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Abstract
The availability of reliable meteorological records is crucial for the development of a number of environmental studies.
Unfortunately, these records are not always complete, usually show errors and/or have an insufficient length. This paper presents
a gap filling and data record extension methodology for minimum temperature, maximum temperature, and precipitation. It uses
climatic information from the NCEP-NCAR Reanalysis project, identifying pixels (grid cells) within a Reanalysis domain that
have the highest Pearson’s correlation coefficient with the variable of interest. Nine stations in the Maipo River basin (Santiago,
Chile) were selected for a reconstruction experiment (from 1950 to 1970) and a subsequent gap filling experiment (from 1970 to
2012). A generalized linear mixed model with a bidirectional stepwise fit procedure was used to model temperature, whereas
precipitation occurrence was represented using a generalized linear mixed model with binomial distribution, and precipitation
amount used an exponential generalized linear model. The performance of the algorithm was compared with inverse distance
weighting and spline interpolation methods and further evaluated using the Standardized Precipitation Evapotranspiration Index,
contrasting real versusmodeled data. Values of the coefficient of determination averaged 0.76 (0.74–0.84) minimum temperature,
0.73 (0.73–0.81) for maximum temperature, and 0.68 (0.51–0.78) for precipitation. Root-mean-squared error was around 1.5 °C
and 5 mm for temperature and precipitation, respectively. The model explains local variation of climatic variables and indicators
and can be replicated anywhere, as the Reanalysis data are easily accessible and have a worldwide coverage.
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1 Introduction

Access to reliable time series of climatic variables with suffi-
cient length is critical for the study of several geophysical and

environmental processes (Beniston et al. 2012). Changes in
environmental conditions (Beniston et al. 2012; Kottek et al.
2006); vegetation patterns (Sandholt et al. 2002; Weng et al.
2004), as well as changes on growth, development; and the
adaptation of plants and animals (Zavala 2004; Pörtner 2001)
are usually explained by climatic variables.

Unfortunately, climate records with the desired length are
not always available. Indeed, the densification of weather net-
works has only occurred recently with substantial investments
in standard weather stations and the incorporation of automat-
ic weather stations. According to the National Climatic Data
Center, the number of weather stations in the USAvaried from
little more than 3000 in 1900 to almost 95,000 in 2000. In
addition, available data sets usually show discontinuities due
to sensor failure or human error.

Several methods have been developed to fill out disconti-
nuities in temperature and precipitation time series. Some of
them are deterministic (producing the same output for given
initial conditions) and others are stochastic, which provide
likely realizations of the variable of interest.
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Gap filling methods usually rely on time series for temporal
estimation and spatial neighbors as regression variables to
extrapolate values in space (Tardivo and Berti 2014). For the
case of temperature, Daly (2006) compared six commonly
usedmethods for estimatingmissing climatic data and showed
that Daymet (local regression), PRISM (local regression), and
a Regional regression perform better. Moreover, the author
also noted a significant influence of the coast (included as
distance from coastline) over minimum temperature, especial-
ly at scales ≤ 10 km. Tardivo and Berti (2012) used data from a
set of stations within a regional domain to fill gaps in extreme
temperature data, interpolating values using only meteorolog-
ical variables and without the inclusion of geographic or spa-
tial variables that could have improved estimations.

In the case of rainfall, literature shows several examples of
gap filling and data generation methods according to climate
projections from general circulation models (e.g., Diez et al.
2005; Maidment et al. 2012; Nagata 2011; Rojas et al. 2010;
Schmidli et al. 2006; Fowler et al. 2007; Vrac and Naveau
2007). Another common approach is the use of stochastic
downscaling techniques from global circulation models, but
in this case, estimates of individual values are only likely
realizations of climate conditions (Castro et al. 2013). In gen-
eral, these methods usually capture trends but tend to be bi-
ased when are disaggregated in time (Casanueva et al. 2012).
Other methods use algorithms based on existing data sets. For
instance, Ramos-Calzado et al. (2008) presented a method
based on error propagation theory taking into account the
uncertainty of the precipitation measurements. Another exam-
ple of this approach is found in the method named CUTOFF
(Feng et al. 2014), where the estimate of a missing value is
obtained using similar observed temporal information from
the nearest spatial neighbors.

