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Abstract
Monitoring the spatio-temporal variability of rainfall regimes in the Amazon basin is difficult because (1) time series of remote
sensing–based rainfall estimates are still too short for long-time variability analysis and (2) rain gauge time series are not fully reliable
and operational in their current state due to frequent gaps and zero values. The objective of this paper is to introduce a quality control
and reconstruction procedure designed to produce a robust database of rain gauge–based daily rainfall in the Amazon basin. Despite
the low density and heterogeneous spatial distribution of the rain gauges network, we eliminated unexpected values and produced
accurate estimates using spatial and mathematical relationships with neighboring rain gauges. Three reconstruction methods were
tested: the nearest neighbor approach (NN), the arithmetic mean with neighboring stations (AM), and the multiple imputation by
chained equations used with the predictive mean matching procedure (MICE). The quality of the reconstruction has been assessed
through themean annual rainfall and themean annual number of rainy days.We concluded that the AMapproach performed better at
the scale of the whole Amazon basin. This method has then been preferred to reconstruct the whole database of rainfall time series.

1 Introduction

Analyzing the seasonal and interannual spatio-temporal vari-
ability of rainfall in the Amazon basin is a complex issue that
requires long and complete daily time series. Whereas remote
sensing–based estimates are widely used to monitor rainfall
regimes at a regional scale, daily rainfall observations from
rain gauges still present major advantages by providing (1)
more accurate precipitation measures (Liebmann and
Allured 2005) on (2) longer time series, thus matching with

the recommendations of the World Meteorological
Organization (WMO) to use at least 30-year time series to
analyze climatic trends (WMO 2011). This is why, even if
estimated products exist and are provided by the National
Atmospheric Agencies, it is of great interest to try to find a
reliable reconstruction method based on observed data.

Unfortunately, the Amazon basin, covered by more than six
million km2 across six countries (Brazil, Venezuela, Ecuador,
Colombia, Peru, and Bolivia), presents a very heterogeneous
rain gauge network characterized by a poor density, a hetero-
geneous spatial distribution, and a large number of erroneous
measurements. Potential sources of errors in precipitation time
series refer to human mistakes or transmission errors, missing
values, missing values recorded as zero, hidden accumulated
values, unexpected high values, and inhomogeneity (Williams
et al. 2005; WMO 2007). The homogenization of such data is a
tricky task because it implies a risk of removing a potential real
climatic signal (Aguilar et al. 2005; WMO 2007; Mestre et al.
2011). This is especially true for precipitations characterized by
a large spatial and temporal variability in opposition to temper-
atures whose linear spatial distribution allows applying homog-
enization processes (Caussinus and Mestre 2004).

All these issues can affect climatological studies (Glasson-
Cicognani and Berchtold 2010) so that data quality needs to
be checked carefully and gaps must be reconstructed before
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any climatic analysis. However, implementing such a proce-
dure for data quality control and reconstruction is a challeng-
ing task because the lack of metadata often hinders the imple-
mentation of automatic approaches such as the ETCCDI
(Expert Team on Climate Change Detection and Indices) pro-
vided by the Canadian Centre for Climate Modeling and
Analysis for instance. In addition, some errors are very diffi-
cult to identify. For example, high values due to extreme rainy
events are difficult to discriminate from those due to errors.
Similarly, dry spells or days with zero precipitations can be
confused with sequences of missing values recorded as zero.
These issues often remain unanswered and are rarely taken
into account in reconstruction software. The high spatial and
temporal variability is problematic for time series reconstruc-
tion because this variability can be compared with something
like discontinuities and heterogeneity in the series and then it
turns hard to report on the complex distribution of the precip-
itations. Variability generates uncertainties and then requires
transversal methods capable of recreating values similar to
those observed in the same spatial and temporal context. The
effectiveness of the quality control and reconstruction proce-
dure is called into question by the geographical characteristics
of the study area, particularly in the case of the large Amazon
basin (more than 6 million km2 between 5° N and 20° S). In
addition, it is characterized by lowlands and highlands: the
Guiana massif in the north and the Brazilian plateau in the
south, while in the west, the Andes mountain range reaches
a height of more than 6000 m. Orography plays an important
role in water vapor flows as the highlands and Andes divert
monsoon flows from the northeast to south, thus contributing
to the redistribution of rainfall in the south of the AB and in
South America.

In this context, the objective of this paper is to introduce a
procedure to control and reconstruct daily precipitation time
series measured at rain gauges in the Amazon Basin. We spe-
cially search for a method able to recreate high spatial and
temporal (daily to seasonal) variability of precipitations.
Section 2 presents the original database of daily rainfall time
series. Section 3 describes the methods and results of the qual-
ity control procedure. Section 4 introduces three reconstruc-
tion methods and associated results. Section 5 provides an
assessment of the quality of the reconstructed database.
Finally, results are discussed in Section 6.

2 The original database and the data selection
procedure

We acquired daily rainfall data from national meteorological
agencies responsible for rain gauge networks in the Amazon
basin: the National Water Agency (ANA) and the National
Meteorological Institute (INMET) in Brazil, the National
Meteorological and Hydrological Institute (INAMHI) in

Ecuador, the Hydro log ica l Meteoro log ica l and
Environmental Studies Institute (IDEAM) in Colombia, and
the National Hydrological and Meteorological Service
(SENAMHI) in Peru and Bolivia. Unfortunately, no data have
been collected in Venezuela. The international rain gauge net-
work is heterogeneous with stations mainly located in histor-
ical human settlements along rivers and roads (for example,
the North-South transamazonian BR163 road), at the estuary
of the Amazon River and in the Peruvian Andes (Ronchail
et al. 2002). Data quality is also unevenly distributed across
the stations with more complete time series at stations from
the Peruvian Andes and the mouth of the Amazon River
(Fig. 2b). Finally, it is worth noting that some periods of po-
litical and economic crisis (e.g., the early 1990s in Brazil or
2003 in Ecuador) are strongly affected by data gaps due to the
reduced capacity to collect meteorological data.

