavelet power spectra of PC1
scores for both timescales show similar features. The wavelet
transform of the first PC score for both timescales shows sig-
nificant periodicity between 1 and 2 years between 1960 and
1968, 1970 and 1973, and 1980–1985. There is also a stable
inter-decadal higher frequency oscillation at about 2–7 years
between 1963 and 1980. In addition, there exists a stable fre-
quency between 1995 and 2010 with oscillations of about 2 to
7 years. Significant periodicities of about 2 to 3 years are
distributed in the spectrum of the scores of the second PC
and are found between 1960 and 1985 and also 2000 and
2005. Similar results have been found albeit by some studies
that undertook a spectral analysis of annual and seasonal rain-
fall variability over East Africa. A study on trend and period-
icity for annual rainfall over East Africa by (Rodhe and Virji
1976) revealed major peaks centered on 2–2.5, 3.5, and
5.6 years. Ogallo (1982) showed the existence of three major
peaks, centered on the Quasi-Biennial Oscillation (QBO) of
2.5–3.7 years, ENSO of 4.8–6 years, and the sunspot cycle of
10–12.5 years. Nicholson and Nyenzi (1990) observed a

(a)   extreme dry SPEI-6 (b) extreme dry SPEI-12

(c)  extreme wet SPEI-6 (d) extreme wet SPEI-12

Fig. 5 The spatial pattern of the frequency of extreme dry events (top panel) and extreme wet events (bottom panel) computed for the 6- and 12-month
SPEI
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strong quasi-periodic fluctuation in the East African rainfall
with a timescale of 5–6 years corresponding to the ENSO and
sea surface temperatures (SSTs) fluctuations in the equatorial
Indian and Atlantic Oceans. A 2–3 year period means that a
year with positive SPEI is followed by a year with negative
SPEI and then either immediately by a year with positive SPEI
or by another year with negative SPEI and then a year with
positive SPEI (Hartmann et al. 2012). In addition, a relatively
high wavelet power of PC2 of SPEI12 occurred from about
1980 to 1990.

4 Discussion and conclusion

In this study, the characteristics of the extreme weather events
over the TRB were investigated based on the 6- and 12-month
SPEI for the period beginning 1960 to 2013. It is now accepted
that global warming has altered the patterns of rainfall resulting
more frequent extreme weather events such as drought and
floods. Granted that the TRB ecosystem is highly vulnerable
to climate variability and environmental degradation, the SPEI
was considered as the most appropriate index because of its

ability to account for potential impacts of climate change in
the basin. The spatial and temporal evolution of dry and wet
events is captured by both the 6- and 12-month SPEI. It is
shown that dry conditions were predominant in the 1960s to
1980s and 2000 to 2013 while wet conditions were experienced
between 1980 and 1998. The pattern of the temporal evolution
of dry/wet events in the basin can be due to the influence of the
high variability of seasonal and annual rainfall in the East
African region. Some studies (e.g., Lyon and Dewitt 2012;
Shongwe et al. 2011(Lyon 2014)(Lyon 2014)(Lyon 2014))
have suggested that the increase in the frequency of drought
conditions post 1998 in the East African region is due to multi-
decadal variability of SSTs in the tropical Indian and Pacific
oceans. Lyon and Dewitt (2012) observed that the short rains
(October–December) in the region showed a robust relationship
with the El Niño-Southern Oscillation (ENSO) on the seasonal
to interannual timescale while the long rains are mostly linked
to sea surface temperature (SSTs) anomalies. Therefore, the
high variability of rainfall attributed to La Niña, El Niño, and
SSTs could occasion rainfall anomalies leading to decline (or
increase) in total seasonal and/or annual rainfall in the basin.
For example, the La Niña events significantly contributed to the

(a) severe dry SPEI-6 (b) severe dry SPEI-12

(c)  severe wet SPEI-6 (d) severe wet SPEI-12

Fig. 6 The spatial pattern of the frequency of severe dry events (top panel) and severe wet (bottom panel) events computed for the 6- and 12-month SPEI
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occurrence of persistent dry events in Kenya in 2010/2011
while El Niño events of 1997 and 1998 caused extreme wet
events during that period (Kisaka et al. 2015). This could be the
reason for the spatial heterogeneity and non-synchronous oc-
currence of dry/wet episodes over the basin, where some ex-
treme episodes were witnessed in specific periods over the ba-
sin while there were no dry/wet events corresponding to these
episodes across other regions of the study domain. The occur-
rence of long episodes of dry and wet events in the basin is an
indication of its susceptibility to climate variability and change.

The PCA analysis revealed a spatial heterogeneity in the 6-
and 12-month SPEI variations over the investigated period,
with the first two main loadings explaining 84% and 87% of
the variability across the basin. In particular, the first loading of
the 6-month timescale characterized the southeastern coastal
lowlands and the western region of the basin while that for 12-
month timescale highlighted the middle part of the basin.
These patterns are related to distinct geographical areas and
are associated with distinct temporal variations. The leading
component of the 12-month SPEI shows that there is a strong
relationship between the rainfall distribution and dry/wet
events in the region, where the most significant patterns of
dry/wet events were specifically found over the coastal and
highland regions, while the less significant patterns were

observed over the arid lowlands of the basin. This spatial in-
homogeneity of dry/wet events in the basin can be viewed in
the context of climate diversity, strong rainfall seasonality,
complex topography, and the effects of the Indian Ocean.
The long rain (March–May) season is more pronounced in
the highlands region while the coastal region usually experi-
ences more enhanced short rains (October–December). The
spectral analysis of the PCA loadings shows the influence of
these effects on the periodicity of dry/wet events. A periodicity
of 2.3 years was reported by Kabanda and Jury (1999) to be
dominating the interannual cycle in rainfall variability over
Northern Tanzania.

It is evident that the SPEI is a useful tool for analyzing the
spatial and temporal pattern of dry and wet conditions in the
TRB. Several studies have shown that the index is a valuable
tool in the planning and decision-making processes as well as
in drought and flood mitigation. The capability of the SPEI in
identifying the beginning and end of dry/wet episodes and their
spatial variability makes it a potential tool for monitoring hy-
drological conditions and drought/flood risks given the advan-
tage that it can be calculated at multiple timescales. Although
gridded datasets are useful tools for climate variability studies
in data scarce regions like Kenya and can be used to comple-
ment the scarce observation data, there is need for further

Fig. 7 The spatial pattern of the first two dominant PCA loadings for SPEI6 (top) and SPEI12 (bottom) in the TRB
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studies that utilize high-quality observation data so as to mini-
mize the uncertainty problem in analysis. Furthermore, the
availability of credible high-quality data will enable exhaustive
studies on the effect of temperature change and the atmospheric
circulations on the spatial and temporal variability of dry and

wet events in the basin. This is because empirical studies (e.g.,
Vicente-Serrano et al. 2010) have shown that although rainfall
is the main variable determining drought/floods conditions, the
rise in temperature has important effects on the severity of dry/
wet events.

Fig. 8 The temporal pattern of PCA scores corresponding to the first two dominant loading for SPEI6 and SPEI12 in the TRB
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