One common problem of simple gap filling methods is that
they do not always consider local topography due to the rela-
tively coarse grid size (Schmidli et al. 2006) having problems
when representing rainfall variability observed as a conse-
quence of specific local conditions (Colle 2004). Climatic
processes respond to a number of topographic variables, such
as a slope, aspect, latitude, and longitude, which are correlated
with spatial gradients (e.g., the coastal influence on tempera-
ture) across the land (McCune 2007; Daly 2006). For this
reason, Digital Elevation Models (DEM) are often the most
useful variable for spatial estimation of precipitation (Hong
et al. 2005; Lookingbill and Urban 2003; Ruiz-Arias et al.
2009), allowing us to capture the altitudinal gradient of these
variables.

The use of information from remote sensing is another
alternative to account for local scale effects (see examples in
Bustos and Meza 2014, Sobrino et al. 2004; Suga et al. 2003;
Wan and Li 1997), especially when satellite observations have
a fairly good spatial resolution (i.e., between 30 m and 1 km),
and is able to capture changes in temperature as a function of

land physiography. Unfortunately, these satellite observations
have moderate to low temporal resolution, and their use is
limited by the presence of clouds. In addition, the moment
in which the sensor captures land images may not be adequate
to infer climatic conditions. For instance, if maximum temper-
atures are usually observed after midday, and the satellite
passes before noon, the consequent estimate from the proc-
essed image can only be regarded as a proxy for maximum
temperature (Sandholt et al. 2002).

Regarding record extension, only fewmethods deal with me-
teorological time series and their extension into the past (Begert
et al. 2005; Perry andHollis 2005; Sherwood et al. 2008), mainly
due to the lack of covariates with the same spatial and temporal
structure as the data series. In these cases, estimates not only tend
to be biased, but their reliability is sometimes questionable
(Chen and Hwang 2000). Some examples of record extension
can be found in the case of frost days (Perry and Hollis 2005),
the use of memory processes for the case of temperature
(Blender et al. 2008), and an interesting approximation followed
by Jung-Woo and Yakov (2010) to combine artificial neural
networks and regression trees. The authors showed that this
method improved accuracy and was more robust when com-
pared to artificial neural networks and regression trees alone.

The NCEP/NCARReanalysis project corresponds to a sys-
tematic effort to produce data sets for climate monitoring and
research that date back to 1948 (Kalnay et al. 1996; Kistler
et al. 2001). This data set has been compared with meteoro-
logical observations that are not part of the assimilation net-
work to develop forecast systems and/or describe local weath-
er behavior (Bengtsson et al. 2004; Beniston et al. 2012;
Bojanowski et al. 2014; Fuka et al. 2013; Harnik and Chang
2003; Kubik et al. 2012; Linares-Rodriguez et al. 2011;
Maidment et al. 2012; Montecinos and Aceituno 2003;
Wright et al. 2009). Bao and Zhang (2012) used four different
Reanalysis products (i.e., NCEP/NCAR, NCEP–CFSR, ERA-
Interim, and ERA-40) to evaluate relations between variables
such as temperature, relative humidity, and wind speed on the
Tibetan Plateau and the same variables measured in a network
of 11 radiosondes stations (none of them assimilated into these
four Reanalysis data sets). They found consistency between
the values of temperature and wind speed measured in the
field with those delivered by Reanalysis for an average of
3 months, but not for relative humidity, for which a significant
bias was found. The Reanalysis NCEP/NCAR provided the
most consistent results. Nevertheless, these relationships can
be more consistent in certain places, given the amount of
remotely sensed data that provide real information for assim-
ilation interpolations (Ramella and Haimberger 2014).

The use of Reanalysis variables for climatic studies and ap-
plied meteorological models has been described before (Bao
and Zhang 2012; Beniston et al. 2012; Betts et al. 2006; Fuka
et al. 2013; Harnik and Chang 2003; Maidment et al. 2012;
Saha et al. 2010; Wright et al. 2009), but few studies have tried
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to find temporal or spatial dependences of environment vari-
ables with predictors from the Reanalysis projects. Linares-
Rodriguez et al. (2011) used four variables (total cloud cover,
surface temperature, total water vapor column, and total ozone
column) from the ERA-interim Reanalysis (Simmons et al.
2007) to generate global radiation data at a daily scale through
artificial neural networks. Kubik et al. (2012) used information
from MERRA Reanalysis (Rienecker et al. 2011) to obtain
wind data through simulations.