Because this original database contains many erroneous
data, we applied a three-step selection procedure to focus on
the analysis on relevant stations (Table 1). First, we selected
stations with at least three-decade records (WMO 1989, 2007)
beginning between 1981 and 1983 and ending between 2009
and 2013, i.e., the period with the greatest number of available
data. After this process, the dataset is made of N = 533 rain
gauges (400 in Brazil and 133 in the Andean countries as
shown in Table 1). Second, we discarded all stations with
more than 20% missing values or not available values (NA).
This threshold, although lower than the one set by Campozano
et al. (2015) in Ecuador, is high but necessary to maintain a
sufficient network. The remaining stations were N = 346 (225
in Brazil and 121 in the Andean countries; Table 1). Third, we
deleted 141 suspicious time series based on a visual inspection
with, for instance, repeated values during long time periods
were discarded (Fig. 1). At the end, the final rain gauge net-
work is composed of 205 stations (Table 2 and Fig. 2a–c). It is
worth noting that it includes a few stations located outside the
Amazon basin (mostly in Brazil) in order to take into account
stations close to the Atlantic Ocean and to fill spatial gaps.

3 Quality control

The quality control procedure aims at detecting unexpected
high values and unexpected dry sequences.

3.1 Control of high values

High values in rainfall time series can result from real extreme
climatic events or frommistakes during the data acquisition or
transcription. Discriminating real from erroneous high values
is a challenging task since it requires to set an appropriate
threshold, which usually depends on the study area. In East
Africa for instance, Boyard-Micheau (2013) set this threshold
at 400 mm of daily precipitation, corresponding to the

760 V. Michot et al.



maximum observed in this region. In the Brazilian Amazon,
Santos et al. (2015) presented an analysis of the return periods
of maximum daily precipitation according to extreme value

theory, in the Brazilian Legal Amazon during the period
1983–2012. Their work particularly highlights a difference
between the northwest and the rest of the territory. Using the

Table 1 Workflow of the
selection, control, and
reconstruction procedures to
produce complete daily
precipitation time series in the
Amazon basin

Source of data Brasil Colombia Ecuador Bolivia Peru Total

(1) Data selection:

number of stations by country

(a) Selection of rain gauges with at least 30 years record

400 10 23 31 69 533

(b) Selection of rain gauge with less than 20% of not available
values (NA)

225 10 22 20 69 346

(c) Deletion of inhomogeneous time series, after visual inspection

145 2 12 17 29 205

(2) Quality control (d) Checking of improbably large values

(e) Control of wrong zero values:

-Detection of potential wrong values

-Validation of potential wrong values as wrong values:

* Clustering of rain gauges

* Validation by the nearest neighbor approach

(3) Reconstruction (f) Test of 3 different reconstruction methods

-MICE

-Arithmetic mean

-Nearest neighbor approach

(4) Validation of reconstruction methods (g) Computation of the relative RMSE

(h) Comparison of daily mean after and before the reconstruction

(i) Comparison of the number of rainy days per year after and before
the reconstruction

Fig. 1 Example of a daily rainfall
time series with a suspicious
structure due to the repetition of
the same value

Validation and reconstruction of rain gauge–based daily time series for the entire Amazon basin 761



Table 2 Names, coordinates, and altitude of the 205 stations of the study

Rain gauge name Latitude Longitude Elevation (m) Rain gauge name Latitude Longitude Elevation (m)

Acampamento idbf − 1.79 − 51.43 2 Cruzeiro do sul inmet − 7.6 − 72.66 200

acanaui − 1.82 − 66.6 63 Cucui 0.78527778 − 66.8522222 90

Agrapecuaria cajabi − 10.7461111 − 54.5461111 342 Cumaru − 0.6 − 63.4 41

Aguaytia − 9.03 − 75.51 285 Cunumbuque − 7.35 − 75.01 134

Alao − 1.53 − 78.29 2674 Cupari − 4.18 − 55.43 66

Alao perou − 6.53 − 76.73 429 Divinea − 12.9397222 − 51.8263889 390

Almeirim −1.53 −52.58 15 El alto − 16.48 − 68.17 4144

Alo brasil − 12.1641667 − 51.6969444 339 El pangui − 3.646 − 78.567 840

Altamira inmet − 3.21 − 51.21 89 El trompillo − 17.8 − 63.17 424

Anthony br 364 − 9.26055556 − 63.1619444 98 Envira − 7.43 − 70.02 134

Apalai 1.22 − 54.66 311 Escola caramuru − 10.51 − 63.65 181

Aporema 1.23 − 50.9 16 Estirao da santa cruz − 4.29 − 65.2 49

Arapari − 1.77 − 54.4 21 Faz parana 1.13 − 60.4 74

Areias − 1.21 − 51.26 0 Faz rio branco − 9.89 − 62.99 118

Artunduaga 1.35 − 75.33 268 Faz sao jao 3.66 − 61.38 96

Assis brasil − 10.93 − 69.57 278 Fazenda agrochapada − 13.4466667 − 54.2805556 428

