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Abstract
Reliable drought projections are crucial for the effective managements of future drought risk. Most of the existing drought
projections over Southern Africa are based on precipitation alone, neglecting the influence of potential evapotranspiration
(PET). The present study shows that inclusion of PET may alter the magnitude and robustness of the drought projections. The
study used two drought indices to project potential impacts of global warming on Southern African droughts, focusing on four
major river basins. One of the drought indices (SPEI: Standardized Precipitation Evapotranspiration Index) is obtained from
climate water balance (i.e. precipitation minus potential evapotranspiration) while the other (SPI: Standardized Precipitation
Index) is calculated from precipitation alone. For the projections, we analyzed multi-model regional climate simulations from the
Coordinated Regional Climate Downscaling Experiment (CORDEX) at four specific global warming levels (GWLs) (i.e., 1.5 °C,
2.0 °C, 2.5 °C, and 3.0 °C) above the pre-industrial level and used the self-organizing maps to classify the drought projections
into groups based on their similarities. Our results show that the CORDEX simulations give a realistic representation of all the
necessary climate variables for quantifying droughts over Southern Africa. The simulations project a robust increase in SPEI
drought intensity and frequency over Southern Africa and indicate that the magnitude of the projection increases with increasing
GWLs, especially over the various river basins. In contrast, they project a non-significant change in SPI droughts at all the GWLs.
The majority of the simulations clearly distinguish between the projected SPEI and SPI drought patterns, and the distinction
becomes clearer with increasing GWLs. Hence, using precipitation alone for drought projection over Southern Africa may
underestimate the magnitude and robustness of the projections. This study has application in mitigating climate change impacts
on drought risk over Southern African river basins in the future.

1 Introduction

Drought poses a challenge to socio-economic activities in
Southern African countries, where agriculture and industry de-
pend on water from river basins. Drought depletes soil moisture
and makes the soil unsuitable for crop and livestock farming,

thereby leading to food insecurity (Blench and Marriage 1999;
Dai 2011; Mishra and Singh 2010). In Southern Africa, hydro-
logical droughts often induce widespread famine, disease out-
breaks, and loss of life (Calow et al. 2010; Masih et al., 2014).
For example, in 1991–1992, a drought triggered widespread
crop destruction in the Limpopo river basin and caused huge
agricultural and economic losses in the riparian countries
(Ujeneza and Abiodun 2015; Mniki 2009). In Zimbabwe, the
drought reduced agricultural production by 45%, manufacturing
output by 9.3%, and the gross domestic product (GDP) by 11%.
In Mozambique, about US$ 200M was spent on food aid relief
for 1.3 million people who faced starvation . And, in South
Africa, the drought lowered the national GDP by 1.8% (about
US$ 500M) and caused an outbreak of cholera (Davis and
Vincent 2017). More recently (2015–2017), in the Western
Cape (South Africa), a severe drought reduced the dam levels
to about 20% and stressed the socio-economic activities of about
3.5 million people living in Cape Town (Botai et al. 2017), the
most popular tourist city in Africa (StatsSA, 2012). There are
indications that ongoing climate change may enhance the
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intensity and frequency of Southern Africa droughts
(Kusangaya et al. 2014; Zhao and Dai 2015). Meanwhile, the
high-level dependence on rain-fed agriculture makes Southern
Africa one of the most susceptible regions to climate change
(Dai 2011; IPCC, 2007). Hence, there is keen interest in miti-
gating climate change impacts on socio-economic activities on
subcontinent. However, the success of any mitigation strategies
depends on reliable and robust climate information.

As part of global efforts tomitigate climate change impacts,
the United Nations Framework Convention on Climate
Change (UNFCC) has reached an agreement, called
the Paris Agreement (Hulme 2016; Schleussner et al. 2016;
Rogelj et al. 2016). The Paris Agreement aims to limit the
global mean temperature to 1.5 °C and 2.0 °C above pre-
industrial levels (Hulme 2016; Schleussner et al. 2016;
Rogelj et al. 2016). Hulme (2016) suggested that, given that
the GWL of 1 °C above pre-industrial levels has already been
reached, studies should focus on investigating the impacts of a
further 0.5 °C increase with respect to the present- day, and
quantify the difference in climatic impacts of keeping the
global warming to 1.5 °C as opposed to 2 °C. Several studies
have discussed the consequences of achieving this target on
global climate (e.g., Gosling et al., 2017), as well as on re-
gional climates (Donnelly et al. 2017; Karmalkar and Bradley
2017; Schleussner et al. 2016), but there is no agreement in
their findings. For instance, while Schleussner et al. (2016)
reported that the differences in the respective impacts of
1.5 °C and 2 °C on various regional climate variables are
significant, Karmalkar and Bradley (2017) claimed that the
differences are marginal and negligible, especially when the
associated uncertainties are compared with internal climate
variability and inherent model diversity. However, there is a
dearth of information on the potential impacts of these GWL
on droughts in Southern Africa.