This study proposes a methodology for the estimation of
maximum and minimum temperatures and precipitation using
variables from the NCEP/NCAR Reanalysis project at daily
scale. Since the spatial correlation of climatic variables is some-
how captured by large-scale features of the atmosphere detect-
able within the Reanalysis data, it should be possible to find
statistical relationships between large-scale variables and local
ground observations. In this context, a downscaling methodol-
ogy for low spatial resolution Reanalysis data (2.5° Lat. × 2.5°
Lon.) was generated to estimate daily maximum (Tx) and min-
imum (Tn) temperatures and Precipitation (Pp) in order to fill
data gaps and extend time series back to 1950. The method was
applied to nine locations in the Maipo River basin (Central
Chile). The estimates are the result of the interaction of ob-
served data at the station level and Reanalysis grid values with
high statistical similarity within a region representing the local
climate of the area. This joint approach has already been report-
ed by some authors but only as a downscaling approach
(Bastola and Misra 2014; Brands et al. 2012; Hwang et al.
2013;Misra et al. 2012; Yoshimura and Kanamitsu 2008); thus,
its use in gap filling and record extension needs to be evaluated.

2 Methods

2.1 General characteristics of the study area

The region under study corresponds to the Maipo basin in
Central Chile (33° S). Mean annual temperature values are
around of 14 °C (20 °C in summer and 7.5 °C in winter).
Rainfall is concentrated in the winter months (June to August)
with 80% of the total ~ 350 mm falling during these months
(Fig. 1). Snow accumulation occurs above 1500 m.a.s.l. during
winter. The region is known to have a significant El Niño
Southern Oscillation (ENSO) footprint. Montecinos and
Aceituno (2003) reported a relationship between precipitation
anomalies and ENSO, indicating a statistical dependence be-
tween the amount of rainfall in a year and the increase in sea
surface temperature in the eastern equatorial Pacific.

2.2 Meteorological data

We selected ten meteorological stations with daily records of
temperature and precipitation (Table 1), seven from the

Dirección General de Aguas (National Water Directorate;
DGA) and three from the Dirección Meteorológica de Chile
(Meteorological Directorate of Chile; DMC). These stations
are spread out and represent different locations within the
Maipo basin (Fig. 2). Nine stations were used in the recon-
struction experiment. The remaining one (Quinta Normal sta-
tion) is the only one with a complete time series from January
1, 1914 to the present, so it was used as an independent data
set in the algorithm. We evaluated the procedure with and
without the inclusion of this reference station as a way to
measure the effect of its presence and contrast results in the
reconstructed time series against real data.

Prior to the development of the model, Tn and Tx data had
been grouped by month and transformed into standardized
anomalies (mean = 0 and standard deviation = 1) to avoid
heteroscedasticity in residuals (Royer and Poirier 2010). In
each month, we evaluated the presence of outliers, removing
them following the methodology described by Laurikkala
et al. (2000) for univariate data.

Since Pp is represented as an occurrence and amount pro-
cess, we first transformed their values into a time series of
binary variables representing occurrences (1) and non-
occurrences (0) of the event (defined strictly as days with
precipitation greater than zero or not, respectively). For the
amount process, we selected only values greater than zero
and expressed them as standardized anomalies.

We noted a non-homogeneous distribution of the frequency
values registered by precipitation gauges over the ten analyzed
stations (Fig. 3). Data shows extraordinarily large frequencies
of values in 0.5 classes that suggest a bias in precipitation
records, normally associated to measurement errors. Given
the large number of observations that fall in each of the 0.5-
mm classes, we grouped all values in 0.5-mm range intervals
(i.e., those values between 0.1 and 0.4 were rounded to 0.5,
those between 0.6 and 0.9 were rounded to 1.0, etc.).
Alternatively, we could have introduced assumptions on the
distribution of values to disaggregate the data with the risk of
invalidating the model for gap filling. Note that for a general
methodology, this step is not essential and is to be regarded as
a convenient solution, given the nature of the observations
available.