Badajos amazonas − 3.42 − 62.68 17 Fazenda itauba − 11.4713889 − 56.4333333 348

Badajos para − 2.51 − 47.77 12 Fazenda paranacre − 7.95 − 71.48 198

Balsa do rio urubu − 2.91 − 59.04 19 Fazenda sheffer − 8.33 − 65.72 113

Bambamarca − 6.68 − 78.53 2657 Fe e esperanca 2.87 − 61.44 78

Barcelos inmet − 0.96 − 62.91 17 Fez esetrela do norte − 3.87 − 50.46 110

Barra do sao manuel − 7.34 − 58.16 128 Fontanilhas − 11.3416667 − 58.3383333 242

Barreira do campo − 9.18 − 50.21 184 Fonte boa − 2.53 − 66.16 81

Barreirinha − 2.79 − 57.06 13 Foz do breu − 9.4 − 72.7 261

Belterra − 2.63 − 54.95 97 Francisco orellana − 3.42 − 72.77 87

Benjamin constant − 4.38 − 70.03 78 Giron − 3.9 − 78.9 1157

Boa vista inmet 2.82 − 60.66 61 Guajara mirim − 10.79 − 65.35 118

Boa vista roraima 2.82 − 60.65 61 Huancabamba − 5.25 − 79.55 3177

Boca do inferno − 1.5 − 54.87 39 Huangacocha − 7.94 − 78.07 3759

Brasil novo − 3.62 − 52.54 117 Humboldt − 10.1752778 − 59.4516667 233

Brasileia − 11.02 − 68.74 194 Iauarete 0.61 − 69.18 122

Caarapo − 14.3841667 − 58.2344444 585 Ipixuna − 7.05 − 71.68 157

Cachachi − 7.46 − 78.27 3320 Itacoatiara − 3.13 − 58.43 30

Cachoeira − 7.7 − 66.05 72 Itaituba − 4.82 − 56 261

Cachoeira da porteira − 1.09 − 57.05 18 Jacareacanga − 6.24 − 57.78 108

Cachoeira morena − 2.11 − 59.34 23 Jacas chico − 9.88 − 76.5 3668

Cachoeira uaupes − 0.11 − 67 99 Jaen − 5.68 − 78.78 633

Cafelandia do leste − 11.6511111 − 55.7025 303 Jamalca − 5.9 − 78.24 1294

Cajueiro − 5.65 − 54.52 201 Jarilandia − 1.12 − 52 19

Camiri − 20.04 − 63.52 812 Jaru − 10.45 − 62.47 140

Canutama − 6.54 − 64.39 49 juruti − 2.15 − 56.09 26

Capinota − 17.71 − 65.27 2599 Jusante foz peixoto
de azevedo

− 9.64333333 − 56.0186111 240

Caracarai 1.82 − 61.12 45 Km 1027da br 163 − 7.51 − 55.26 232

Carvoeiro − 1.39 − 61.98 14 Km 1326br 163 − 5.18 − 56.06 100

Chiquian − 10.15 − 77.15 3344 Km 1385 br 163 − 4.75 − 56.08 128

Cipoal − 2.79 − 50.45 25 Km 947br 163 − 8.19 − 55.12 241

Coari − 4.08 − 63.13 34 Km zero pa 70 − 4.29111111 − 47.5652778 261

Cobija − 11.03 − 68.76 219 Livramento − 0.29 − 66.15 47
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Table 2 (continued)

Rain gauge name Latitude Longitude Elevation (m) Rain gauge name Latitude Longitude Elevation (m)

Cochabamba − 17.41 − 66.17 2564 Macapa − 0.05 − 51.07 0

Colonia do Taiano 3.29 − 61.09 141 Magdalena − 13.25 − 64.05 148

Concepcion − 16.13 − 62.03 496 Maloca do contao 4.17 − 60.53 108

Costa rica − 10.7986111 − 55.4486111 313 Maloca sao tome 0.18 − 67.95 71

Manaus − 3.12 − 59.95 76 Salinopolis − 0.65 − 47.55 21

Maracacuera Florestal − 2.25 − 51.18 37 San borja − 14.86 − 66.74 195

Marco rondon − 12.02 − 60.86 264 San ignacio mo − 14.97 − 65.63 163

Milpo − 9.88 − 77.23 4468 San ignacio ve − 16.37 − 60.95 387

Missao icana 1.07 − 67.59 87 San joaquin − 13.05 − 64.67 140

Monte alegre do xingu − 4.67 − 52.72 144 San marcos − 7.32 − 78.17 2294

Moura − 1.45 − 61.63 12 San pablo − 6.81 − 76.58 275

Moyobamba − 6 − 76.97 832 Sangay − 1.42 − 77.57 598

Namora − 7.2 − 78.34 2779 Santarem − 2.44 − 54.71 47

Naranjillo − 5.83 − 77.39 913 Santarem sucunduri − 6.8 − 59.04 33

Nauta − 4.52 − 73.6 102 Sao francisco − 0.57 − 52.58 37

Navio − 0.4 − 51.42 3 Sao paulo de olivenca − 3.46 − 68.91 83

Nhamunda − 2.19 − 56.71 1 Sayausi − 2.866 − 79.067 2794

Nova california − 9.76 − 66.61 156 Selviria − 11.73 − 51.9888889 374

Nova maringa − 13.0661111 − 57.1133333 307 Seringal 70 − 10.24 − 62.63 221

Nova olinda do norte − 3.88 − 59.09 8 Seringal boa fe − 7.24 − 72.33 176

Novo airao − 2.62 − 60.95 29 Seringal fortaleza − 7.72 − 66.98 104

Novo aripuana − 7.2 − 60.38 154 Seringal jenipapo − 6 − 60.19 19

Nucleo colonial rio ferro − 12.5177778 − 54.9125 349 Seringal moreira − 5.11 − 63.98 54