Although few studies have projected the impacts of the
GWLs on regional droughts (e.g., James and Washington
2013;Maúre et al. 2018), they only used precipitation as a proxy
for such droughts. For instance, James and Washington (2013)
analyzed CMIP5 General Circulation Models (GCMs) simula-
tions and projected a decrease in precipitation over Southern
Africa. They showed that the decreased precipitation is insignif-
icant at 1 °C, but that the magnitude and spatial extents of the
decrease become larger as the global warming increases to 2 °C
and 4 °C. To improve on the GCM projections, Maúre et al.
(2018) analyzed the CORDEX regional climate model (RCM)
projections (which have higher resolutions than the GCM pro-
jections) over Southern Africa and found that the decrease in
precipitation has almost the same magnitude at 1.5 °C and
2.0 °C GWLs, although the decrease is more robust and covers
a wider area at 2.0 °C. Nevertheless, these previous studies
have two major limitations. Firstly, since they only used precip-
itation to characterize droughts, they do not account for the
influence of PET on drought projections. The results may

thus underestimate the severity of future droughts over the sub-
continent because PET (i.e., atmospheric demand for moisture)
increases with atmospheric warming (Rind et al. 1990; Scheff
and Frierson 2014). Secondly, the pattern of the precipitation
projection provided in these studies is based on the multi-
model simulation ensemble mean, which masked the different
precipitation patterns. This makes it difficult to examine whether
the projected precipitation pattern is a true representation of all
the simulations, or whether it is dominated by few simulations
with large precipitation changes. The present study builds on
these previous studies by addressing the two shortcomings.

Hence, this study aims to investigate the potential impacts of
GWLs on Southern African droughts, with an emphasis on
droughts over four major river basins on the subcontinent. In
the study, we analyze the multi-simulation datasets of the
CORDEX RCMs to investigate the impacts at different
GWLs (i.e., 1.5 °C, 2.0 °C, 2.5 °C, and 3.0 °C), use a drought
index that is based on climate-water-balance to characterize the
droughts, and employ self-organizing map (SOM) to group the
projected droughts based on their similarities. Section 2 of the
paper describes the data and methods used in the study, while
Section 3 presents and discusses the results of the study, and
Section 4 contains the concluding remarks.

2 Methodology

2.1 The study domain

Southern Africa, which is defined as the part of Africa that is
bounded in the south by 40° S and in the north by the equator
(Fig. 1), is characterized by high rainfall variability with recur-
rent floods and droughts. The highest temperatures (in excess
of 40 °C) occur over the Kalahari Desert, which stretches over
southeast Namibia, southwest Botswana and northwest South
Africa. The daytime maximum temperatures can be extremely
high (> 40 °C) and the night-time temperature much lower,
making the diurnal temperature range very large (> 20 °C).
Southern Africa has two distinct rain seasons, namely: a warm
wet season in the summer (November–March) with the late
summer (January to March) contributing 40% of the annual
rainfall (Crétat et al. 2012), and a cold dry season during win-
ter (April–October). However, the southwest region of South
Africa has a Mediterranean climate with most rain
falling during the dry winter season. The high climate variabil-
ity in Southern Africa is due to the dominance of atmospheric
low- and high-pressure systems; the seasonal migration of the
inter-tropical convergence zone (ITCZ), which is known to
influence the timing and intensity of rainfall, the complex re-
gional topography and the influence of the warm Indian and
cold Atlantic Oceans, which result in higher or lower rainfall
(Davis and Vincent 2017). These circulation features give rise
to various climate zones in Southern Africa, ranging from arid
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conditions in the west and a semi-arid climate over much of
the central part of Southern Africa to subtropical humid con-
ditions over the low-lying regions to the east and the north, and
a Mediterranean climate in the southwestern portion of South
Africa (Davis and Vincent 2017).

This study focuses on the catchment areas of four major river
basins in Southern Africa (the Orange, Limpopo, Zambezi and
Okavango river basins; Fig. 1). The river basins are important
socio-economic drivers of the countries in their catchment area
because all key economic actives, such as agriculture, mining,
power generation, and industry are conducted within the basins.
Moreover, river basins, such as the Zambezi and the Limpopo,
attract tourists from around the world to come and witness the
majestic Victoria Falls and the Big Five in the Kruger National
Park. Furthermore, many climate change adaptation and mitiga-
tion projects, such as Resilience in the Limpopo Basin
(RESLIM) and the Permanent Okavango River Basin Water
Commission (OKACOM), have been implemented to develop
these basins. The Orange River basin, the third largest river
basin in Southern African, has a drainage area about
1,000,000 km2 (www.dwaf.gov.za). It covers the entire area of
Lesotho (3.4%), a large part of South Africa (64.2%) and
the southern regions of Botswana (7.9%) and Namibia (24.
5%) (www.orasecom.org). Mean daily temperatures range
from about 12 °C in the highlands to more than 22 °C in the
regions near the mouth with extreme temperatures of over 50 °C
in the Namibian part of the basin being common (DWAF). The
mean annual rainfall at source of the river (in the Lesotho
Highlands) is more than 1800 mm, and the mean annual
potential evaporation is 1100 mm. At the mouth of the river
(in Alexander Bay), the mean annual rainfall is less than
50 mm while the mean annual potential evaporation is more
than 3000 mm (DWAF).