2.3 Reanalysis variables

We selected 14 variables from the Reanalysis NCEP/NCAR
(Table 2). We used 12 of them for Tn and Tx estimation and
the full set (including precipitable water surface and precipi-
tation rate) in the model for the estimation of precipitation
occurrence and amount at each station. We selected data from
the 500-mbar pressure level and surface data. Some of the
variables used are available at both levels, like air temperature
and the east-west (u) and south-north (v) components of the
Geostrophic Wind (Table 2). We selected the surface level,
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because it is the closest to the level at which ground observa-
tions are taken, whereas the 500-mbar level variables were
chosen because some meteorological variables, like precipita-
tion and frosts, are sensitive to large-scale phenomena such as
the position and strength of the South American Anticyclone.
Moreover, variables from the 500 mbar are normally included
in weather forecasting models (Gershunov and Cayan 2003;
Flannigan and Wotton 2001) as they usually show significant
correlation with ground observations.

2.4 Proposed algorithm

We restricted the domain of Reanalysis data to the coordinates
17.5° to 50° S and 65° to 175° W (Fig. 4). The method is
independent of the selected area as it is based on selecting
the pixels with the highest level of correlation. However, the
two major controllers of Central Chile’s climate can be found
in this region (the South American Anticyclone and the El
Niño Southern Oscillation phenomenon). Although no mech-
anistic explanation is provided in this model, and any highly
correlated pixel could be used, we believe that the use of this

window reduces the risk of incorporating spurious relations.
Nevertheless, the majority of the cells selected are found in the
5 × 5 square grid whose centroid corresponds to the cell where
the basin is located. Therefore, the method could be applied
using only the closest neighbors.

We extracted 546 time series (the number of pixels in
the restricted Reanalysis domain) for the 14 NCEP/NCAR
Reanalysis variables. Data of each Reanalysis variable
were previously grouped by month and expressed as stan-
dardized anomalies over the period of interest (1950–
2012). We correlated each variable of each pixel with
the temperature and precipitation series of the nine loca-
tions for each month. Then, for each Reanalysis variable,
we searched for the pixel (grid cell) having the best (i.e.,
highest in absolute value) Pearson’s correlation coefficient
and extracted its monthly data to create a vector of pre-
dictors with the highest linear individual correlation. In a
few cases, a log or square root transformation was needed
to obtain higher correlation values (Wang and Murphy
2004). The process is repeated independently for the three
climatic variables (Fig. 5).

Table 1 General characteristics of selected stations in the Maipo basin

Station Name Acronym Lon. Lat. Altitude (m) Starting date Ending date

El Yeso Embalse EYEm 70° 05′ 33° 40′ 2475 April 13, 1962 August 21, 2012

Pirque Pir 70° 35′ 33° 40′ 659 October 10, 1967 August 31, 2012

Cerro Calán Ccal 70° 32′ 33° 23′ 848 June 18, 1976 August 31, 2012

Rungue Embalse Run 70° 54′ 33° 01′ 700 January 01, 1967 May 31, 2007

Melipilla Mel 71° 12′ 33° 41′ 168 June 02, 1971 August 31, 2012

Los Panguiles LP 71° 01′ 33° 26′ 195 November 03, 1980 August 31, 2012

Quinta Normal QN 70° 40′ 33° 26′ 527 January 01, 1950 December 31, 2012

Tobalaba Tob 70° 32′ 33° 27′ 650 January 01, 1969 December 31, 2012

Pudahuel Pud 70° 47′ 33° 32′ 493 January 04, 1966 December 31, 2012

Los Cerrillos Cerr 70° 42′ 33° 28′ 511 January 02, 1963 February 07, 2006
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2.4.1 Temperature estimation

After selecting the Reanalysis standardized values of the cor-
responding months with maximum absolute correlation, a re-
constructed time series of monthly dependent and indepen-
dent variables was built. Orthogonal scores of a principal

component analysis with Varimax rotation (Drosdowsky and
Chambers 2001) were used to avoid multicollinearity and ver-
ify those Reanalysis variables that show the highest influence
on the selected scores used in the regression model, according
to the eigenvalues selection proposed by Peres-Neto et al.
(2003). Finally, for Tn and Tx, a generalized linear mixed

Fig. 2 Spatial distribution of ten selected stations over the Maipo basin
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model (identity link function) was fitted (Eq. 1) assigning
month as an additional variable. The model is fitted following
a bidirectional stepwise procedure using Akaike information
criterion (Akaike 1974) to select the most parsimonious mod-
el.

