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Abstract
Projections of seasonal extreme precipitation changes in eight Mediterranean subregions between the end of the twentieth
and the end of the twenty-first century are analyzed using weighted multi-model ensembles. Weights are based on the
performance of predictor variables in the scope of statistical downscaling. Two indices of precipitation scarcity as well as
two indices of heavy precipitation are downscaled from global climate model data of the Coupled Model Intercomparison
Project phase 3 and 5 (CMIP3, CMIP5) multi-model ensembles, considering two emission scenarios each. Based on the
performance with regard to observations of extreme precipitation as well as inter-model consistency, three weighting metrics
are calculated and subsequently applied to each ensemble. While meteorological droughts are projected to increase in most
cases, the tendency is less pronounced for heavy precipitation events and mostly points towards reduction. The weighting
does not affect the multi-model mean changes, but induces a decrease of ensemble spread (although mostly not significant),
implying a decrease of model uncertainty. As the ensemble and scenario considered have minor effect on the findings and
also the differences between seasons and subregions are not marked, there is strong evidence for enhanced droughts in the
Mediterranean region, implying major socio-economic and ecological consequences.

Keywords Climate change · Model weighting · Precipitation extremes · Mediterranean · Statistical downscaling · GLM ·
CMIP3 · CMIP5

1 Introduction

Although the number of general circulation models
(GCMs) and their complexity is generally increasing, no
perfect model exists, as different aspects of each model
lead to shortcomings due to lack in process knowledge
and resolvability: initial state and boundary conditions,
parameterization as well as structural deficiencies (e.g.,
Knutti et al. 2010a; Tebaldi and Knutti 2007, Reichler
et al. 2008). To compensate for this, a preferably large
multi-model ensemble (MME) should be taken into account
when analyzing climate projections as it comprises the
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most realistic extent of uncertainty possible. This holds true
despite interdependencies among the models and the MME
being an ensemble of opportunity (non-systematic choice)
(Collins 2007; Collins et al. 2013; Knutti et al. 2010a;
Tebaldi and Knutti 2007). Encouraging this approach is that
multi-model means (MMM) commonly yield improvements
regarding reproducing observations when compared to
single model results (Gleckler et al. 2008; Flato et al. 2013;
Knutti et al. 2010a; Reichler et al. 2008; Randall et al. 2007;
Sillmann et al. 2013a; Weigel et al. 2010). In this paper,
the term model uncertainty is defined as the spread between
different model simulations (cp. e.g., Hawkins and Sutton
2011), which can be described by the standard deviation of
the MME results.

Besides the widespread practice of equal weighting,
weights can be used in order to accentuate models
performing better with respect to the studied topic.
Although climate models are established in a way to fit
past and present-day climate best way possible and a
transferability to the future is indeed debatable, comparisons

(2019) 138:1269–1295

/ Published online: 22 May2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-019-02851-7&domain=pdf
http://orcid.org/0000-0002-6659-9883
mailto: luzia.keupp@uni-wuerzburg.de


Luzia Keupp et al.

with observations are a common way to evaluate them and
construct performance metrics (Tebaldi and Knutti 2007;
Knutti et al. 2010b; Reichler et al. 2008; Giorgi and Mearns
2002; Ring et al. 2016; Ring et al. 2017). It has to be noted
that weighting metrics should be chosen with care (e.g.,
Weigel et al. 2010).

The present study uses a novel approach to evaluate
model skill and to develop respective weights: the weighted
MME is based on the performance of predictor variables
within perfect prog (PP) statistical downscaling for the
assessment of extreme precipitation in the Mediterranean
area. The rationale behind this is that GCMs are not able
to simulate regional precipitation (extremes) in a satisfying
quality yet (e.g., Fowler et al. 2007; Mueller and Seneviratne
2014; Maraun et al. 2010; Sillmann et al. 2013a, b; Sun
et al. 2006; Trigo et al. 2001), due to, for example, lacks
in the representation of uplift mechanisms (Trenberth et al.
2003; Sun et al. 2006; Stephens et al. 2010) or small-scale
surface heterogeneities not being resolved (e.g., Reichler
et al. 2008; Flato et al. 2013). Thus, instead of using
GCM precipitation, we estimate it from well-simulated
atmospheric variables via statistical downscaling (Trigo
et al. 2001; Sillmann et al. 2013b). Statistical downscaling
is computationally inexpensive and has been shown to yield
improvements when compared to GCM outputs.

In contrast to dynamical downscaling, where a higher
resolution regional climate model is nested within a
GCM (Fowler et al. 2007; Maraun et al. 2010), in
statistical downscaling, local climate is estimated using
empirically assessed relationships to large-scale climate
(Flato et al. 2013; Fowler et al. 2007; Maraun et al.
2010; Maraun and Widmann 2018; von Storch et al.
1993). Three groups of statistical downscaling methods can
be distinguished: In perfect prognosis (PP) downscaling,
the calibration of the statistical model is performed
using observational (or reanalysis) data of large-scale
predictors and local-scale predictands. The large-scale (free-
)atmospheric predictors are assumed to be “perfectly”
simulated by the GCM, justifying the application on model
data (Maraun et al. 2010; Maraun and Widmann 2018; von
Storch et al. 1993; von Storch 1995). Model output statistics
(MOS) use a predictor-predictand link established from
simulated predictors and observed predictands. Therefore,
the statistical model can only be applied to the climate
model which it was calibrated with, but systematic
model biases can be automatically corrected (depending
on the specific method) (Maraun et al. 2010; Maraun
and Widmann 2018; von Storch 1995). As no temporal
correspondence between simulations and observations
exists, only distribution-wise calibration using the same
variable as predictor and predictand is possible for
MOS in the context of climate modeling (Maraun and
Widmann 2018). Weather generators, stochastic models

generating random time series with statistical characteristics
mimicking those of observed climate, form the third group
(Maraun et al. 2010; Maraun and Widmann 2018).

In the perfect-predictor experiment of the COST
action VALUE project (Maraun et al. 2015), statistically
downscaled daily precipitation using GLM-based perfect
prognosis methods was found to show good results
regarding spells as well as inter-annual variability and the
annual cycle. Also concerning the mean of relative wet-
day frequency and mean wet-day precipitation, downscaling
improvements were shown (Gutiérrez et al. 2018; Hertig
et al. 2018; Maraun et al. 2017). However, the quality of
the simulated results always depends on the knowledge and
care of the user, in particular the choice of predictors and
whether the GCM simulates the predictors realistically.

The Mediterranean region is chosen as study area
as Diffenbaugh and Giorgi (2012) encouraged the study
of climate response in this region being a hot spot of
climate change. This is particularly important with regard
to extremes as they exert profound socio-economic and
ecological impact. Water availability and its temporal
distribution is critical for the future development of the
Mediterranean area (e.g., Bolle 2003). With dry events on
the one side, contributing to water scarcity, vegetation stress,
wildland fires, and erosion as well as high precipitation
extremes on the other side, causing floods and erosion, this
topic is highly relevant. Additionally, climate change often
becomes visible particularly in modifications of extreme
event features (e.g., Flato et al. 2013; Trenberth et al. 2007).

In Hertig et al. (2012), statistically and dynamically
downscaled precipitation extremes in the Mediterranean
region for autumn and winter performed similar, markedly
exceeding the direct GCM output. Also, Lavaysse et al.
(2012) found for eight stations in the French Mediterranean
area, that PP-based statistically downscaled GCM results
generally match rainfall observations including extremes
better than direct ones. In a study, regarding precipitation
extremes in the Mediterranean, regional climate models
were shown to have major deficiencies (Cornes et al. 2013).

As concluded in a previous study, future precipitation
variability over the Mediterranean area can be ascribed
in large parts to model uncertainty, particularly over land
areas. By correcting the single model results with respect
to observational data in the late twentieth century, the inter-
model spread was found to be reduced (Paeth et al. 2017).
Also, other studies found a decrease in the model spread by
applying performance metrics (e.g., Duan and Phillips 2010;
Flato et al. 2013; Knutti et al. 2017, Räisänen and Ylhäisi
2012). Generally, the attribution of inter-model differences
to uncertainties in precipitation extreme changes is higher
than the one of differing scenarios (Seneviratne et al. 2012),
making reasonable weighting an important contribution to
decrease projection uncertainty. This is also aimed here.