The Limpopo River Basin (25° E′–35° E′ and 19° S–27° S)
has a catchments area of about 415,000 km2. It is home to 14
million inhabitants in the four riparian countries: Zimbabwe
(15%), Mozambique (20%), Botswana (20%), and South
Africa (45%) (Earle et al. 2006; Trambauer et al. 2015). The
basin has high spatial variation as annual rainfall ranges from
200–1200 mm year−1 with 530 mm year−1 on average across
the region (Seibert et al. 2017). The Okavango river basin is an
endorheic basin with a hydrologically active area of
390,000 km2 covering Angola (51.7%), Namibia (33%), and
Botswana (15.3%) (FAO 1997; Folwell et al. 2006). The aver-
age annual discharge of 10 km3 leaving the Angolan Highlands
terminates in the Okavango delta (Folwell et al. 2006). The
basin receives an annual rainfal l range of about
355 mm year−1 at the delta and 1320 mm year−1 over the
Angolan headwaters (FAO 1997). The Zambezi, which is the
largest river basin in Southern Africa, covers about
1.37 million km2 across eight countries: Zimbabwe, Zambia,
Tanzania, Namibia, Mozambique, Malawi, Botswana, and
Angola (Thiemig et al. 2012). The annual accumulated basin
flow of the Zambezi is 108 × 109 m3 of water outlet into the
Indian Ocean (Spalding-Fecher et al. 2016). The annual rainfall
ranges from about 700 mm year−1 for the south-southwestern
areas and up to 1200 mm/year. in the northern areas, with an
average of 990 mm year−1 (Thiemig et al. 2012).

2.2 Data

Both observation and simulation datasets were analyzed in the
study. The observation dataset was obtained from the Climate
ResearchUnit (CRU; version 4.01;Harris et al., 2014). TheCRU
dataset provides monthly climate data at a high-resolution (0.5 ×
0.5) over the entire global landmass for the period 1901 to 2016.

Fig. 1 The study domain and the
four major Southern African river
basins (Orange, Limpopo,
Zambezi, and Okavango river
basins) used in the study
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The simulation datasets were obtained from CORDEX (Nikulin
et al. 2018). They consist of 20 regional climate simulation
datasets from six CORDEX RCMs. The RCMs downscaled
eight GCM simulations for past and future climates (1950–
2100) over Africa at 0.44°× 0.44° horizontal grid size.
Although there are simulation datasets for various emission sce-
narios (i.e., the RCP4.5, 8.5), we only analyzed the high emission
scenario (i.e., RCP8.5) dataset, because it has the largest number
of simulation ensemble members. And, given the current green-
house gas emission trajectories, the RCP8.5 scenario seems to be
the most realistic business-as-usual scenario. The GCMs and the
downscaling RCMs for the 20 simulations are list in Table 1.
Detailed information on the GCMs and RCMs, including their
configuration and set up, are in Nikulin et al. (2012). From both
datasets, the monthly precipitation and temperatures (i.e., maxi-
mum, minimum, and mean; Tmax, Tmin, and Tmean, respec-
tively) over Southern Africa were analysed.

2.3 Methods

To evaluate the performance of the simulation datasets in repro-
ducing the climate of Southern Africa, we compared the simulat-
ed climate data for the period 1971–2000 (hereafter, reference
period) with the CRU observation data for the same period.
However, the evaluation focused on the variables needed for cal-
culating drought indices. To assess the impacts of climate change
at various GWLs (i.e., 1.5 °C, 2.0 °C, 2.5 °C, and 3.0 °C), we
calculated the difference between the climate data in the reference
period (1971–2000) and the GWL periods (i.e., GWL minus

reference). Following Nikulin et al. (2018), a GWL period is
defined as a 30-year period in which the climatology of the global
mean temperature is higher than that of the pre-industrial baseline
period (1861–1890) by the targeted global warming value (e.g.,
1.5 °C, 2.0 °C, 2.5 °C, or 3.0 °C). As shown in Table 1, the 30-
year GWL period varies with the GCMs simulations.

2.3.1 Characterizing droughts

Two drought indices were used to characterize droughts over
Southern Africa. The first index is the Standardized Precipitation
Evapotranspiration Index (SPEI; Vicente-Serrano et al. 2010a &
b) while the second is the Standardized Precipitation Index (SPI;
McKee et al. 1993a, b). Both indices have been frequenly used for
studying droughts worldwide (e.g., Guttman 1998, 1999; Abatan
et al. 2017a, b, 2018) and over Southern Africa (Meque and
Abiodun, 2015; Ujeneza and Abiodun 2015; Araujo and
Abiodun, 2016). The indices are similar, except that SPI calculates
the drought index based on precipitation (P) only, while SPEI does
so by using climatic water balance, which is precipitation minus
potential evapotranspiration (PET). PET is also known as atmo-
spheric evaporative demand. As the inclusion of PET in the SPEI
computation accounts for the global warming effect, SPEI is ex-
pected to yield better results than SPI in terms of drought identi-
fication (Vicente-Serrano et al. 2010a). Using monthly CRU ob-
servation and CORDEX data as input in the SPI and SPEI algo-
rithms in R software (Beguería & Vicente-Serrano 2014), we
obtained the observed and simulated drought indices at 12-
month timescale (ending inMarch, which is the end of the rainfall

Table 1 The names of GCMs and
the downscaling RCMs for the
simulations used in the study

GCMs Period of the global warming levels Downscaling RCMs

1.5 °C 2 °C 2.5 °C 3 °C

CanESM2(a) 1999–2028 2012–2041 2024–2053 2034–2063 RCA4(5)

CNRM-CM5(b) 2015–2044 2029–2058 2041–2070 2052–2081 RCA4(5), CCLM(2),
ALADIN(1)

CSIRO-Mk3(c) 2018–2047 2030–2059 2040–2069 2050–2079 RCA4(5)

EC-EARTH-r1(d) 2003–2032 2021–2050 2035–2064 2046–2075 RACMO(4)

EC-EARTH-r3(e) 2006–2035 2023–2052 2036–2065 2047–2076 HIRHAM(3)