μ̂̂ij ¼ β0 þ β j þ ∑
12

h¼1
βh � X ih

� �
þ θ� μij QN

� �
ð1Þ

Here, μ̂ij corresponds to the estimate of the anomaly of Tn

or Tx for day i in month j; β0 is the model intercept; βj corre-
sponds to the coefficient associated to each month; βh corre-
sponds to fixed effect coefficients for each principal compo-
nent, Xih; θ is the coefficient associated to recorded value of
the anomaly of temperature (either Tx of Tn) at Quinta
Normal station (μij _QN), which is the station with a complete
record in this experiment; Xih corresponds to the principal
component scores of the standardized predictors from the
Reanalysis data (i.e., the 12 variables from surface and 500-
mbar levels).

The individual contribution of each Reanalysis variable is
evaluated from the PCA loadings.We examined the frequency
of absolute values of significant loadings (p > 0.05) over 0.3.

2.4.2 Precipitation estimation

We obtained the binary vector of occurrences (1) and non-
occurrences (0) of precipitation for each station. Sometimes,
a threshold different than zero is used to classify days at dry/
wet days. This method is not sensitive to the selected threshold
unless it is applied to a very dry region where the selection of a
threshold modifies the relative frequency of days with precip-
itation. Since precipitation shows a strong seasonal behavior,

and summer months usually have few rain events, we fitted a
model by season, generating four subtables (in locations with
a higher frequency of rainy days, it would be advisable to do
this by month). Two more Reanalysis variables were included
in this case: precipitable water surface (PWS) and precipita-
tion rate (PR). Once again, we searched for the best linear
relationship within station binary data and Reanalysis anom-
alies (Wang and Murphy 2004).

For the occurrence process, only standardized anomalies of
predictors are needed. The algorithm applies a GLMM with a
logit link function to estimate the probability of the occurrence
of precipitation. In this case, the season enters as an additional
variable in the model. The occurrence of a precipitation event
on a day is determined to occur when the estimated probability
exceeds the 0.5 threshold. Model coefficients and PCA best
predictor vector scores were found using a bidirectional step-
wise process.

We followed the same method used for temperature esti-
mation (Eq. 1) to detect the presence of recurrent specific
components in the model using loading analysis. In this case,
we used the logit function of the predictand μ̂ij which is cal-

culated as:

logit μ̂̂ij
� �

¼ loge
μ̂̂ij

1−μ̂̂ij

 !
ð2Þ

Note that the variables involved in the estimation of pre-
cipitation occurrence would also be present in a model that
predicts precipitation amounts. In fact, there is a strong
(nonlinear) relationship between the estimates of the precipi-
tation occurrence in the observed time series and the amount
registered (Fig. 6). With this, we can estimate the daily pre-
cipitation amounts from the probabilities of occurrence ob-
tained with the binomial GLMM. To achieve this, a general-
ized linear model with a gamma link function was fitted. Here,
the predictor variables are the log values of the discretized
rainfall amount for Quinta Normal (a way to assess the spatial
local effect of a representative neighbor station) and the esti-
mated probabilities of occurrence for each station obtained
from the GLMM in Eq. 2.

2.5 Performance of the algorithm

To assess the performance of our method, we compared it
against two common interpolation procedures, the inverse
distance weighting and spline methods. We selected the
values recorded in 1979 at the Pudahuel and Melipilla sta-
tions to evaluate the results of the applied methods, and we
used Quinta Normal, Cerrillos, and Pirque station as neigh-
bors for the IDW and spline methods. The year 1979 was
selected, since temperature and precipitation records are
complete for all five.