1270



Weighted multi-model ensemble projection of extreme precipitation in the Mediterranean region...

−10˚

−10˚

0˚

0˚

10˚

10˚

20˚

20˚

30˚

30˚

40˚

40˚

30˚ 30˚

40˚ 40˚1

1 1 1

1

1

1

1

1

1

1

1

1

1
1

1
1

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3 3

3

3

3

3

3

3

3

3

3

3

4 4
4

4
4

4
4
4
4

4
4
4
4

4
4

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

7
7

7
7

7

7
7

7

7
7

7

7

7 7 7

8 8

8

8

8

8

8

8

8

8

8

Fig. 1 Study region and subregions: Aegean (1), North Atlantic (2), Tyrrhenian Sea riparians (3), Near East (4), Iberian Pensinsula (5), Balkans
(6), Maghreb (7), Eastern Black Sea (8)

We therefore follow the advice of Hertig et al. (2014) to
use MMEs for deriving downscaling performance-based
weights in order to gain more reliable results.

In the present contribution, the studied phenomenon is
extreme precipitation and its change until the end of the
twenty-first century in the Mediterranean region, implying
precipitation intensity, number of threshold shortfalls,
number of quantile exceedances, rainfall amount from these
quantile exceedances, as well as maximum length of dry
spells. Therefore, four indices are used for describing
and studying the phenomenon, all downscaled from
atmospheric predictors, meaning that no GCM precipitation
output is used in this study. The performance measures
are the coefficient of determination (for considering the

downscaling skill) as well as three weighting metrics based
on the bias, the bias considering natural variability and the
latter combined with single model performance relative to
average performance (for assessing the skill of each GCM
to simulate input for regional climate change projection).
Finally, the performance-based weighting metrics are
applied to the change in index values from the end of the
twentieth to the end of the twenty-first century and the
results are examined.

Limitations arise from the stationarity assumption
regarding the predictor-predictand relationships (which is
tried to be accounted for using a bootstrapping approach
implying random sampling) as well as the choice of
reference data.

Table 1 Considered CMIP3
models (the spelling in
particular regarding the case, is
adopted from the datasets)

Model name Research unit

bccr bcm2 Bjerknes Centre for Climate Research, Norway

ccsm3 National Center for Atmospheric Research, USA

cnrm cm3 Météo-France / Centre National de Recherches Météorologiques, France

csiro mk3 5 CSIRO Atmospheric Research, Australia

gfdl cm2 0 US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory, USA

gfdl cm2 1 US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory, USA

giss1 (e) NASA / Goddard Institute for Space Studies, USA

ingv echam4 Instituto Nazionale di Geofisica e Vulcanologia, Italy

inm cm3 0 Institute for Numerical Mathematics, Russia

ipsl cm4 Institute Pierre Simon Laplace, France

miroc3 2 medres Center for Climate System Research (The University of Tokyo),
National Institute for Environmental Studies, and Frontier Research
Center for Global Change (JAMSTEC), Japan

mpi echam5 Max Planck Institute for Meteorology, Germany

mri cgcm2 3 2a Meteorological Research Institute, Japan
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Table 2 Considered CMIP5
models (the spelling in
particular regarding the case, is
adopted from the datasets)

Model name Research unit

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization and

ACCESS1-3 Bureau of Meteorology, Australia

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada

CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti Climatici , Italy

CMCC-CMS

CNRM-CM5 Centre National de Recherches Météorologiques / Centre Européen de

Recherche et Formation Avancée en Calcul Scientifique, France

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA

GFDL-ESM2G

GFDL-ESM2M

GISS-E2-H NASA Goddard Institute for Space Studies, USA

GISS-E2-R

HadGEM2-AO National Institute of Meteorological Research / Korea Meteorological

Administration, Korea

HadGEM2-CC Met Office Hadley Centre, UK

HadGEM2-ES Met Office Hadley Centre (additional HadGEM2-ES realizations contributed

by Instituto Nacional de Pesquisas Espaciais), UK

inmcm4 Institute for Numerical Mathematics, Russia

IPSL-CM5A-LR Institute Pierre Simon Laplace, France

IPSL-CM5A-MR

IPSL-CM5B-LR

MIROC5 Japan Agency for Marine-Earth Science and Technology, Atmosphere and

MIROC-ESM Ocean Research Institute (The University of Tokyo), and National Institute

MIROC-ESM-CHEM for Environmental Studies, Japan

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M), Germany

MPI-ESM-MR

MRI-CGCM3 Meteorological Research Institute, Japan

NorESM1-M Norwegian Climate Centre, Norway

NorESM1-ME

The article is structured as follows: Section 2 presents the
region of interest as well as the observational respectively
reanalysis and model data employed. In the subsequent
chapter, the methodology is outlined: the calculation of the
predictands used for assessing extreme precipitation (3.1),
the selection and preparation of atmospheric predictors
for simulating precipitation extremes (3.2), the model
construction for the statistical downscaling (3.3), the
simulation itself (3.4), and finally the quantification of
model performance using metrics (3.5). The results are
described in Section 4 regarding GLM model construction
(4.1), weights and ranks (4.2), extreme precipitation change
in the MMM (4.3.1), distribution (4.3.2), and the effect
of weighting (4.3.3]). Rounding off, a discussion of the
results (Section 5) as well as a summary of the study and
concluding remarks (Section 6) are given.

2 Study area and data

2.1 Study area

The Mediterranean region (12◦ W–40◦ E, 28–46◦ N) is
divided into subregions based on similarity in precipitation
variability independent of the time of the year. This
is carried out using a s-mode varimax-rotated principal
component analysis (PCA) of annual precipitation sums
followed by a differentially initialized k-means (DKM)
cluster analysis.

Eight subregions are delineated by this procedure which
are shown in Fig. 1: Aegean (1), North Atlantic (2),
Tyrrhenian Sea riparians (3), Middle East (4), Iberian
Pensinsula (5), Balkans (6), Maghreb (7), and Eastern Black
Sea (8).
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Table 3 Number of dominant PCs and their cumulated explained variance

Variable Abbreviation Winter Spring Summer Autumn

PCs EV PCs EV PCs EV PCs EV

Relative humidity at 700 hPa hur700 9 84 10 84 9 83 11 87

Relative humidity at 850 hPa hur850 8 83 6 87 9 87 8 88

Specific humidity at 700 hPa hus700 6 83 8 89 9 79 8 90

Specific humidity at 850 hPa hus850 7 86 7 89 8 79 7 88

Meridional wind component at 700 hPa ua700 8 89 10 88 9 81 11 88

Meridional wind component at 850 hPa ua850 7 85 9 84 8 76 10 82

Zonal wind component at 700 hPa va700 11 87 9 84 11 79 9 80

Zonal wind component at 850 hPa va850 10 86 9 80 11 76 8 79

Geopotential height at 500 hPa zg500 10 93 8 94 8 88 6 92

Geopotential height at 700 hPa zg700 8 92 8 94 9 89 9 94

Sea level pressure psl 7 92 8 91 8 87 8 91

Sum/mean 91 87 92 88 99 82 95 87

2.2 Data

For constructing the downscaling model, daily E-OBS
precipitation data (version 14, 0.25◦× 0.25◦, Haylock et al.
2008) as well as monthly NCEP-NCAR reanalysis data
(2.5◦× 2.5◦, Kalnay et al. 1996) of large-scale atmospheric
variables (see Section 3.2) are used.