EC-EARTH-r12(f) 2005–2034 2021–2050 2034–2063 2047–2076 RCA4(5), CCLM(2)

GFDL-ESM2M(g) 2020–2049 2037–2066 2052–2081 2066–2095 RCA4(5)

HadGEM2-ES(h) 2010–2039 2023–2052 2033–2062 2042–2071 RCA4(5), CCLM(2),
RACMO(4)

IPSL-CM5AMR(i) 2002–2031 2016–2045 2027–2056 2036–2065 RCA4(5)

MIROC5(j) 2019–2048 2034–2063 2047–2076 2058–2087 RCA4(5)

MPI-ESM-LR(k) 2004–2033 2021–2050 2034–2063 2046–2075 RCA4(5), CCLM(2),
REMO(6),

NorESM1-M(l) 2019–2048 2034–2063 2047–2076 2059–2088 RCA4(5), WRF(7)

The corresponding 30-year period for various global warming levels (1.5 °C, 2 °C, 2.5 °C and 3.0 °C) are
indicated. More detailed information on the GCMs, RCMs, and method for calculating the periods are in
Déqué et al. (2017). The alphabets (a–l) and numbers (1–6) in brackets of the GCMs and RCMs (respectively)
are used tags to represent the simulations (e.g., a5 represents CanESM2_RCA4 simulation)
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season for most of part of Southern Africa). More details on how
to calculate SPI and SPEI can be obtained from Beguería et al.
(2014).

There are different methods for calculating PET, e.g., using
the Penman–Monteith (PM; Monteith 1965), Hargreaves (HG;
Hargreaves and Samani 1985), and Thornthwaite (TW;
Thornthwaite 1948) methods. The Hargreaves method is pre-
ferred to the Thornthwaite method, because it overestimates
PET with increasing air temperature (Donohue et al. 2010).
The PM method is usually considered the best approach, but
it requires extensive and long-term data (e.g., wind speed, solar
radiation, relative humidity and temperature) that are not usu-
ally available. Hence, the HG method is recommended for cal-
culating PET if the data required by PM method are not avail-
able. We thus used the HG method in this study, because the
CORDEX simulation datasets do not have all the variables
needed for the PM method. However, we compare the results
of our observed PET and SPEI with those obtained using the
PM method.

2.3.2 Assessing the robustness of climate change

We assessed the robustness of the projected climate change
based on two conditions. Firstly, at least 80% of the simulation
must agree on the sign of the change. Second, at least 80% of
the simulations must indicate that the climate change is statis-
tically significant (at 99% confidence level; using a t test, with
respect to the climate variability of the reference period). We
consider the climate change signal to be significant if both
conditions are satisfied. These two methods have been previ-
ously used to indicate the robustness of the climate change
signal (Klutse et al. 2018; Maúre et al. 2018; Nikulin et al.
2018).

In addition, we employed the SOM to group the simulated
climate change patterns into 12 nodes (i.e., major patterns)
based on their similarities, and thus identifies the most common
patterns among the simulations. The SOM belongs to a class of
unsupervised neural network for clustering objects according to
their similarity; therefore, it reduces the dimensionality of a
given dataset (Skupin and Agarwal, 2008; Oettli et al. 2014).
It is similar to the K-means clustering method (Everitt et al.,
2011), but unlike the K-means, it creates an order between the
units. For instance, a node (2) in the SOMs algorithm is close to
nodes (1) and (3) and show a clear transition between them, but
the same notion is not valid in the k-means clustering method,
where the relationship between different clusters is not indicat-
ed (Skupin and Agarwal 2008; Wehrens, 2011). Using the cli-
mate change patterns (drought index and severe drought fre-
quency) as the input data, the SOMs analysis was performed
with the SOM_PAK 3.2 software (Kohonen et al. 1996). The
SOM_PAK software was freely obtained from the Helsinki
University of Technology (http://www.cis.hut.fi/research/som_
pak/).

Here, we applied the SOMs analysis on two datasets separate-
ly, using 12 (4 × 3) nodes classification. The first dataset consists
of all the projected changes in SPI and SPEI at the four GWLs
(GWL1.5, GWL2.0, GWL2.5, and GWL3.0) for all the simula-
tions. The second dataset is the same as the first but for projected
changes in frequency of SPEI severe droughts (i.e., 12-month
SPEI < −1.5) and of SPI severe droughts (i.e., 12-month SPEI <
−1.5). For each analysis we obtained the contribution of each
drought index (SPEI and SPI), each GWL, and each simulation
in relation to each SOM node.

3 Results and discussion

3.1 Model evaluation

The CORDEX RCMs give a realistic simulation of all the neces-
sary climate variables for quantifying droughts over Southern
Africa (Figs. 2, 3, and 4). The models adequately simulate the
spatial distribution of temperatures (Tmax, Tmin, and Tmean),
precipitation (Pre), potential evapotranspiration (PET), and cli-
mate water balance (CWB) over the subcontinent (Figs. 2, 3,
and 4). For all the variables, the correlation between the simulated
and observed fields is high (r ≥ 0.75) and significant (at 99%
confidence level). The models capture the essential features in
the observed fields. For example, they capture the temperature
maxima (> 30 °C) over Democratic Republic of the Congo
(DRC), the Botswana-Namibia-Angola-Zambia border,
Mozambique, andMadagascar (Fig. 2a and 2b). They also repro-
duce the topographically induced temperature minimum (< 3 °C)
along the escarpment of South Africa (Fig. 2d and 2e). In agree-
ment with observation, they simulate precipitation maxima (>
136 mm year−1) over the north-eastern part of the subcontinent
and over East Madagascar, feature heavy precipitation (>
100 mm year−1) along the ITCZ (Fig. 2j and 2k), and reproduce
a PET maximum over the eastern half of the continent (Fig. 2m
and 2n). In addition, they replicate the observed zonal gradient in
precipitation and CWB south of 20° S. These climate features are
induced by a complex mixture of local, global, tropical, and tem-
perate atmospheric features (Reason et al., 2006). The ability of
the stimulations to reproduce the features suggests that themodels
capture the essential atmospheric mechanisms that control the
Southern Africa climate.