Table 2 Reanalysis variables used in the algorithm for gap filling and
record extension

Variable Unit Short name

Air temperature at 2 m K AT2m

Air temperature at 500 mbar K AT500mbar

Geopotential height m HGT500mbar

Net longwave radiation W m−2 NLR2m

Precipitable water surface Kg m−2 PWS

Precipitation rate Kg m−2 s−1 PR

Relative humidity % RH500mbar

Sea level pressure Kg m−1 s−2 SLP

Sensible heat flux W m−2 SHF2m

Specific humidity kg kg−1 SH500mbar

U-wind at 2 m m s−1 UW2m

U-wind at 500 mbar m s−1 UW500mbar

V-wind at 2 m m s−1 VW2m

V-wind at 500 mbar m s−1 VW500mbar
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In addition to the comparison described before, and as a
way to evaluate how dependent the method is on pixel (grid
cell) selection with the highest absolute correlation value, we
applied the proposed method using not the best pixel in terms
of absolute correlation coefficient, but the Reanalysis data for
the pixel (grid) where the station was located. In this case, we
compared the results obtained for both methods for the Cerro
Calán station, using the model R2 and RMSE values.

At each station, we performed a cross-validation experi-
ment to test the robustness of the algorithm. We randomly
selected a subsample containing 10% of the observations.
The model was then fit using the remaining 90% of the obser-
vations and applied to the excluded data set to evaluate the
performance of the method comparing observed vs estimated
values and calculating goodness of fit statistics. The procedure
was repeated 100 times to determine mean and variance of
RMSE, MAE, Bias, etc. In addition, the Standardized
Precipitation Evapotranspiration Index (SPEI) (Paulo et al.

2012; Vicente-Serrano et al. 2010) was used as a pseudo-
independent validation method, as it depends on nonlinear
combinations of the estimated variables. Potential evapotrans-
piration is needed for the SPEI calculation, which is estimated
from the modified Hargreaves equation (Doggers and Allen
2002). We calculated extraterrestrial radiation (Ra) using the
latitude of the stations. We computed a 3-month aggregated
SPEI value for the time period 1980–2010 in all stations sep-
arately. R2 and RMSE were obtained from the regression be-
tween two SPEI series and used to evaluate whether the algo-
rithm was capable of capturing temporal trends and could be
used for filling and extension of climatic variables at the basin
level.

All the steps and procedures described were conducted in
the statistical software R, using the NCEP/NCAR Reanalysis
data. Required packages were Bncdf^ (Pierce 2011),
BRNCEP^ (Kemp and Kemp 2012), Breshape^ (Wickham
2007), Bnlme^ (Pinheiro et al. 2012), Blme4 (Bates et al.
2012), BlmerTest^ (Kuznetsova et al. 2013), and SPEI
(Beguería and Vicente-Serrano 2013).

3 Results

3.1 Minimum and maximum temperatures

The highest correlation values between the Reanalysis data
and temperature variables were found in grid cells (pixels) that
are located close to the stations. Figure 7 shows an example of
Pearson’s correlation values for the Reanalysis variable air
temperature at 500 mbar (ATM500) and Tn for the Cerro
Calán station. Since Reanalysis values are based on several
coarser observations, one would expect this behavior and
eventually restrict the domain only to pixels that are in the
surroundings of the location whose data record is to be
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expanded (or missing data is to be filled). In accordance with
what is expected theoretically, other variables such as the 500-
mbar geopotential height (HGT500mbar), relative and specif-
ic humidity at 500mbar (RH500mbar, SH500mbar), and air
temperature at 2 m (AT2m), show positive associations. The
opposite is verified for the remaining predictors.

As a way to generalize the previous results, we calculated
correlations between a regional mean of minimum and maxi-
mum temperatures as well as mean precipitation and correlat-
ed them with the Reanalysis variables for a domain composed
only of the closest 25 pixels. Figure 8 presents the frequency
with which each pixel is selected as the best linear correlation
and, thus, becomes a candidate for its inclusion in a GLMM
for the case of minimum temperature. (The same conclusion

was obtained when looking at the figures corresponding to
maximum temperature and precipitation with a slight tenden-
cy of maximum temperature to select more pixels outside the
closest domain; data not shown.) It is clear that pixels closer to
the basin centroid (33.58° S, 70.59° W) are more likely to be
selected based on highest absolute correlation.