GCM predictor data of the Coupled Model Intercompar-
ison Project phase 3 and phase 5 (CMIP3 Meehl et al. 2007,
CMIP5 Taylor et al. 2012) serve as input for the simula-
tions. For each, the historical experiment (CMIP3 20c3m)
as well as two scenarios of twenty-first climate are used
(A1B, A2 Moss et al. 2008 and RCP4.5, RCP8.5 van Vuuren
et al. 2011, respectively). By doing so, intermediate as well
as peak pathways are covered for both ensembles. The first
run (CMIP5 r1i1p1) of those models is selected for which
all predictor variables are available for both scenarios (see
Section 3.2), resulting in 13 models for CMIP3 (Table 1)
and 26 for CMIP5 (Table 2). No direct precipitation output
of GCMs is used.

All data is interpolated onto a regular 2◦× 2◦ grid.
For precipitation, the spatial mean time series of the eight
subregions is used.

3Methodology

3.1 Predictands: indices of extreme precipitation

Extreme events are defined by the Intergovernmental Panel
on Climate Change (IPCC) Special Report on Managing the
Risks of Extreme Events and Disasters to Advance Climate
Change Adaption (SREX, IPCC 2012a, b; Seneviratne et al.
2012) as “the occurrence of a value of a weather or climate

variable above (or below) a threshold near the upper (or
lower) ends of the range of observed values of the variable.”

We examine them with regard to precipitation in
the Mediterranean using four indices (cp. Nicholls and
Murray 1999; Klein Tank et al. 2009; Hertig et al. 2014;
Seneviratne et al. 2012). Moderately heavy precipitation,
which is defined as exceedance of the 95th percentile, is
considered with respect to number of days (R95n) and
amount (R95am). The percentile calculation is based on the
reference period 1961–1990 with only events of more than
1 mm being taken into account. As typical precipitation
amounts and distributions are different for each region,
percentiles are the adequate way to examine deviations from
base period climate in the given context (Klein Tank et al.
2009). The low precipitation extreme is investigated using
the number of dry days (R1mmn) as well as the maximum
number of consecutive dry days (MCD), with dryness
being defined as a scarcity of precipitation with 1 mm at
maximum per day. These events can also be referred to
as meteorological droughts (c.p. IPCC 2012a) All indices
are calculated per single-monthly season (winter/DJF =
December, January, February, etc.) using 1950–1999 E-
OBS data (for the first DJF, January values are repeated).

3.2 Predictors: selection and preparation

The predictors should be chosen with care in a way that the
physical background of extreme precipitation is considered.
Mediterranean precipitation is caused by the interplay of
dynamic and thermodynamic processes. Therefore, large-
scale atmospheric circulation as well as smaller-scale
thermodynamic activity are taken into account.

The first stimulus is represented by geopotential height
(zg at 500 and 700 hPa), meridional and zonal component
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of wind velocity (ua, va at 700 and 850 hPa), as well as
sea level pressure (psl) in the Northeastern Atlantic domain
(50◦ W–50◦ E, 24–66◦ N). These variables (zg, ua, and
va in different layers) are commonly used for statistical
downscaling of mean precipitation (e.g., Xoplaki et al.
2004; Tatli et al. 2004; Lutz et al. 2012) and extremes
(e.g., Cavazos and Hewitson 2005; Haylock and Goodess
2004; Hertig et al. 2014; Hertig and Tramblay 2017;
Merkenschlager et al. 2017; Monjo et al. 2016; Nuissier
et al. 2011; Toreti et al. 2010; Vrac and Yiou 2010) in
the Mediterranean region. The size of the domain allows
the depiction of the most important synoptic-scale weather
systems that affect the Mediterranean precipitation like the
North Atlantic Oscillation, the Scandinavian pattern, the East
Atlantic pattern, and the East Atlantic/West Russia pattern.

Relative and specific humidity (hur, hus at 700, and
850 hPa) act as thermodynamic indicators inside the
study area (12◦ W–40◦ E, 28–46◦ N). The high
relevance of including humidity for downscaling of extreme
precipitation was pointed out by, e.g., Cavazos and
Hewitson (2005) and Hertig et al. (2014). The incorporation
of other physically meaningful variables like the vertical
wind component is refrained from due to insufficiencies in
simulation.

In preparation for the downscaling, the NCEP-NCAR
reanalysis data of each of the named variables for 1950–
1999 is condensed by means of a s-mode varimax-rotated
PCA using correlation matrix and latitudinal weighting for
each season. In order to chose the adequate number of
PCs to use, the dominance criteria after Jacobeit (1993) are
applied. Additionally, the loading of the respective PC needs
to exceed the one of the next higher PC by more than one
standard deviation and the dominance has to be present for
at least eight grid cells (cp. Philipp et al. 2007). Finally, the
explained variance of the PC has to cover no less than 4%
of the overall variance (cp. Kaspar-Ott et al. 2019).

The PC scores of each variable thus represent the time
component of the most important modes of variability in
the respective variable over the analyzed domain and are
therefore used as predictor time series. Table 3 shows the
resulting number of dominant PCs and their explained
variance.

3.3 Statistical downscaling

Since the chosen indices are neither continuous nor
normally distributed, generalized linear models (GLMs) are
used in order to simulate extreme precipitation indices based
on the predictor time series. As depicted in Eq. 1, for
GLMs, the expectation value E of the predictand Yt at time
step t is equivalent to the mean μt of the distribution of

Y at time t , which is the inverse of the link function g

applied to the linear predictor ηt (the linear combination
of the predictors/covariates, i.e., systematic component).
Finally, ηt is the sum of the values of the j th predictors for
observation t , xtj , multiplied by the respective parameter βj

over all p covariates (McCullagh and Nelder 1989).

E(Yt ) = μt = g−1(ηt ) = g−1
p∑

j=1

xtjβj (1)

For the count variables R95n, R1mmn, and MCD, a log-
linear model is used, implying multiplicative systematic
effects and Poisson-distributed errors (variance function
V (μ) = μ, canonical link ηt = log(μt )). Classical linear
models on the contrary are suitable for continuous data with
constant error variances and have a normal error distribution
as well as additive systematic effects (V (μ) = 1, ηt = μt ).
The application of the log-linear model assures positive
model results even for negative predictor values, as μt

and therefore E(Yt ) is derived by applying the inverse of
the link function to ηt , which is the exponential function
(McCullagh and Nelder 1989).

R95am is defined in case of non-zero R95n only (an
amount of precipitation over the 95th percentile can only
occur in seasons with at least one precipitation event passing
the percentile) and hence has to be a non-zero positive
value. Therefore, all zero values of R95am are removed
before conducting the downscaling. For the simulations,
information on zero values is obtained from rounded R95n
simulation values. Thus, a gamma distribution is used
for modeling the non-negative continuous R95am data
(V (μ) = μ2). Although the canonical link function for this
GLM family is reciprocal, a log link (ηt = log(μt )) and
consequently a multiplicative exponential model is used,
as it “is usually more adequate for both modeling and
interpretation” (Fahrmeir et al. 2013, cp. Hertig et al. 2014).

As the variance function V (μ) and the link function g are
specified by the model family used (see above), the model
is constructed by means of maximum likelihood estimation
of the parameters βj .