Nuevo rocafuerte − 0.917 − 75.417 183 Serra do moa − 7.44 − 73.65 237

Oeiras do para − 2 − 49.86 18 Serra do navio 0.88 − 52.01 92

Oriximina − 1.76 − 55.86 66 Shanusi − 6.07 − 76.25 153

Osorio fonseca − 3.82 − 58.29 21 Sigsig − 3.048 − 78.784 2746

Palmeiras do javari − 0.17 − 72.81 219 Sitio sao pedro − 3.89 − 54.32 74

Paranatinga − 14.4177778 − 54.0494444 485 Sondorillo − 5.34 − 79.41 1776

Parecis − 14.1563889 − 56.9330556 501 Sta maria do boiacu − 0.51 − 61.79 25

Pari cachoeira 0.25 − 69.78 118 Sto antonio do ica − 2.1 − 67.94 109

Passagem da br 309 − 14.6119444 −53.9986111 546 Sto dumont − 6.44 − 68.24 92

Pedras negras − 12.85 − 62.9 163 Sucre − 19.01 − 65.3 2912

Picota − 6.95 − 76.34 213 Tabajara − 8.93 − 62.05 80

Pilahuin − 1.18 − 78.44 4153 Tamshiyacu − 4 − 73.16 98

Pilluana − 6.78 − 76.27 222 Tapuruquara − 0.42 − 65.02 33

Pimenta bueno − 11.68 − 61.19 181 Taraqua 0.13 − 68.54 77

Piscicola chirimichay − 2.46 − 78.1 1094 Taumaturgo − 8.94 − 72.79 227

Pongo de caynarachi − 6.33 − 76.3 227 Tefe − 3.83 − 64.7 71

Pontes e lacerda − 15.2155556 − 59.3536111 227 Tingo maria − 9.29 − 76 641

Porculla − 5.85 − 79.51 1944 Torixoreu − 9.94166667 − 57.1330556 272

Prainha − 1.8 − 53.48 35 Trinidad − 14.82 − 64.92 155

Pto leguizamo − 1 − 74.46 174 Tuluce − 5.49 − 79.37 2056

Pucallpa huimbayoc − 6.46 − 75.85 173 Tunui 1.39 − 68.15 90

Quebo − 14.6525 − 56.1238889 212 Umanapana − 1.89 − 62.44 46

Rest poteira do amazonas − 9.5 − 67.28 168 Uruara − 3.68 − 53.55 78

Riberalta − 11.01 − 66.08 138 Urucara − 7.20083333 − 59.8922222 152

Ricaurte cuenca − 2851 − 78.935 2520 Vila do apui − 7.2 − 59.89 153

Rio branco ana − 9.98 − 67.8 132 Vila sao benedito − 1.99 − 50.37 23
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Bgeneralized extreme value^ (GEV) method, the author esti-
mates a 10-year return of the daily maximum values of
234.2 mm in the south of the basin and 169.1 mm in the
northwest. In the northwestern part of the basin, wetter than
the rest of the BA (Espinoza Villar et al. 2009; Figueroa and
Nobre 1990), the lower extreme daily values are due to the
regularity of the rainfall throughout the year. Conversely, in
the rest of the basin, the rainfall that mainly contributes to the
year-to-date total is concentrated in the rainy season, during
which much more intense events occur due to deep atmo-
spheric convection. These results are consistent with those
of Brito et al. (2014), which show that extreme events are
(a) relatively rare and are not the main factor in the annual
accumulation of rainfall in the northwestern part of the AB, (b)
less frequent in the South than in the North, and (c) more
intense in the South and Northeast of Brazil.

Taking into account the two Barbosa’s thresholds, daily
values higher than 169.1 mm in the northwest of the BA
between − 2° S and 5° N − 80° W and − 87° W were deleted
and replaced by a missing value. In the rest of the BA, the
threshold was set at 234.2 mm per day. A total of 34 values
above these thresholds were detected for the entire BA, in-
cluding 15 in the northwest and 19 in the rest of the basin.
Each station concerned recorded only one extreme value, so
the addition of a missing value had little effect on the quality
of the series concerned.

3.2 Control of dry sequences

Similar than high values, dry sequences (i.e., 0 values) can
also correspond to real dry days or to errors, for instance when
missing observations are recorded as 0. To control dry se-
quences, our strategy consisted in comparing them with rain-
fall measures from neighboring stations belonging to the same
climatic region (Cressie and Chan 1989). Indeed, the proba-
bility to measure dry sequences at a given station depends on
the average rainfall regime observed in the corresponding re-
gion. For instance, real and long dry sequences are more likely
to occur in regions characterized by a long dry season. For this
reason, our complete procedure to control dry sequences in-
cludes two steps: (1) the regionalization of major climatic

regions and (2) the implementation of rules to identify unex-
pected dry sequences.

3.2.1 Rainfall regionalization

Two stations are considered as neighbors when they belong to
the same rainfall regime (characterizing the global consistency
of the stations over the region) and when the dissimilarity
between them is small. Precipitation profiles have then to be
regionalized into consistent clusters. To carry out these
clusterization series without missing data is desirable. In order
to temporarily overcome this difficulty, the monthly average
for each series was calculated on the incomplete dataset.
Moreover, since the relationship between the variables is more
constant and strong when the time step increases (WMO
2011), this aggregation also makes it possible to strengthen
the quality of the clustering. However, such calculation also
may be in contradiction with WMO recommendations that
indicate that cumulative or average precipitation totals or av-
erages should not be produced when a large number of miss-
ing values exist in the month. This is relatively problematic
since each of the problems requires the simultaneous resolu-
tion of the other.