Nevertheless, there are notable biases in the RCM ensemble
mean (Fig. 2). The ensemblemean features a cold bias (up to 4 °C
in Tmin and Tmax) over most parts of Southern Africa and a
warm bias (about 4 °C) over the coast of Namibia and Angola
(Fig. 2c and 2f). The cold bias translates to an underestimation of
PET (about 40 mm year−1) over most of the region, while the
warm bias results in an overestimation of PET (about
40 mm year−1) along the coast (Fig. 2f). The simulations also
show a wet bias (about 40 mm year−1) along the Angola coast
and dry bias (about −50 mm year−1) over DRC and South
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Tanzania (Fig. 2l). The errors in the precipitation and the PET
fields produce a bias in the CWB distribution; this bias ranges
from −50 mm year−1 over the DRC and along the east coast to
40 mm year−1 over most parts of Southern Africa (Fig. 2r).

However, while the negative bias in CWB is due to the underes-
timation of precipitation, the positive bias in CWB is caused by
an underestimation of the PET. The discrepancy between the
simulated and the observed fields can be attributed to many

Fig. 2 The spatial distribution of climate variables over Southern Africa
as depicted by CRU and CORDEX RCMs ensemble (RCM) in reference
period (1971–2000). The climate variables are maximum temperature
(Tmax, °C), minimum temperature (Tmin, °C), mean temperature
(Tmean, °C), precipitation (Pre, mm month−1), potential evapotranspira-
tion (PET, mm month−1), and climate water balance (CWB, mm

month−1). The correlation (r) and difference (bias; RCM–CRU) between
the observed and simulated variables are indicated. The asterisk (*) shows
the correlation that is statistically significant at 99% confidence level. The
contours on panels (m) and (p) indicate the difference between the results
of Hargreaves and Penman methods (Hargreaves minus Penman; see the
text for more information)
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factors. For example, the warm bias along the Angola coast sug-
gests that the resolution of themodelsmay be too low in capturing
the influence of the Benguela Current and sea breeze on the
temperature over the coast. The cold bias may be due to deficien-
cies in soil moisture parameterization in themodels (Kalognomou
et al. 2013). The wet bias over Angola and the dry bias over the
DRC suggest that convective parameterization schemes in the
models may be too active in producing precipitation over
Angola, thereby making less moisture available for precipitation
inland (i.e., over the DRC). Conversly, the discrepancy may be
due to misrepresentation of observation data over Angola and the
DRC where the density of weather station data is low (Munday
and Washington 2017). The uncertainty in PET calculation may
also contribute to the discrepancy. For example, note that the
uncertainty in the observed PET (HGmethodminus PMmethod)
is as high as the bias in the simulated PET (Fig. 2p).

Figure 3 shows that the RCMs also reproduce well the annual
cycle of the climate variables over the river basins (i.e., Limpopo,
Orange, Okavango, and Zambezi) as in CRU observation. In
most cases, the observed annual cycle lies within the RCM en-
semble spread and the ensemble mean curve closely follows the
observed curve. Both the observed and the simulated cycles show

summer wet and winter dry conditions (Fig. 3e, f), reflecting the
seasonal movement of the ITCZ over the sub-continent. All the
basins experience their coldest and driest conditions (with PET) in
from July to August, when the ITCZ is at its northern most posi-
tion (i.e., in the northern hemisphere) and when the subsidence
dominates over the basins. The monthly temperature and PET
start to increase as from August when the ITCZ starts to retreat
southward, but the rainy season over the basins only starts in
October, when the ITCZ moves south of the equator and the
subsidence over the subcontinent weakens (Reason, 2018).
From October, the monthly precipitation increases rapidly and
peaks in January–February (when the ITCZ reaches its southern
most position); and from April, the monthly temperature and
precipitation drop rapidly as the ITCZmoves back into the north-
ern hemisphere. In both the observed and the simulated curves,
the maximum deficit in CWB occurs in October over all the
basins; the simulations agree with observation that the Limpopo
and Orange river basins experience negative CWB (i.e., PET>
precipitation) throughout the year, while the Okavango and
Zambezi river basins experience negative bias in CWB
fromMarch toNovember. Themost notable bias in the simulation
occurs over the Limpopo river basin, where all the models

Fig. 3 The annual cycle of climate variables over the major river basins in
Southern Africa (Limpopo, Orange, Okavango and Zambezi) depicted by
CRU observation and CORDEX RCMs ensemble. The climate variables
are maximum temperature (Tmax, °C), minimum temperature (Tmin,

°C), mean temperature (Tmean, °C), precipitation (Pre, mm month−1),
potential evapotranspiration (PET, mm month−1), and climate water
balance (CWB, mm month−1)
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overestimate the maximum temperature (in December–March,
see Fig. 3a) and PET (in December–July, see Fig. 3e).