The selection of key predictors and construction of the
final GLM is performed based on Hertig et al. (2014) and
Kaspar-Ott et al. (2019), considering the possibility for
collinearity and a temporally unsteady predictor-predictand
relationship:

For each region, season, and index, 100 bootstrap
iterations (drawing without replacement) of calibration are
carried out using two thirds of the data, the remaining third
being deployed for validation. With this approach, possible
non-stationarities in the relationship between atmospheric
variables and precipitation extremes are taken into account,
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Table 4 Number of key predictors and determination coefficient of the final GLMs

DJF MAM JJA SON

r2 n r2 n r2 n r2 n

R95n

reg1 0.46 15 0.41 21 – – 0.44 20

reg2 0.45 16 0.48 20 0.41 24 0.48 21

reg3 0.31 16 0.37 24 – – 0.49 22

reg4 0.41 14 0.48 20 – – 0.66 20

reg5 0.59 14 0.51 23 0.49 18 0.60 21

reg6 0.37 15 0.35 26 0.36 27 0.37 21

reg7 0.53 15 0.46 22 – – 0.44 21

reg8 0.33 15 0.33 27 – – 0.59 21

R95am

reg1 0.65 12 0.61 15 (0.95) (8) 0.41 12

reg2 0.43 15 0.51 19 0.41 21 0.40 19

reg3 0.38 14 0.59 20 (0.94) (10) 0.74 17

reg4 0.56 14 0.89 6 – – 0.79 6

reg5 0.81 13 0.41 14 0.85 9 0.60 12

reg6 0.28 6 0.54 22 0.60 22 0.46 17

reg7 0.55 12 0.72 13 (0.83) (8) 0.59 16

reg8 0.46 15 – – (0.67) (23) 0.76 16

R1mmn

reg1 0.79 21 0.75 29 0.65 26 0.80 27

reg2 0.59 20 0.77 26 0.65 26 0.77 26

reg3 0.69 21 0.75 29 0.64 28 0.75 29

reg4 0.64 21 0.73 29 0.77 27 0.70 28

reg5 0.68 20 0.75 29 0.71 26 0.72 27

reg6 0.80 21 0.76 29 0.77 24 0.79 25

reg7 0.49 21 0.72 28 0.73 29 0.74 28

reg8 0.71 21 0.62 28 0.70 27 0.69 28

MCD

reg1 0.66 20 0.57 27 0.53 25 0.51 25

reg2 0.48 20 0.61 26 0.48 25 0.64 27

reg3 0.59 19 0.49 27 0.52 26 0.61 25

reg4 0.50 20 0.69 28 0.36 25 0.72 26

reg5 0.49 19 0.55 27 0.46 25 0.60 26

reg6 0.44 20 0.73 27 0.67 27 0.71 26

reg7 0.32 20 0.48 27 0.44 25 0.63 26

reg8 0.56 21 0.50 28 0.58 26 0.55 27

R95n and R95am number of days with respectively amount of precipitation above the 95th percentile of 1961–1990, R1mmn and MCD number
of days respectively maximum number of consecutive days with a maximum precipitation of 1 mm. For situations where no transfer function for
R95n is found, R95am values are shown in brackets, as R95n is needed for the calculation of R95am from model output

the necessity for this having been emphasized by several
studies (e.g., Hertig and Jacobeit 2015; Merkenschlager
et al. 2017). In a first step, GLMs are constructed leaving
out one predictor at a time, followed by the calculation

of the mean-squared error (MSE) for all combinations of
n − 1 predictors. Next (step 2), the correlation coefficients
between the predictors are computed. In case of absolute
correlations of 0.5 or higher, the predictor having lower
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Fig. 2 Relative frequency of predictor variables. Indices: R95n and
R95am number of days with respectively amount of precipitation
above the 95th percentile of 1961–1990, R1mmn and MCD number of

days respectively maximum number of consecutive days with a max-
imum precipitation of 1 mm. For abbreviation of predictor variables,
see Table 3 or Section 3.1

importance for GLM quality is discarded. This is the one
for which the omission in step 1 leads to the lower MSE
value. In case of failure in step 1 (all estimated models
having equal MSE due to overfitting), the GLMs are built
with single predictors (instead of all minus one at a time),
implicating that those predictors with higher MSE values
are rejected in step 2. Afterwards (step 3), the GLM
generation procedure is repeated as in step 1 but only with
the remaining predictors. The last construction phase (step
4) involves the construction of GLMs consisting of five
up to all remaining predictors (the most important ones as
deduced from MSEs of step 3) and the one model with
the highest coefficient of determination (r2) is used for
the particular bootstrap iteration. For each iteration, r2 and
mean-squared skill score (MSSS, Eq. 2, e.g., Wilks 2011)
for the calibration sample as well as the projection using
the validation sample determine the skill of the respective
iteration. If one of the MSSSs is non-positive, a zero skill is
ascribed.

MSSS = MSE − MSEref

MSEperf − MSEref
= 1 − MSE

MSEref

= 1 − MSE
nt − 1

nt
sref

(2)

(MSE MSE of simulation, MSEref and sref MSE resp.
variance of reference sample (E-OBS predictand time
series), MSEperf MSE of perfect forecast (= 0), nt number
of timesteps)

After finishing the bootstrapping, the 25% best models
are used, as they represent the upper quartile of the
model quality range. From these, the average optimal
number (AON) of predictors—the arithmetic mean of

number of predictors from the 25% best models for each
bootstrap iteration—is derived and the AON most frequent
predictors are assigned as the final key predictors. In
case of equivocality, predictors with minimal minimum
significance level are employed.

3.4 Simulation of extreme precipitation from GCM
predictor data

With the key predictors determined, the GCM data can
be employed for simulating extreme precipitation. Single-
monthly seasonal data of each variable at each grid cell
is z-transformed using mean and standard deviation of the
reanalysis data in the respective situation in order to allow
for bias calculation (see below). As for the NCEP-NCAR
variables, a latitudinal-weighted 2D matrix is constructed.
However, it does not serve as PCA input but is projected
onto the loading patterns of the reanalysis PCs. From these
time series, extreme precipitation is simulated, pursuing two
objectives.

First, the deviation between simulations based on
reanalysis and GCM data has to be estimated. For this
purpose, the output of the afore-described procedure is used
to drive the respective final GLM without further adaption
and for the longest time period available (1950–1999).
The second target is analyzing the change in precipitation
extremes from the end of the twentieth to the end of
the twenty-first century (subsequently also named delta).
In order to remove the direct reference to the reanalysis
data and enable the calculation of a delta, data for the
periods 1970–1999 as well as 2070–2099 (two scenarios)
are thus standardized conjointly, before applying the GLM.
However, this also implies that historical values depend on
future ones in a way that they should not be considered in

1276



Weighted multi-model ensemble projection of extreme precipitation in the Mediterranean region...

an isolated manner. As mentioned before, R95am is only
computed for situations with R95n values being non-zero.

3.5 Simulation quality andmodel weight generation

Various performance metrics have been used so far, based
on, e.g., 2×2 contingency table approaches (applied, e.g.,
by Ring et al. 2017), probability density functions (e.g.,
Kjellström et al. 2010), Bayesian statistics (e.g., Tebaldi
et al. 2004), or reliability ensemble averaging (Giorgi and
Mearns 2002).

In order to evaluate simulation quality of the GCMs
and derive model weights, three metrics are applied using
the period 1950–1999 (cp. Section 3.4). All weights are
calculated separately for the two CMIP ensembles, each
index and situation (region and season). As already noted in
Section 2.2, no direct GCM precipitation output is used, the
weighting is based on preciptation indices as downscaled
from large-scale predictors.

The most basic measure is the absolute difference of the
means (ADM) of two corresponding time series (Eq. 3, time
series x of reanalysis and time series yi of model i).

ADMi = |x − yi | (3)

In combination with the natural variability (ε), ADM can
be transformed to the model performance component of the
reliability ensemble averaging (REA) technique by Giorgi
and Mearns (2002) (Eq. 4). Natural variability is estimated
from reanalysis-based simulated extreme precipitation
indices, using the range of floating 50a-averages spanning
1948–2016. Although this estimation method was adapted
from Giorgi and Mearns (2002) and the largest possible
time span was used, the contribution of forced vs. internal
variabily is not clear. Divided by raw ADM weights, with 1
(raw ADM ≤ natural variability) as fixed maximum value,
the raw REA bias weights (subsequently called REA) result.
Owing to this definition, ADM and REA differ only for
situations where the bias of at least one model does not
exceed natural variability.

REAi = ε

ADMi

(max. 1) (4)

The model performance criterion (REA) can be extended
by model convergence (Di), implicating the distance of
the change simulated using a particular model (�model)
from the REA multi-model mean (MMM) of the delta
(�MMMweighted). This deviation is iterated with the starting
values calculated in the following way: A first distance
estimate is calculated as the absolute difference of the model
delta and the MMM delta (�model–�MMM). Afterwards,
a first-weighted MMM (wMMM) is compiled using the
ratio of the natural variability (see above) and the distance
as weight (�model–�MMMweighted). This procedure is

repeated using the wMMM and the weighted distance until
the resulting weights converge. The product of the two
components is named REA-B×D (Bias × Distance, Eq. 5).
As the divergence from the MMM depends on the future,
separate weights eventuate for each scenario.