Because of the complexity of related precipitations associ-
ated with the local variability of the topography, there is no
reason why the separation between clusters should be linear.
We therefore exploit a non-linear clustering approach, namely
the spectral clustering, in order to allow a better climatological
regionalization. The main principle of spectral clustering is to
represent all rain gauges in separate nodes of a connected
graph whose vertexes express the similarity between two
nodes. The spectral analysis of this graph enables to isolate
its main consistent groups. To compute the connection be-
tween two nodes into this graph, the basic solution consists
in computing a simple Euclidian distance. However, in order
to estimate clusters separated in a non-linear way, we exploit
the kernel trick. The idea consists in projecting data in another
space than the usual one (represented by multi-variate vectors
where each component is a value of precipitation) where the
separation between clusters is linear. Under some specific
properties (see Camps-Valls and Camps-Valls and Bruzzone

Table 2 (continued)

Rain gauge name Latitude Longitude Elevation (m) Rain gauge name Latitude Longitude Elevation (m)

Rio branco inmet − 9.96 − 67.8 138 Vila sao jose do xingu − 10.8072222 − 52.7461111 339

Rio mazar rivera − 2.574 − 78.65 2319 Vista alegre rondonia − 11.44 − 61.48 167

Robore − 18.34 − 59.72 376 Xapuri − 10.63 − 68.51 198

Rosario oeste − 11.9291667 − 54.9980556 301 Xavantina − 14.6722222 − 52.3547222 266

Rumipampa salcedo − 1.1 − 78.35 3605

Ruropolis presidente medici − 4.09 − 54.9 103

Rurrenabaque − 14.43 − 67.5 216
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2009 for a complete theory of kernels), this projection can
simply be done by changing the way one computes the con-
nection between nodes. In practice, this is done using a
Gaussian kernel where the connection between two rain
gauges x1 and x2 is:

K x1; x2ð Þ ¼ e−
x1−x2k k
σ2

where σ is a parameter to fix. It has been proven that this
kernel enables to efficiently separate highly non-linear
clusters.

The determination of the optimal number of clusters is an
open problem for which no sound solution exists at the mo-
ment. In this study, we rely on the intra/inter inertia. More
precisely, a reliable clustering should reveal both homogeneities

Fig. 2 a Location of the Amazon basin. b Spatial distribution of missing values per rain gauge from 1981 to 2013, in percentage. c Temporal distribution
of missing values, per station. Source of data: see Section 2. Digital elevation model, in meters, source: DEM GTOPO30 (USGS)
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inside clusters (all stations of the same group are similar) and
heterogeneity between averaged clusters (all clusters represent
different groups). Therefore, the ratio between the inertia
among (averaged) clusters and the internal inertia (sum on in-
ertia inside all groups) should bemaximal. This ratio is depicted
in Fig. 3a, and as one can see, the maximal value is reached for
a number of 12 clusters that are used in practice. The resulting
regionalization in Fig. 3b is consistent with former studies,
showing for example the separation between tropical and equa-
torial regions and between highlands and lowlands (Barbosa
Santos et al. 2015; Delahaye et al. 2015; Espinoza Villar et al.
2009; Figueroa and Nobre 1990).

3.2.2 Identification of unexpected dry sequences

Once clusters are determined, the detection of unexpected dry
sequences in rainfall time series is done in four steps. First, the
average duration of dry (i.e., 0 mm/day) sequences is calcu-
lated for each month of the year. Second, all dry sequences are
compared with the average duration of dry sequences of the
corresponding month. Third, the dry sequences longer than
the average duration are flagged as doubtful. Four, these se-
quences are compared with the values measured at the two
nearest neighboring stations located in the same cluster during
the same time period (Vicente-Serrano et al. 2010). If more

Fig. 3 a Ratio between inertia
among clusters and internal
inertia for the estimation of the
optimal number of clusters. The
line represents the ratio and the
cross represents the maximum
value (12 clusters). b
Identification of neighbor stations
using the spectral clustering. Each
symbol represents a cluster. The
larger symbols represent the
stations chosen as illustrations (in
Section 4.3.1). The blue lines
represent the northwestern region
for the maximum daily
precipitation (in Section 3.1)
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than 20% of the days of the doubtful sequence are also record-
ed as 0 mm in the neighboring stations, then the doubtful dry
sequence is definitely considered as real. If not, the entire
period is considered as unexpected and 0 values are replaced
by NA values. In practice, with a threshold of 20%, the iden-
tification of NA in the entire time series grows slowly (be-
tween 0.1 and 3.5%). With a value lower than 20%, no sig-
nificant change in the results is visible. On the contrary, when
its value increases (until 35%), we observed that too many dry
periods were removed and that entire dry seasons could be
wrongly removed. Therefore, the choice of a threshold of
20% appears rational. However, we underline that this point
really depends on the area context, that is why we recommend
to determine this threshold under the caution of a good knowl-
edge of the climate of the study region by the authors, as
recommended by the WMO (2007, 2011) when a method or
protocol does not already exist.