Despite the good performance of the RCM ensemble in sim-
ulating the spatial distribution of the climate variables (Fig. 2),
the models struggle to reproduce the spatial variation of drought
frequency over Southern Africa (Fig. 4). For both SPEI and SPI,
the observation features a maximum drought frequency (> 0.8
events decade−1) over Angola, the DRC, and Mozambique, and
a minimum drought frequency (< 0.8 events decade−1) over
Namibia and South Africa. The RCM ensemble mean fails to
reproduce this pattern (r ≈ 0.0); instead, it shows a uniform severe
drought frequency (0.4–0.6) over the region. Hence, the bias in
the simulated drought frequency is up to 0.5 event decade−1 (over
South Africa and Namibia). This bias may be due to the averag-
ing of the model results, because such averaging may filter out
the spatial variability in each simulated pattern. This suggests a
large discrepancy among the simulated patterns. Nevertheless,
themodels do capturewell themagnitude of the drought frequen-
cy over the basin. The models perform best over the Limpopo
and Zambezi river basins (where the observed frequency is with-
in the inter-quartiles of the simulated frequecy) and worst over
theOrange river basin (where all the simulations overestimate the
frequency).

3.2 Projected changes in drought characteristics
under various global warming levels

At all warming levels, the CORDEX models project a de-
crease in SPEI (i.e., an increase in drought intensity) and an
increase in SPEI drought frequency over Southern Africa
(Fig. 5). However, with both drought intensity and frequency,
the magnitude of the increase varies over the region and grows
with increasing GWLs . At GWL1.5, the lowest increase in
SPEI drought intensity (SPEI ≈ −0.3) is projected over the
tropical region while the highest increase (SPEI < −0.9) is
shown over the southwestern coast (in Namibia and South
Africa; see Fig. 5a), where the highest increase in the severe
drought frequency (1 event decade−1) is also projected (Fig.
5). At GWL2.0, the drought intensity over the southwestern
coast increases by about 0.9, while the corresponding severe
drought frequency increases by 2 events decade−1. The in-
crease in the drought intensity over the southwestern coast is
robust (i.e., statistically significant at 99% confidence level) at
GWL2.0 but not at GWL1.5. This suggests that keeping the
global warming to 1.5 °C may limit the drought intensity
within the natural variability of the reference climate.
Conversely, a further increase in the warming level beyond

Fig. 4 The frequency of severe drought (SPEI ≤ −1.5; SPI ≤ −1.5) over Southern Africa (panels a–f) and over the major drought basins (Limpopo,
Orange, Okavango, and Zambezi river basins; panel g), as depicted by CRU and CORDEX RCMs using SPEI and SPI to characterize droughts
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2.0 °C would enhance the drought intensity and frequency
over the entire region, such that, at GWL3.0, more than half
of South Africa and Namibia may be regarded a hotspot of
severe droughts (Fig. 5). The maximum increase in SPEI-
drought intensity and frequency over the southwest is consis-
tent with the notion that global warming may reduce frontal
precipitation over this area because of the poleward shift in
mid-latitude cyclone tracks (Engelbrecht et al., 2009).

However, Fig. 5 shows that the projected changes in
drought characteristics are sensitive to the drought indices
(SPEI and SPI). For instance, in contrast to the SPEI, the
SPI projects a decrease in drought intensity (i.e., more positive
SPI) and frequency over the northeastern part of the region,
and the magnitude of the decrease grows with increasing
GWLs. Although both indices agree on the increase in

drought intensity and frequency over the remaining part of
the subcontinent, the magnitude of the increase is smaller in
the SPI projection, especially over the south-west coast. The
discrepancy in drought intensity is up to 0.4 (at GWL1.5) and
1.2 (at GWL3.0), and that of drought frequency is up to 1.0
event decade−1 (at GWL1.5) and 4 events decade−1 (at
GWL3.0). In addition, the increase in the drought intensity
over the hotspot area is robust (i.e., statistically significant at
99% confidence level) for SPEI (from GWL2.0 upward), but
not for SPI (at any GWL). Furthermore, the spatial variability
of the projected changes is weaker in the SPI projections
(where the drought intensity only ranges between 0.0 and −
0.3 at GWL1.5; Fig. 5a) than in the SPEI projection (where the
drought intensity ranges between −0.3 and − 0.9 at GWL1.5,
see Fig. 5e).

Fig. 5 Projected changes in drought index (for SPEI and SPI; panel a–h)
and severe drought frequency (for SPEI and SPI; i–p) over Southern
Africa at different global warming levels (GWL1.5, GWL2.0, GWL2.5,
and GWL3.0). The vertical strip (|) indicates where at least 80% of the

simulations agree on the sign of the changes, while horizontal strip (−)
indicates where at least 80% of the simulations agree that the projected
change is statistically significant (at 99% confidence level). The cross (+)
shows where both conditions are satisfied; hence, the change is robust
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The weak changes in projected SPI droughts in this study
agree with the weak changes in annual precipitation reported
in the past studies (e.g., Engelbrecht et al., 2009; Haensler
et al., 2013, Maúre et al., 2018). For instance, Engelbrecht
et al. (2009) project less than < 10% changes in annual pre-
cipitation over Southern Africa in the future (2070–2100) un-
der the A2 scenario, while Maúre et al. (2018) also found the
same at both GWL1.5 and GWL2.0 levels. However, the
present study shows that accounting for atmospheric evapora-
tive demand (PET) in the drought projections (i.e., using
SPEI) produces more severe droughts than using only precip-
itation (or SPI) for the projection. Arguably, the SPEI projec-
tion might have overestimated the magnitude of the changes,
because the water balance calculation is based on PET rather
than actual evapotranspiration (ET). However, the goal of
SPEI is to obtain the maximum drought stress over a surface