REA-B×Di = REAi · ε

Di

(5)

The resulting raw weights are standardized in a way that
their sum is 1 and the highest weight is ascribed to the model
with the lowest deviation. This is done in the following way:

As for ADM, higher raw weights (i.e., higher differences
between the model and the reanalysis time series) signify
lower model performance, the order of weights is modified
first. This is done by the calculation of the ratio of the
minimum of all raw weights and each single raw weight
(Wi = min(W)/Wi). Raw weights of REA and REA-B×D
are already calculated in a way such that higher raw weights
correspond to better model performance, due to constructing
a ratio with ε as dividend (see Eqs. 4, 5). Afterwards, for all
three metrics, the weights for each model are divided by the
sum of all model weights (Wi/�W ). For the derivation of
one metric from the other, raw weights are used.

4 Results

4.1 Construction of downscalingmodels

The construction of GLMs did not result in a valid model
for the following situations: R95n JJA regions 1, 3, 4, 7, 8;
R95am MAM region 8, JJA region 4. Due to R95am zero
values being derived from R95n, non-valid R95n situations
inhibit the simulation of R95am as well. Regarding region
4 (Near East), the modeling incapacity (calibration) can
be attributed to the lack of high precipitation events in
the observation-based time series (3 of 150 months with
1 day each). For the other situations, weak validation results
(i.e., zero skill for all iterations due to negative MSSS)
lead to the dismissal. High determination coefficients for
R95am in situations where no models for R95n result,
can be attributed to the low values in these situations
which are common in calibration and validation periods.
As mentioned above, R95am results of situations without
results for R95n are not used. With exception of these cases,
precipitation extremes are projected from reanalysis data for
each index, region, and season.

The number of key predictors as well as the coefficient
of determination of the final GLMs from 100 bootstrap
iterations is shown in Table 4, whereas the relative
frequency of predictor variables averaged over all regions
and seasons is displayed in Fig. 2. Highest coefficients
(0.71 on average), but also most predictors (26 on average)
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Fig. 3 Mean-simulated
1950–1999 index values and
corresponding model weights
(combined for CMIP3 and
CMIP5), exemplary for R1mmn
(number of days with a
maximum precipitation of
1 mm), region 7, summer.
Weights of each type (ADM
absolute difference of the
means, REA ADM with
inclusion of a natural variability
criterion, REA-B×D REA
extended using the difference of
change between the model and
the multi-model mean (differing
for each emission scenario), see
Section 3.5) sum up to 1

result for R1mmn, lowest for R95n (r2 0.45) and R95am
(14 predictors), respectively. Averaged over all indices,
the smallest number of key predictors as well as lowest
r2 are determined for winter. Regarding regions, no clear
differentiation is evident.

No single most important predictor variable can be
detected, but overall 700 hPa relative (dominating in MAM
and SON except for R95n with JJA and SON instead)
and specific (JJA) humidity as well as the zonal wind

component (DJF 700 hPa, R95n also MAM 850 hPa,
mean 700 hPa) play major roles. Considering all indices,
geopotential height is of minor relevance (each level rarely
exceeding 5%) with the highest frequencies for R95am (for
a discussion of this, see Section 5).

Altogether, relative humidity as well as 850 hPa specific
humidity exert more importance for the low than for the high
precipitation indices. For the latter, a slightly higher relation
to psl and zg is found. R95n shows higher frequencies of
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(a) CMIP3

(b) CMIP5

Fig. 4 Model ranking averaged over all subregions and seasons.
Colors are split in intervals of one third (green best 33.3%, red worst
33.3%, yellow in between). Boxes encompass lowest and highest
ranks. Indices: R95n and R95am number of days with respectively
amount of precipitation above the 95th percentile of 1961–1990,
R1mmn and MCD number of days respectively maximum number of
consecutive days with a maximum precipitation of 1 mm

va than the other indices, R95am of ua. Regarding the dry
extreme, hur700 is chosen particularly often in autumn (26
resp. 29%) and spring (20 rep. 20%), for winter va700
is most common (22 resp. 24%), for summer—the season
most balanced regarding predictor frequencies—both hus
predictors (15 and 14 resp. 18 and 16%). Concerning
the high precipitation extremes, the similarities are less
pronounced, with the highest R95n predictor frequencies
resulting for va700 in winter (23%), hur700 and hus700
in summer (19%), hur700 in autumn (21%), and va in
spring but quite similar frequencies for hur700, hus as well
as ua850. For R95am, which generally shows the least
differences between the frequencies of the single predictor
variables, hus700 stands out in summer (24%), va700 in
winter (16%), while for the other seasons hur700 is most
often used.

All humidity variables combined make up between 46
and 51% of the predictors in the mean of all situations,
with specific humidity being less important than relative
humidity. In single-seasonal view, an exception can be
found in summer for all indices but R95n (same frequency
for R95n and R95am). Most of the remaining predictors
are composed of horizontal wind components (39–41% on
average, with va occurring more often than ua; regarding
single seasons ua is more frequent for R95am summer, and
MCD autumn).

Summed up, the predictors representing the large-
scale atmospheric (dynamic) as well as those representing
the thermodynamic processes of extreme precipitation
generation account for important shares of the constructed
GLMs. Nevertheless, the dynamic ones slightly outnumber
the thermodynamic ones when averaged over all situations
and indices. While this holds true for all seasons of R95am,
thermodynamic predictors prevail in summer for R95n and
R1mmn, as well as in summer and autumn for MCD.

4.2 Model weights and ranks

Mean-simulated R1mmn values based on each CMIP model
and NCEP-NCAR reanalysis data as well as the resulting
model weights are displayed in Fig. 3 for JJA in the
Maghreb region. Note that CMIP3 and CMIP5 models are
combined here, implicating differing final weights when
compared to a single-ensemble assessment, as the raw
weights of both ensembles are standardized together (see
Section 3.5). For ADM and REA, those models (open
circles) deviating least from the reanalysis index values
(solid line) are regarded as the most trustworthy ones
and therefore assigned the highest weights. The lowest
difference is simulated by CanESM2 (0.16 days), resulting
in a final weight of 0.14 for ADM. In contrast, 4.94 less
days of low precipitation are modeled using IPSL-CM5B-
LR when compared to NCEP-NCAR, the weight thus being
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Fig. 5 Correlation coefficients between ranks produced by the three
metrics for all situations (subregions and seasons). Indices: R95n and
R95am number of days with respectively amount of precipitation
above the 95th percentile of 1961–1990, R1mmn and MCD number of
days respectively maximum number of consecutive days with a max-
imum precipitation of 1 mm. Weights: ADM absolute difference of

the means, REA ADM with inclusion of a natural variability criterion,
REA-B×D REA extended using the difference of change between
the model and the multi-model mean (differing for each emission
scenario), see Section 3.5

0.00. As REA includes the natural variability (0.20 in
the exemplary situation), the raw REA weight becomes
1, standardized 0.11. As the IPSL-CM5B-LR REA weight
only differs in the fourth decimal place, REA superimposes
ADM in the illustration. While ADM and REA results are
rather similar owing to their definitions, the inclusion of the
model divergence in REA-B×D has big influence on the
quality measure. For this metric, each model is considered
for both scenarios of future climate (CMIP3 models A1B
and A2, CMIP5 RCP4.5, and RCP8.5). The best-rated
model for REA-B×D is bccr-bcm2-0 (ranks 1 and 2 as well
as equal weights for A1B and A2, respectively), whereas the
RCP8.5 version of IPSL-CM5B-LR is once again judged
least plausible (rank 78; RCP4.5 rank 74).