4 Reconstruction of times series

After these two correction steps (unexpected high values and
dry sequences replaced by NA), data imputation methods
have been tested to re-estimate rainfall values and thus recon-
struct complete daily time series. Data imputation is challeng-
ing due to the spatial and temporal variability of rainfall, es-
pecially in such a large catchment area as the Amazon basin.
Several procedures have been developed in order to homoge-
nize and fill the gaps in meteorological variables like temper-
atures and precipitations. Different methods can be used to
reconstruct time series depending on the final objectives
(Boyard-Micheau 2013). For example, many methods use
the probability of intensity and rainy day distribution in the
time series (Brunetti et al. 2006, 2006; Moron et al. 2007), re-
analyses data (Hansen et al. 2006), or probabilistic models
based on the maximum likelihood method (ML) (Dempster
et al. 1977; Makhuvha et al. 1997a, 1997b). Multiple linear
regressions at monthly (Camberlin et al. 2012) or daily time-
scale (Boyard-Micheau 2013; Eischeid et al. 2000; Vicente-
Serrano et al. 2010) have also been frequently used. In gener-
al, statistical analyses show that ML, multiple imputation by
predictive mean matching (PMM) best perform to fill the gaps
(Glasson-Cicognani and Berchtold 2010). Although many
studies on the topic do exist, Vicente et al. (2010) consider
that general guidance it does not exist to choose the best meth-
od in order to fill the gaps. Choices are related to the context of
the study and the appreciation of the author.

In the present study, three reconstruction methods were
tested in order to determine the most efficient one to recon-
struct missing rainfall values for the whole Amazon basin: the
nearest neighbor approach (NN), the arithmetic mean using
neighboring stations (AM), and the multiple imputation by
chained equations (MICE).

4.1 Nearest neighbor approach

The NN approach consists in using the nearest station
from the same climatic region as a predictor of missing
values (Eischeid et al. 2000). The gaps in time series
recorded at the station of interest were replaced by the
values observed at the nearest station in the same clus-
ter without any limit in the distance between two sta-
tions (Campozano et al. 2015; Vicente-Serrano et al.
2010). When records at the nearest station were also
missing, it was necessary to consider further neighbor-
ing stations (up to the sixth nearest station).

4.2 Arithmetic mean using neighboring stations

The arithmetic mean (AM) consists in replacing the gaps in
rainfall time series at a station of interest by the average of
precipitation values measured at the neighboring stations
(Fig. 4). Although this approach has been criticized because
it may lead to high over- or underestimations (Glasson-
Cicognani and Berchtold 2010), it is also considered to per-
form better for data BMissing completely at Random^
(MCAR), which means that the lack of data is totally at ran-
dom, which is the case of missing values in precipitation time
series (Glasson-Cicognani and Berchtold 2010; Little and
Rubin 2002).

Defining the optimal neighboring stations is not trivial be-
cause of the high spatial rainfall variability in the Amazon
(Campozano et al. 2015; Espinoza et al. 2015) and because
there are no guidelines to establish objective criteria. It thus
depends on the expertise and knowledge of the author (WMO
2007, 2011). Here, we defined the neighboring stations as the
four nearest stations located less than 500 km away from the
station of interest and classified them in the same climatic
region (i.e., cluster). We have chosen this distance based on
the guidelines of the WMO (2011), which consider that the
maximum spacing between rain gauge should be 500 km.
Sometimes, measures recorded at the neighboring stations
were also missing during the time period to be reconstructed.
In that case, if less than three values were available at the
neighboring stations, we replaced the missing values with
other rainfall estimates provided by the Unified Gauge-
Based Analysis of Global Daily Precipitation of the NOAA
Climate Prediction Center (CPC). The CPC data is a gridded
interpolated data of daily rainfall since 1979 to present, com-
bining rain gauges and remote sensing data (Chen et al. 2008).
As all gridded products, its major advantage is to provide
spatially homogeneous information even in areas without rain
gauges and its main limitation is its accuracy since rainfall is
spatially smoothed and sometimes underestimated, especially
in the Andes (Silva et al. 2007). However, Carvalho et al.
(2012) and Getirana et al. (2011) compared several precipita-
tion datasets in the Amazon basin and validated the good
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performance of CPC data. Juárez et al. (2007) also considered
CPC data as the best daily rainfall dataset in the region.

4.3 Multiple imputation by chained equations

The multiple imputation by chained equations (MICE,
van Buuren and Groothuis-Oudshoorn 2011) computes
several plausible stochastic values for each missing data.
These values result from regressions between the time
series of interest and (1) its own values and (2) the
values of the four neighboring stations. As for the AM
approach, when necessary, the missing values in the
neighboring stations were replaced by CPC data. In this
study, we tested two procedures, i.e., bootstrap and pre-
dictive mean matching (MICE-PMM). The first one has
been rejected because of the generation of negative data.
The second one gives more coherent results because it
does not directly impute the modeled value but a real
observed one closest to the modeled one thus avoiding
outliers (van Buuren and Groothuis-Oudshoorn 2011).

5 Validation of reconstructed time series

In order to assess the performance of the reconstruction
methods, we selected a sample of 12 stations (Figs. 3b
and 5) with good quality time series. The stations are
spread across the 12 climatic regions (i.e., one station
per cluster) in order to represent the diversity of rainfall
regimes in the Amazon basin: tropical regimes with rainy
and dry season in the southern, eastern, and northern re-
gions (Fig. 5d, j, k); equatorial regime with two rainy
seasons in the Andes; and regimes without a dry season
in the northwest (Fig. 5a–f) (Espinoza Villar et al. 2009).
These stations have no missing data during a common
period that runs from the 1st August 1986 until the 31st
July 1990. For each station, we then artificially created
sequences of missing values. Since the gap’s duration
can influence the quality of the reconstruction (Cardenas
and Krainski 2011), sequences of 5, 30, 60, 180, 240, and
365 successive missing values were generated at the same
periods for the 12 time series. This procedure was iterated
100 times in order to get more robust results. We finally
imputed new values for these gaps and compared them

with the original values by computing the relative root
mean square error (relative RMSE):

relative RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 Po; i−Pe; ið Þ2

n

r

=Po

where Pe is the prevision (the imputed value), Po is the

observation (measured value), and Po is the mean ob-
served precipitation in the whole period. The RMSE is
the square root of the ratio between the sum of the square
differences in observations and the estimated number of
days. It is a frequently used criterion to evaluate the per-
formance of a predictor. The closer the relative RMSE is
to zero, the better is the reconstructed value.