by comparing the highest ET (i.e., atmospheric water demand)
with water available (i.e., precipitation) over the surface
(Beueria et al., 2014). Hence, using ET is not a good estimator
of atmospheric water demand because ET also depends on
water availability and on the characteristics of the surface. In
addition, by definition (Allen et al., 1998), both PET and ET
are the same over a well-watered surface (e.g., hypothetical
grass reference crop and open water). However, it is essential
to use both SPI and SPEI for drought projection, because
while the SPI projection provides information about the lower
limits of the drought stress, the SPEI will provide information
on the upper limits of drought stress.

The SOM classification indicates that the spatial patterns of
changes in the drought index (Fig. 6) and in the drought fre-
quency (Fig. 7) vary among the simulations. As is typical of
SOM classification, the most extreme patterns are indicated at
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Fig. 6 a The SOMs distribution
(3 × 4 nodes) of pattern of
projected changes in drought
index (SPEI; SPI) over Southern
Africa at different GWLs
(GWL1.5, GWL2.0, GWL2.5,
and GWL3.0), as depicted by
CORDEX simulation dataset.
The numbers at the lower-left and
lower-right corners show tag and
percentage contribution of each
pattern in the dataset, respective-
ly; b the frequency of the patterns
under each GWL, drought index,
and simulation. The codes in each
bar are the tags of the simulations
make up the bar. In a simulation
tag, alphabet indicates the GCM
while the number denotes the
RCM (e.g., a5 represents
CanESM2_RCA4 simulation),
see Table 1
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the edge nodes (1, 4, 9, and 12), while patterns in other nodes
are smooth transition among the extreme patterns. Node 12,
which features the largest magnitude of changes in drought
indices, shows a decrease in the drought index over most of
Southern Africa, with the largest decrease (about −1.4) in the
southwestern and tropical-western parts of the subcontinent.
With SPEI, the number of simulations that project this pattern
increases with increasing GWLs; while no simulation projects
it at GWL1.5, 11 simulations do indicate it at GWL3.0. In
contrast, no simulation indicates this for SPI at any GWL.
Node 4 has a similar pattern as Node 12, but it features the
largest increase in the southwestern and tropical-eastern parts

of the subcontinent. With SPEI, two simulations project Node
4 at GWL1.5 and GWL2.5, three at GWL2.5, but one at
GWL3.0. Only one simulation indicates it for SPI (i.e., at
GWL3.0). In contrast to Nodes 4 and 12, Nodes 1 and 2 are
characterized by weak changes (i.e., within ± 1) in the drought
index. Although both nodes (i.e., 1 and 9) indicate their max-
imum drying condition (negative drought index) over the
southwestern areas, they feature different results in the tropics,
where Node 1 features pluvial (positive drought index) while
Node 9 shows drying conditions. However, these nodes are
more projected for SPI than for SPEI. Similar results are ob-
tained in the drought frequency classification (Fig. 7).
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Fig. 7 Same as Fig. 6, except for
drought frequency
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For both drought intensity and frequency (Figs. 6 and 7),
the distinction between the change in SPEI and SPI drought
patterns is clear in the simulations, except in a few cases. The
few simulations that mix the patterns do so at GWL1.5 and
GWL2.0 (Fig. 6). For example, in terms of drought intensity
(Fig. 6), at GWL1.5 and GWL2.0, two simulations (i.e., i5 and
j5: IPSL_RCA and MIROC5_RCA4, respectively) feature
both SPEI and SPI patterns to Node 1, and another two (i.e.,
d4 and b1 : EC-Ea r th - r1_RACMO and CNRM-
CM5_ALADIN) allocate them toNode 2. Also, in the drought
frequency patterns (Fig. 7) at GWL1.5 and GWL2.0, two
models (b1 and d4: CNRM_ALADIN and EC-EARTH-
r1_RACMO) show both SPEI and SPI patterns in Node 1.
Nevertheless, the separation between the SPEI and SPI
drought patterns is well established by all the simulations at
GWL2.5 and GWL3.0. This implies that the magnitude of
evaporation-induced droughts increases with increaing
GWLs.

The level of agrement among the simulations (which is a
measure of robustness, see Pfeifer et al. 2015) on the drought
projections over the river basins also depends on the drought
indices (SPEI and SPI). In general, agreement among the
simulations is better for SPEI projections than for SPI projection.
For instance, over Limpopo, all the simulations agree on the
SPEI projections at GWL2.5 and GWL3.0 (Fig. 8a), but they
do not agree on the SPI projections. The same is true over the
Orange and Okavango river basins. The least agreement among
the simulations occurs over the Zambezi basin, where more than
75%of the simulations agree on the SPEI projection but less than
75% agree on SPI projection. The large uncertainty in the SPI

drought projection reported here agrees with previous studies on
precipitation (e.g., Maúre et al., 2018). This indicates that com-
bining PET with precipitation in determining future droughts
over Southern Africa improves the robustness of the drought
projection. This is due to the inherent robust signal in the tem-
perature projection over the subcontinent (Maúre et al. 2018).