These results are just an example for one index and
situation. An overview is possible via the use of averaged
ranking lists. REA-B×D is dependent on the emission
scenario, whereas the CMIP3 and CMIP5 scenarios do
not conform with each other. Thus, a summarization with
combined ensembles is only possible on seasonal and
regional level, but cannot be performed on metric or index
level.

Averaged over all subregions (n = 8), seasons (n = 4),
scenarios (REA-B×D only), and metrics, the ranks depicted
in Fig. 4a result for CMIP3. Altogether, the best results
are achieved by mri-cgcm2-3-2a, while ipsl-cm4 performs
worst. For R95n, mpi-echam5 obtains the first rank (even
for each metric), while csiro-mk3.5 comes last (if not
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Fig. 6 Boxplots showing the
distribution of the correlation
coefficients between ranks
produced by the three metrics
for single situations. Indices:
R95n and R95am number of
days with respectively amount
of precipitation above the 95th
percentile of 1961–1990,
R1mmn and MCD number of
days respectively maximum
number of consecutive days
with a maximum precipitation
of 1 mm
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noted otherwise: only on average, single metrics differ).
The model mpi-echam5 also occupies the best rank for
R95am, opposed by ipsl-cm4 (worst rank for all metrics).
The remaining indices agree with this classification and
both assign the first place to mri-cgcm2-3-2a.

Concerning CMIP5 (Fig. 4b), CMCC-CM is classified to
have the overall highest, IPSL-CM5B-LR the overall lowest
performance. CNRM-CM5 occupies the best, ACCESS1-3
the worst rank with regard to R95n. For all other indices,
IPSL-CM5B-LR shows the lowest simulation quality (all
metrics for R95am), and CNRM-CM5 (R95am), CMCC-
CMS (R1mmn) respectively CMCC-CM (MCD) are judged
best.

From this, it becomes apparent that model families to
some extent show similarities with respect to the assessed
simulation quality. While the MPI models usually attain
ranks in the upper third, the IPSL family models are
classified weak. However, due to being result of averaging
quite heterogeneous data regarding seasons and regions,
the differences between the gradings described in the
paragraphs above are not very pronounced.

As depicted in Fig. 5, the correlations between the rank-
ing of the different metrics over all situation for each
index are highest for ADM-REA (0.98–1.00). For the two
REA-B×D indices, the coefficients obtain values between
0.73 (R95n CMIP3) and 0.86 (R95am CMIP5). Between
ADM or REA and the REA-B×D indices, they are rather
similar for one individual index and ensemble, spanning
0.73 (R95n ADM to REA-B×D-A1B CMIP3) to 0.87
(R95am ADM/REA to REA-B×D-RCP4.5 CMIP5). Over
all indices, ADM and REA correlate by 0.99, the other met-
rics between 0.78 and 0.81. A high consensus is also found
regarding the individual situations, the median of the rank
correlation coefficients being between 0.8 and 0.9, once
again with highest values for R95am (see Fig. 6). In con-
trast to this (not shown), the ranking list of any index is
not highly correlated to the ranking list of any other index,
irrespective of considering a single metric or all combined.
Highest rank correlation coefficients occur for the low pre-
cipitation indices R1mmn and MCD (0.30–0.34), the high
precipitation indicators correlate by 0.09 to 0.20, regarding
the remaining index relations the values fall below 0.16.
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Fig. 7 Multi-model mean of extreme precipitation change for different
weighting methods and scenarios. R95n (number of days with pre-
cipitation above the 95th percentile of 1961–1990) MAM. Weights:
ADM absolute difference of the means, REA ADM with inclusion

of a natural variability criterion, REA-B×D REA extended using the
difference of change between the model and the multi-model mean
(differing for each emission scenario), see Section 3.5

4.3 Extreme precipitation change
in theMediterranean region

The estimated change of Mediterranean extreme precipita-
tion reveals a high inter-model spread regarding all indices,
situations, and scenarios (not shown). In most cases, there is
also no consensus regarding the sign of change. This under-
lines the need for reasonable weighting and averaging of the
single model results of the ensembles.

4.3.1 Multi-model mean

An example for the weighted and unweighted MMM results
of downscaled R95n for spring is shown in Fig. 7. As can be
seen, the difference between scenarios as well as the effect
of the metric depends on the region considered. In some
cases, the order of the results of the scenarios is modified by
weighting, sometimes even the sign of change is reversed,
while for other situations no major influence can be made
out. Also, the spread between the values of the particular
scenarios depends on situations as well as weighting metric.
Furthermore, there is no overall consensus regarding the

sign of change. While for region 1, 2, and 5 all metrics
and scenarios lead to negative MMMs (less events of high
precipitation at the end of the twenty-first century), for
regions 3, 7, and 8, they agree on increased frequencies.
Regarding regions 4, 6, and the study area as a whole,
signs differ with positive changes only occurring based on
CMIP5. These observations of dependency on situation,
metric, and scenario pertain in general.

Figures 8, 9, 10, and 11 show the sign of simulated MMM
change for all indices and scenarios. Each circle represents
one region, its sectors the seasons, and the different
radii depict the unweighted (smallest) and weighted cases.
Overall, positive deltas (more extreme events, red) eventuate
in 62% of all cases. They also dominate for the low
precipitation indices (R1mmn 83%, MCD 73%; Figs. 8,
9), while for R95n and R95am negative values (blue)
slightly prevail (54%, 62%; Figs. 10 and 11). Regarding
scenarios and weighting metrics (including unweighted), no
differentiation is visible (59–64% positive cases), whereas
for the seasons, the percentage decreases from summer
(74%) over autumn and spring to winter (48%). Most cases
with more extreme precipitation are found for regions 2 and
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Fig. 8 Sign of simulated multi-
model mean change between the
end of the twentieth and the end
of the twenty-first century for
R95n (number of days with
precipitation above the 95th
percentile of 1961–1990)
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Fig. 9 Same as Fig. 8 for
R95am (amount of precipitation
above the 95th percentile of
1961–1990)
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Fig. 10 Same as Fig. 8 for
R1mmn (number of days with a
maximum precipitation of
1 mm)
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Fig. 11 Same as Fig. 8 for MCD
(maximum number of
consecutive days with a
maximum precipitation of
1 mm)
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8 (76%), while for regions 5 and 6, no clear tendency is
detectable (49 and 50%). In 87% of all cases, the change
in extreme precipitation between the end of the twentieth
and the end of the twenty-first century is significant (two-
sided t test, α = 5 %; green line). For all metrics, regions,
seasons and scenarios, the shares are between 78 and 90%,
concerning the indices R1mmn stands out with 96%, for
R95n the least number of significant cases results (77%).
Sixty-three percent of the significant cases show positive
signs, once again with no apparent differentiations for
metrics and scenarios and highest frequencies for summer
and region 8 opposed by lowest frequencies in winter as well
as for regions 5 and 6. The tendency of sign for the indices is
enhanced when only considering significant deltas. Region
1 shows solely significant deltas with positive sign for
R1mmn, with negative sign for R95am. For the summer
season in all subregions exclusively significant positive
changes occur for R1mmn. Thus, it becomes apparent, that
scenario and metrics are of minor importance regarding
significance and sign of index change (cp. Section 4.3.3).
Some differences regarding the sign show up (regions 8 and
summer most, region 6 and winter least positive values) with
respect to region and seasons, but the index considered is
the most important factor. Most prominent is the obvious
increase projected for low precipitation events, particularly
for the summer half of the year and for R1mmn. Regarding
high precipitation, no clear tendency for the future is visible.

4.3.2 Distribution

The described MMMs are a measure of central tendency for
the single-model results. A kernel density estimation of the
latter is depicted in Fig. 12 for R1mmn summer in region 2
as example. Each subfigure shows the density distributions
for all scenarios including a combined one as well as the
individual model values on the bottom for one weighting
method or the unweighted case. Here, the MMM is always
positive, indicating increased occurrence of dry events for
the end of the twenty-first century. While the mean value
(right upper corner of each subfigure) shows only small
differences between unweighted (upper left) and weighted
distributions, the standard deviation is mainly reduced, most
notably regarding REA-B×D (lower right subfigure). The
results of this situation depict the general outcomes.