6 Results of validation of the reconstruction

6.1 Comparison of the different methods

Figure 6a shows the distribution of 600 values (6 different
durations of missing sequences × 100 iterations) of relative
RMSE computed for each sampled station for each reconstruc-
tion method. The AM method showed the best results for ten
stations out of 12. For these stations, the median relative RMSE
is notably lower (then better) with the AM than with the two
other methods. The method works especially well for tropical
stations in general (in particular the Envira station) where we
observed the greatest difference between the AM and the two
other methods (Fig. 6g–l), and for two equatorial stations with
high precipitations levels and without a dry season (Fig. 6e, f).

In stations located in the western part of the basin (i.e., the
Andes), the results are more balanced between the three ap-
proaches. The AM method led to the lowest results at
Rumipampa Salcedo station and MICE performed best at
San Pablo station. Sayausi and Huangacocha stations showed
better reconstruction results with the AM approach but results
from the three methods are almost identical. Except for
Huangacocha station, these Andean stations present weak an-
nual rainfall without a dry season (Fig. 6a–c). In conclusion,
the performance of the methods depends on the rainfall regime
of the station. The AMmethod provided lower reconstruction
results in climatic regions characterized by low annual precip-
itations without a dry season (Fig. 5b) and better results in

Fig. 4 Options for infilling gaps with the arithmetic mean

768 V. Michot et al.



regions marked by a unimodal rainfall regime associated with
a dry season.

Figure 6b represents for each sequence and the three recon-
struction methods, the distribution of the 1200 values of rela-
tive RMSE (12 stations × 100 iterations). The median shows
that the AM method also provides the lower relative RMSE
while MICE-PMM still provides the poorest results (Fig. 6b).
Moreover, the sequence lengths do not impact the estimated
values, whatever the method.

A time evaluation of the three methods was also computed,
with the aim to assess if the results are seasonally dependent.
However, the seasonality is not uniform across the AB; the
equatorial regions (Figs. 5e, f and 3b) have rainfall throughout
the year, while in the tropical regions (Figs. 5d, g–l and 3b), a
rainy season alternates with a dry season, which can be oppo-
site between the north and the south. Then, the assessment was
done on classes of the quantity of monthly rainfall. This ap-
proach makes it possible to analyze the monthly amount of
precipitation that each method allows to better reconstruct.

For the 12 stations of the sample, monthly rainfall was
computed from the 1st August 1986 until the 31st
July 1990. Based on the distribution of the 576 months of
these time series (Fig. 7), each month was attributed to one
of the six following classes: 0–50 mm, 50–100 mm, 100–
200 mm, 200–300 mm, 300–450 mm, and 450– +mm.

Subsequently, the reconstruction methods of AM, NN, and
MICE were applied to 5-day sequences of missing values,
because the monthly time scale avoids using the other se-
quence lengths tested before. Figure 8 shows that for each
class of monthly precipitations, the medians are close, with a
good score (0 mm) in class (0, 50). The reconstruction by the
three methods is pretty better for the driest months than for the
rainiest (200, + 450) which maximum and range of values are
higher. However, there are more outliers for the driest than for
the rainiest months. Even if there is a slight advantage of the
AM to reconstruct the rainiest months, these results show that
the performance of the reconstruction depends on monthly
rainfall amount and not on the method used.

Fig. 5 a–l Precipitation regime for each rain gauge of the sample. The mean of each month (axis x) is computed from August 1986 to July 1990. The
symbols associated with each graphic represent the cluster to which belong
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To conclude, even if the station regime can influence
the performance of the method, the arithmetic mean is
frequently the best method to reconstruct missing

values, regardless of the length of the gap. The arith-
metic mean performs notably better in the plain of the
AB while the differences between the three methods are

4 8 4 7 5 6 9 10 10

8 7 7 18 13 16 15 11 15

17 12 15 17 14 15 20 15 19

15 11 13 16 11 15 17 12 17

12 9 12 13 9 10 12 9 10

14 10 1410 8 914 10 12

Fig. 6 Root mean square error for
each reconstruction method per
station or per sequence length of
missing value. In each graphic,
the x-axis represents the three
methods of reconstruction 1:
MICE, 2: arithmetic mean, 3:
nearest neighbor. aRepresents the
relative RMSE for each station of
the sample. b Represents the
relative RMSE for each length of
gap. The number above each
boxplot indicate the median
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less significant in the Andean regions. Consequently, as
a method is researched for the whole AB, the arithmetic
means seems to be the most appropriate among the
three tested methods.

6.2 Assessment of the quality of the reconstruction
of time series by the arithmetic mean

Figure 9a–d compares the mean annual precipitation and the
mean annual numbers of rainy days after and before the data
reconstruction.

In Fig. 9a that shows the number of rainy days per
year after the reconstruction, the spatial pattern is con-
sistent with expected (Espinoza Villar et al. 2009;
Simões Reibota et al. 2010). There are numerous rainy
days near the equator, in the northwest and in the Andes,
where precipitations occur all year long (see for example
stations in Fig. 6a–f, l) and southward, the number of
rainy days decreases (see for example stations in
Fig. 6h–k). The difference in the number of rainy days
per year after and before reconstruction (Fig. 7b) is con-
sistent with the spatial distribution of missing values per
year (Fig. 10) that are more important in the southeast, in
the center of the AB, and in the extreme north of the
Andean regions. This means that the AM method allows
reconstructing time series with unimodal regimes.
Indeed, all missing values are not necessarily substituted
by a value higher than 0. Then, this method can provide
regional conditions in a given moment.