Nevertheless, the differences between the SPEI and SPI pro-
jections have implications for combating future drought risks
over the basins in two ways. Firstly, the better robustness of the
SPEI projection lowers the level of uncertainty in future drought
projection and provides more reliable evidence for embarking on
adaptation strategies toward reducing future drought risks.
Secondly, with SPI projection information, little or nothing can
be done at basin level to mitigate drought impacts, because the
amount of precipitation received in a basin does not significantly
depends on the management of the basin, especially in the case
of a small river basin. Conversely, a comparison of SPEI and SPI
projection indicates that evaporation can make a future drought
more severe than indicated by the SPI projections. Therefore, any
basin management practices that can minimize future ET over a
river basin would help to lower the future drought risk in
that basin. For example, well-planned land-cover changes can
be used to reduce the additive effects of ETon drought over river
basins, although this depends on the type and degree of landuse
(Lumsden et al. 2003). Many studies have documented how
landuse change can be used to influence the hydrological cycles
over a basin (e.g., Gyamfi et al. 2016; Zhang et al. 2008; Pervez
and Henebry 2015; Yin et al. 2017). For instance, the healthy
riparian zone can provide shading and minimize evaporation
from the water resources (Bellows 2003).

Fig. 8 Projected changes in drought index (panels a–d; for SPEI and SPI) and severe drought frequency (panels e–h; for SPEI and SPI) over the four
major river basins in Southern Africa (Limpopo, Orange, Okavango, and Zambezi)
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3.3 Implications for strategy policy

The above result provides a basis for developing policy and
strategy to reduce future drought risks over Southern African
river basins. At the same time, it advocates for a more proac-
tive response to increase resilience and adaptive options. For
instance, the analysis of both SPI and SPEI indicates that a
greater proportion of the Southern Africa region may become
drier in the future, mainly because increased PET would en-
hance evaporation losses from dams and increase irrigation
demands for drier soils. This will have negative impacts on
regional development, as economic activities (e.g., agricul-
ture, industrial water supply, tourism) will take longer than
usual to recover after each drought episode. The increasing
population also implies that demand for water may escalate.
However, the analysis also suggests that a well-planned
landuse change (that is targeted to limit evaporation losses)
could help to reduce the impacts of the projected droughts.
Hence, there is a need for the formulation of strategic policy
that can accommodate or encourage such a land-use change.
Strategic policy is also required on other drought-related is-
sues like drought-induced migration (environmental refu-
gees), drought impacts on economic hubs, infrastructure chal-
lenges, population growth, and more importantly the new op-
portunities that may arise out of the droughts. Hence, the re-
sults can guide policymakers on how to prioritize and redefine
future economic possibilities.

4 Conclusion

We have analyzed multi-simulation datasets from CORDEX
RCMs to quantify the impacts of global warming on future
droughts over Southern Africa, focusing on the four major river
basins and on four global warming levels (i.e., 1.5 °C, 2.0 °C,
2.5 °C, 3.0 °C) above the pre-industrial level. We used two
drought indices (SPEI and SPI) to characterize the droughts
and used SOMs to group the projected changes in
drought index and severe drought frequency into 12
groups, based on their similarities. Before examining
the RCM-projected changes in future droughts, we eval-
uated the capability of the models in simulating the
Southern Africa climate during the reference period
(1971–2000). Our results can be summarized as follows:

& The CORDEX ensemble provides a good represen-
tation of the Southern African climate, though with
some biases. While the RCMs capture all the essen-
tial features in the spatial distribution of the climate
variables over the sub-continent, they struggle to re-
produce the spatial variation of the severe drought
frequency as in observation.

& The models replicate the observed annual cycle of the
climate variables over the four basins, although they all
overestimate Tmax and PETover the Limpopo river basin.

& An increase in SPEI (i.e. drought intensity) is projected over
Southern Africa under the four GWLs. The increase is insig-
nificant at GWL1.5, but significant over the southwestern
part of the subcontinent at GWL2.0. The magnitude and
significant areas of the increase grow with further warming.
In contrast, change in SPI is not significant at any GWLs,
and the magnitude of the increase is lower than that of SPEI.

& For both SPEI and SPI, the projected changes in drought
frequency are significant, but the magnitude of the chang-
es in SPI drought frequency is lower than that of SPEI
drought frequency.

& The SOM classification reveals that most simulations
clearly distinguished between the projected changes in
SPEI and SPI drought patterns over Southern Africa.
However, the distinction becomes clearer with increasing
GWLs.

& The projected changes in drought characteristics over the
river basins are more robust with SPEI than with SPI. A
combination of both projections is thus needed in quantifying
and mitigating the impacts of evapotranspiration-induced
droughts in the warmer future climate.

The results of this study can be improved and applied
to reduce future drought risks over Southern Africa in many
ways. For instance, the uncertainty (i.e., the disagreement
among the models) in the drought projections may be further
reduced by reducing the biases in both GCMs and RCMs
simulations. More focused studies on how to reduce the un-
certainty will improve the credibility and application of the
results. Future studies could examine the contribution of at-
mospheric processes to the differences in SPEI and SPI pro-
jections; the lack of relevant upper-level dynamic data in the
CORDEX archive hindered such analysis in the present study.
In addition, there is a need to extend this meteorological
drought projection to hydrological droughts (i.e., stream
flows) in the river basins. Such studies will make the results
more relevant for policy makers. However, the present study
has shown that using only SPI to characterize future
droughts may underestimate the drought severity and frequen-
cy but using both SPEI and SPI would help in quantifying
evaporative-induced droughts and in mitigating the impact
of climate change on droughts in the future.
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