4.3.3 Metric influence

The general effect of the metric on mean and standard
deviation is illustrated in Fig. 13. With respect to the
multi-model mean (abscissa), the direction of influence
is quite balanced, with a few more positive cases for
high and a few more negative cases for low precipitation
indices. Also, when going more into detail, no noticeable
differentiation appears, with proportions of positive cases
between 42 and 62% regardless of metric, scenario, region,
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Fig. 12 Example for possible effects of weighting on the shape
and position of a multi-model ensemble kernel density distribution.
Estimated kernel density distribution for all weighting metrics and
scenarios R1mmn (number of days with a maximum precipitation of
1 mm) region 2 JJA. Weights: ADM absolute difference of the means,

REA ADM with inclusion of a natural variability criterion, REA-
B×D REA extended using the difference of change between the model
and the multi-model mean (differing for each emission scenario), see
Section 3.5
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Fig. 13 Change of mean and standard deviation after weighting for
all metrics and situations (subregions and seasons). Indices: R95n
and R95am number of days with respectively amount of precipitation
above the 95th percentile of 1961–1990, R1mmn and MCD num-
ber of days respectively maximum number of consecutive days with
a maximum precipitation of 1 mm. Index value unit R95am: mm,

remaining indices: days. Metrics: ADM absolute difference of the
means, REA ADM with inclusion of a natural variability criterion,
REA-B×D REA extended using the difference of change between the
model and the multi-model mean (differing for each emission sce-
nario), see Section 3.5. Only situations where the metric influence on
the MMM is significant are depicted with color-filled symbols

or season. Furthermore, a significant change of MMM
by application of weights exists only for 5% of all cases
(colored symbols). Here, some small disparity can be
detected with proportionally more significant cases for the
CMIP5 compared to the CMIP3 scenarios (8 resp. 7% and
3 resp. 3%) as well as winter (3%) compared to spring and
summer (8%). Regarding the regions, regions 2 and 8 (2 and
3%) oppose region 4 (10%). However, most important for
the significance of weighting is the metric itself. In merely
1% of all cases, REA exerts significant influence, as against
8 and 7% for ADM and REA-B×D, respectively. The index
is of minor importance. Within the significant situations,
no direction prevails in general (55% positive), only for
some regions (e.g., region 2, 80% negative; region 4, 76%
positive) and scenarios.

For the standard deviation as a measure of confidence
(ordinate), a reduction is perceptible in 74% of all cases.
While index and scenario chosen show hardly any effect,

and also the influence of region and season is not very strong
(region 3 (80%) cp. to regions 2 and 8 (66 %), summer
(66%) cp. to remaining seasons 76–77 %), the choice of
metric is crucial. REA-B×D leads to a decrease in standard
deviation in almost all cases (97%) when compared to the
unweighted ones, for ADM and REA this occurs less often
(64 and 63%, respectively). However, the influence of the
metric on the inter-model confidence is significant in only
9% of all cases, more frequently for the CMIP5 than for
the CMIP3 scenarios (11 resp. 12% cp. to 6 resp. 7%) and
especially rarely in winter (4%). As for the direction, REA-
B×D (25% significant) stands out against both other metrics
(2 and 0%, respectively). Of these significant weighting
effects, nearly all result in smaller standard deviations
(98%). Only regarding ADM, seven of nine cases are
negative, for the remaining metrics all significant cases are
positive. To sum up, it can be stated that the application of
weights does rarely induce a broadening of the probability
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density of the multi-model ensemble. Instead, in most cases,
a narrowing can be identified, particularly when considering
the significant cases. This is mainly driven by the REA-
B×D metric, ADM and even more REA exerting less
influence.

Thus, the location of the ensemble distribution is hardly
affected by the weighting metric applied, while the width is
mostly decreased. However, the latter strongly depends on
the metric.

5 Discussion

Construction of downscaling models The relative fre-
quency of predictor variables (Fig. 2) exhibits rather low
values for sea-level pressure and particularly geopotential
height (the three variables for which the dominant PCs
account for the highest shares of explained variance, cp.
Table 3). This is unexpected as previous studies exposed
zg as important predictor for extreme precipitation in the
Mediterranean, while psl was not used in this context (Her-
tig et al. 2012, 2014, Hertig and Tramblay 2017). However,
the GLM construction approach involves the direct com-
parison of possible predictors using correlation analysis.
For correlation coefficients between two variables exceed-
ing 0.5, the one with the lower importance regarding model
quality is dismissed. Due to this, pressure-related variabil-
ity can partly be represented by other variables as specific
pressure situations lead to typical wind and also humidity
patterns. Furthermore, due to complex topographic patterns
and a high influence of land-sea contrasts in the Mediter-
ranean area, large-scale circulation patterns can be highly
modified on a regional level (e.g., Bolle 2003). The preva-
lence of wind over humidity predictors in winter for all
indices can be explained by the higher importance of advec-
tion when compared to local evaporation in this time of the
year, while during the climatologically dry seasons, the pat-
tern is reversed (Drumond et al. 2017; Gómez-Hernández
et al. 2013). As relative humidity is more decisive with
regards to the occurence of precipitation, the somewhat
higher predictor frequency of relative when compared to
specific humidity is reasonable.

Model weights and ranks While the model ranks are quite
heterogeneous concerning individual seasons and regions,
the agreement between the four metrics used is rather
strong (minimum rank correlation coefficient 0.73). This
was also observed by Ring et al. (2017) regarding mean
and trend of precipitation as well as temperature in
the Mediterranean subregions and seven global regions.
As the metrics are based on each other, this is to be
expected. However, the weights and therefore the ranks
highly differ between the indices considered. From this

we conclude, that model performance for a specific aspect
of extreme precipitation cannot be transferred onto each
other. Several studies showed that model performance is
to be understood in the context of the variable and also
spatial (and temporal) location employed for evaluation
(e.g., Gleckler et al. 2008; Kjellström et al. 2010; Ring
et al. 2016; Ring et al. 2017). Although the metrics
considered yield similar results, other metrics might lead to
differing weights and ranks. Apart from not having included
structural model interdependencies, the model performance
is only assessed with respect to the mean while higher order
moments like variability are not incorporated. Furthermore,
there are various other performance metrics like e.g. 2×2
contingency table approaches (applied e.g. by Ring et al.
2017) or Bayesian statistics (e.g., Tebaldi et al. 2004) which
could be employed. In this context, it should be noted
that the length of the time period used for evaluating the
GCMs might allow the dominance of multi-decadal natural
variability in the form of circulation modes like the North
Atlantic Oscillation, which are found to be insufficiently
reproduced in the Mediterranean (Paxian et al. 2014). This
could also influence the projections of extreme precipitation
changes.

Extreme precipitation change in the Mediterranean region
The results of the index delta in the MMM between the
end of the twentieth and the end of the twenty-first century
regarding the increase in dry extremes in the Mediterranean
area was also found in previous studies (e.g., Collins et al.
2013; Christensen et al. 2007; IPCC 2012b; Polade et al.
2015; Seneviratne et al. 2012; Sillmann et al. 2013a), and
supported by Hertig and Tramblay (2017) with respect to
the October to December period (three run ensemble of one
GCM RCP8.5).

However, Sillmann et al. (2013a) also detected a small
increase in the amount of precipitation from events in excess
of the 95th percentile, which contradicts the slight decrease
for this index in the study on hand. Nevertheless, a reduction
in high precipitation extremes was observed by Hertig et al.
(2012) for the Mediterranean region and by Tramblay et al.
(2012) for Morocco, which could be explained by a lack of
water availability despite higher water storage capacity.

The atmospheric water holding capacity increases
with rising temperature following the Clausius-Clapeyron
relation (e.g., Trenberth et al. 2003; Allen and Ingram 2002).
However, high precipitation events also depend on water
availability itself, moist-adiabatic temperature lapse rate as
well as upward velocity.