Figure 9c shows the mean annual precipitation in each
station after the reconstruction of the time series. As for

Fig. 8 Root mean square error for each reconstruction method per class of monthly rainfall. In each graphic, the x-axis represents the three methods of
reconstruction 1: MICE, 2: arithmetic mean, 3: nearest neighbor. The number above each boxplot indicate the median

Fig. 7 Distribution of the monthly rainfall of the 576 months of the
sample time series. The x-axis represents the precipitations in mm, and
the y-axis, the number of month
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the number of rainy day per year, the spatial pattern of
the quantity of precipitation is consistent with the litera-
ture (Espinoza Villar et al. 2009; Figueroa and Nobre
1990; Liebmann and Marengo 2001; Simões Reibota
et al. 2010) with higher rainfall near the equator line
and in the northwest of the AB (for example stations in
Fig. 6d–f, l), lower rainfall southward (for example sta-
tions in Fig. 6h–k) and northward toward the tropics, and
the lowest in the Andean stations (for example stations in
Fig. 6a–d). The increase of the annual average after the
reconstruction (Fig. 9d, in percentage) is spatially hetero-
geneous, which is also the case of the percentage of
missing value per year (Fig. 10) before the reconstruc-
tion. However, unlike the number of rainy days per year,
in the southeast, rainfall increases intensely in a group of
stations. This can mean that the increase in rainfall is
concentrated in a short period.

7 Discussion and conclusion

Rain gauges are an important source of observed data for the
Amazon basin since they provide long time series and give the
possibility to better understand the variability of climate.
However, the rain gauge network in the Amazon basin is very
heterogeneous and mainly characterized by a poor density and
numerous erroneous measurements, partly due to the accessi-
bility in this territory. On the other side, the series of rainfall
satellite estimations data are still too short and sometimes
uncertain to completely replace observations. It is therefore
of prime importance to construct a sound database from rain
gauges, using advanced quality control and reconstruction
methods valid for the entire Amazon basin.

Initially, 533 rain gauges have been gathered from 1981 to
2013. Among these stations, we have retained those with less
than 20% of missing values and without an inhomogeneous

Fig. 9 a Number of rainy days after reconstruction by the arithmetic
mean for each station of the dataset (100 to 300). b Difference between
the mean of rainy days per year after and before the reconstruction, in
percentage (5 to 20). c Mean annual precipitation after reconstruction by

the arithmetic mean, in millimeter (1000 to 4344 mm). d Difference
between the mean annual rainfall after and before the reconstruction, in
percentage (10 to 31.1%)
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structure. Finally, only 205 rain gauges were selected.
Afterward a control of quality allowed to remove the unex-
pected large values (34) and the wrong zero ones.

Among the methods for filling the gaps that would be
valid for the whole basin, multiple imputation by chained
equations with the predictive mean matching procedure
(MICE-PMM), the nearest neighbor (NN) approach, and
the arithmetic mean (AM) have been tested. The latter per-
fo rms be t te r, a l though the three methods have
experimented rather similar results in the Andean regions.
The AM was used to reconstruct the dataset and associated
precipitation parameters (the daily mean rainfall and the
number of rainy days) were used to assess the quality of
the dataset reconstruction. We can conclude that for this
database, the AM allows obtaining acceptable values to
reconstruct long time series and to produce a useful dataset
of daily precipitation for the whole AB. Of course, even if
the AM gives better results than the other two methods, the
relative validation of the RMSE shows that errors remain.
However, this study shows that this method can help to improve
results better than a simple method such as NN and works better
at the AB level than a more sophisticated method such asMICE.
In addition, as there is not yet a consensus on how to reconstruct

the observed daily precipitation data, this work aims to contribute
to the development of a methodology.

The efficiency of the methods tested in our work appears to
really be related to the region of study, the associated rainfall
regimes, and the density of rain gauges. For example, Eischeid
et al. (2000) show that the reconstruction of precipitation in the
USA depends on the location and the precipitation regime and
that the quality of infilling can vary with the seasonality. In the
Amazon basin, the NN method performs less well than the AM,
while Vicente-Serrano et al. (2010) were able to have a better
quality precipitation reconstruction with the NN than with the
linear regression in northeast Spain; this was due to the fact that
they have at their disposal 286 rain gauges with a high density
and radius neighboring less than 15 km. Conversely, Campozano
et al. (2015) filled the gaps for 14 precipitation time series in
Ecuador and showed that complex methods based on linear re-
gression perform better than the AM and the nearest neighbor
approaches. It can be noted in this latest work that AM is more
appropriate during months with few precipitations that seems
consistentwith the observations of the presentworkwhich shows
that the more efficient method for rain gauges with dry season is
the arithmetic mean. Cardenas and Krainski (2011) also tested
several methods of reconstruction data for 41 precipitation time

Fig. 10 Mean annual percentage (5 to 20%) of missing values per rain gauge
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series in Brazil, in the State of Parana. The imputations results,
estimated among others from MICE-PMM and for several
lengths of missing values, were among the worst with this meth-
od, but tended to be slightly better when the gap is long.

This work pointed out the great challenge to obtain a useful
and robust rainy database in the AB. Soon, the rainfall satellite
data will be long enough and then will be able to provide an
alternative to ground-based rainfall data. This remote sensing
technique can offer a wide geographical coverage and a good
resolution. But, as satellite data are rainfall estimations, it is nec-
essary to assess their quality, which is done by ground validation.
Thus, a good network rain gauge will remain crucial.
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