The former in combination with convergence should
lead to higher intensities but rarer or shorter events,
both influencing the overall amount. Yet, the remaining
factors complicate the resulting high precipitation properties
(Collins et al. 2013; Seneviratne et al. 2012). Emori
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and Brown (2005) concluded that for many subtropical
regions, “strong upward motion” will occur less frequently
under changed climate. The results regarding extreme
precipitation change could be explained by a reduction
in cyclonal activity of Atlantic origin in the context of
a possible strengthening of the North Atlantic Oscillation
and poleward expansion of the Hadley Cell descendance
as indicated in the current IPCC assessment report (Collins
et al. 2013; Christensen et al. 2013).

On the Iberian Peninsula for 1986–2005, consecutive dry
days were found to increase in summer as well as the whole
year regarding the southern parts, whereas the northwestern
regions showed decreases (Bartolomeu et al. 2016). For the
second half of the twentieth century positive trends of low
precipitation occurred as well as weaker negative trends of
high precipitation extremes (Rodrigo 2010). Therefore, the
findings of the study on hand support and extend the latter
observations.

The detected increase in occurrence and length of
meteorological droughts, particularly in the summer half
of the year (mostly significant deltas, all regions regarding
reg. frequency, most of the regions reg. max. duration) is
in concordance with the generally projected drying in the
Mediterranean area (e.g., Collins et al. 2013), implying
increased drought stress, wildfire jeopardy and also water
supply shortfalls. Therefore, a reasonable dealing with
water resources in the Mediterranean region becomes even
more important than today.

In this context it has to be noted that La Jeunesse
et al. (2016) found low awareness of stakeholders regarding
climate change impacts on water availability in the
Mediterranean area. This highlights the need for informing
about climate change and its impact on regional and local
levels.

Metric influence Since the weighting does hardly exert
any statistically significant influence on the mean of the
ensemble for each scenario and the direction of influence
is rather balanced, the results regarding the MMMs can
be seen as robust concerning inter-model differences. Also
previous studies did not reveal large metric influences:
Comparing weighted and unweighted ensemble means of
regional climate models regarding precipitation in Europe
only small improvements resulted from metric application
(Kjellström et al. 2010; Sánchez et al. 2009). A moderate
effect regarding CMIP5 models and North American
precipitation was detected by Sanderson et al. (2016), while
regarding precipitation extremes resulting from regional
climate models in Morocco, no major weighting effect was
found by Tramblay et al. (2012).

Nevertheless, the model uncertainty is reduced in about
three quarters of all cases, although the influence is rarely
significant (9%). A reduction in standard deviation is most

frequent for REA-B×D. This can be explained by the
construction of this metric involving a measure of distance
between the single and multi-model values of the delta (see
Section 3.5). For the other metrics, a negative effect prevails
as well. In spite of the lack of significance, this results lead
in the same direction as the findings of previous studies
(e.g., Paeth et al. 2017; Flato et al. 2013; Seneviratne et al.
2012).

Limitations Some limitations hold true for the study on
hand. The use of statistical downscaling for the simulation
of changes in extreme precipitation implies the assumption
of stationary predictor-predictand relationships. While it is
not possible to proof this for the future, the downscaling
approach used here involves several bootstrap iterations
with random sampling of two thirds of the data, the
remaining third being employed for validation. Hereby, a
more robust model can be constructed.

A common problem in statistical downscaling is the
extrapolation of the predictor-predictand relationships to
unknown future climate states. Especially moisture vari-
ables are known to underlie substantial changes (Wilby et al.
2004). However, changes of the chosen predictor values in
our study are not outside the range of the observed values in
the vast majority of cases, indicating the applicability of the
predictors. But it should be noted that even if the changes of
the individual predictors lie within the range of natural vari-
ability of the known climate, the multivariate approach may
add additional and unknown uncertainties.

Also, the potential instationarity of the GCM biases
is an important area of ongoing research. Because
our study avoids the use of direct CMIP precipitation
output, the potential bias of these data and its behavior
in future scenarios have no influence on our results.
However, the biases of our predictor variables may underlie
a time dependent magnitude. In what sense potential
changing biases of the large-scale atmospheric drivers might
influence the downscaled predictand through the MLR
equations is a very interesting question and should be
subject of further research.

A further limitation of the presented results is the
observational data employed. The choice of reference data
as well as unavoidable errors inside the same can impose
influence on the evaluation results. This particularly holds
true with regard to extreme precipitation (Gleckler et al.
2008; Gómez-Navarro et al. 2012; Flato et al. 2013). With
respect to the indices, the calculation is conducted in the
form of single-monthly seasons. While this is of no effect
for R95n, R95am, and R1mmn, cutting the MCD index
at the end of every month could reduce the maximum
number of consecutive dry days. Yet, the index is defined
consistently for all analyses, ensuring comparability.
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Weighting method The ideal solution for climate model
weighting is an intensively discussed research field. Not
only the overall question whether to weight or not is
debatable but also the importance of different requirements
for a sound weighting metric is investigated. The weighting
approach in this study has its focus on the avoidance
of the direct use of precipitation as it presents an
insufficient modeled variable for the weighting process,
instead, a more complex and as much as possible robust
multivariate downscaling approach is used as basis for
the weighting. However, recent studies propose additional
conditions for optimal GCM weighting. For example,
Knutti et al. (2017) propose a weighting scheme that
accounts also for model interdependencies which ensures
that GCMs with similar background (duplicated code,
resolution experiments, etc.) are down-weighted. Another
research topic focusses on so-called emergent constraints
which is able to reduce uncertainties in climate change
projections by finding “relationships across an ensemble
of models, between some aspect of the Earth system
sensitivity and an observable trend or variation in the current
climate” (Wenzel et al. 2014). However, this method is
highly susceptible to subjective decisions of the researcher,
the quality of the observed data and the understanding of
the physical processes. As Caldwell et al. (2018) show,
recent studies using emergent constraints on equilibrium
climate sensitivity cast more doubt than they confirm. An
application on extreme precipitation might be even more
challenging.

6 Summary and conclusions

In this study, seasonal changes of extreme precipitation
in eight Mediterranean subregions between 1970–1999
and 2070–2099 are analyzed using weighted multi-model
ensembles based on statistical downscaling. Considering
two indices for precipitation scarcity with a daily threshold
of 1 mm as well as two indices of heavy precipitation
delineated by the 95th percentile, precipitation extremes
are projected to increase in 65% of all cases (cp. Figs. 8,
9, 10, and 11: all put together, 65% of all areas are
filled in light-blue color, signifying a positive sign of
change). However, this positive delta is caused by a higher-
magnitude increase for dry events (R1mmn 83 %, MCD
73 %) and a lower-magnitude decrease for high precipitation
(R95n 54%, R95am 62%). Most of the changes are
statistically significant. For these general results, subregion
and season exert influence in some cases, while scenario
and metric are of minor importance. All in all, a rise
in precipitation scarcity is simulated while for heavy
precipitation the results are more balanced with negative
tendencies.

Regarding the MMMs, the application of weights shows
evened impacts which are hardly significant. However,
when considering the standard deviation as a measure of
model uncertainty, a decrease can be found in 74% of
all cases (cp. ordinate of Fig. 13: for all four sub-figures
(indices) put together, 74% of all symbols are located
below 0, particularly for the REA-B×D metric shown as
rhombus), albeit rarely significant (9%). Although this lack
of significance lowers the validity of this results, a tendency
towards enhanced model consensus by weight application is
visible.

This rather robust projection of increased meteorological
drought frequency and duration combined with a small
decrease in heavy precipitation event frequency and amount
is in line with the findings of a general rise in dryness in the
Mediterranean region (e.g., Collins et al. 2013) and implies
large socio-economic and ecological impacts.

Further studies could include a more detailed look by
studying intra-regional heterogeneities on a grid cell scale.
Additionally a comparison with non-downscaled results as
well as the application of the downscaling-based metrics
to deltas calculated from direct GCM precipitation output
might enhance the gain of insight. Finally, to contrast the
results to those yielded by other model performance metrics
could bring further insights.
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