3.1.1 Precipitation

In the case of precipitation, we found that the Reanalysis var-
iables PWS, PR, RH500mbar, SH500mbar, AT2m, UW2m,
UW500mbar, and VW500mbar have a consistent positive as-
sociation with almost all station data. In the case of AT2m, the
results were somewhat surprising, because in this type of

Lat
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Fig. 8 Relative frequency of
selection of pixels (grid cells) in
the 5 × 5 grid whose centroid
corresponds to the location of the
basin (dashed grid) for the
estimation of minimum
temperature. See Table 2 for the
description of the Reanalysis
variables
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regime, precipitation has a negative correlation with maxi-
mum temperature and a positive association with minimum
temperature.

In this case, there is also a strong association between
Reanalysis variables within the nearest pixels and the precip-
itation variable of the basin; however, only the variables
NLR2m, PWS, PR, RH500mbar, and VW2m concentrated
more than 60% of the maximum absolute correlations in the
central pixel or its eight neighbors (a figure that increase up to
70% when we included 16 border pixels).

3.2 Estimations

3.2.1 Maximum and minimum temperatures

Since the algorithm for temperature estimation involves the
development of one model per station, and that each variable
can be estimated with up to 26 coefficients in Eq. 1, we only
present the summary statistics of model performance rather
than reporting the individual regression coefficients. The
mean R2 value for the estimation of both minimum and max-
imum temperatures was 0.72 for the case where the reference
station of Quinta Normal (QN) was not included, and 0.75
when added (details by station are presented in Table 3). The
Cerro Calán station showed the highest correlation (R2 = 0.78)
using only the Reanalysis variables; this value increases to
0.81 when QN station was included. The RMSEs for mini-
mum and maximum temperatures were 1.40 and 1.22 °C, re-
spectively. All coefficients are significant at 5% level.

We observe that, in general, the predictive power of the
models increased by 2.4% when the reference station QN
was included. For the case of minimum temperature, such
increase is 3.3%, whereas the RMSE varied from 1.57 to
1.49 °CwhenQNwas added. Furthermore, seasonality is very
important. In fact, the use of a coefficient that accounts spe-
cific effects at monthly level increases the predictive power of
the GLMM by 8.8% as compared to using non-grouped data.

Regarding the contribution of the NCEP/NCAR Reanalysis
variables, in all fitted models, the first and second principal
components were selected. For Tn, the variables HGT500mbar,
SLP, AT500mbar, and VW5000mbar had significant loading
values over 0.3 contrasted with the first component (PC1) and
were part in five of the nine GLMMs fitted. Using the same
indicator, variables NLR2m, RH500mbar, and VW2m are
more relevant in PC2. For the case of Tx, the variables
HGT500mbar, SHF2m, AT2m, AT500mbar, and UW500mbar
are significant in PC1, participating in the estimation for all nine

Table 3 Summary of model fit statistics for minimum (Tn) and
maximum (Tx) temperature

Without Quinta Normal With Quinta Normal

Variable Station R2 AIC RMSE R2 AIC RMSE

Tn Ccal 0.78 17,472.19 1.40 0.81 15,482.97 1.23

Cerr 0.73 19,935.88 1.54 0.75 19,050.80 1.46

EYEm 0.77 18,241.74 1.43 0.81 16,290.06 1.25

LP 0.71 21,113.82 1.63 0.74 19,648.69 1.52

Mel 0.70 21,226.81 1.63 0.74 20,145.84 1.52

Pir 0.72 20,343.96 1.57 0.75 19,567.28 1.46

Pud 0.70 21,280.35 1.63 0.74 19,344.51 1.49

Run 0.71 26,112.92 1.62 0.76 19,211.03 1.46

Tob 0.74 19,323.98 1.50 0.77 18,894.94 1.41

Tx Ccal 0.71 21,122.31 1.63 0.72 20,705.48 1.59

Cerr 0.72 20,436.50 1.58 0.73 20,049.29 1.55

EYEm 0.75 18,796.50 1.48 0.76 19,435.48 1.46

LP 0.73 20,231.07 1.57 0.74 19,689.49 1.54

Mel 0.69 21,962.32 1.69 0.71 20,925.96 1.62

Pir 0.70 21,331.65 1.64 0.72 20,796.26 1.61

Pud 0.71 20,863.57 1.61 0.73 20,595.28 1.58

Run 0.74 19,627.99 1.54 0.75 19,669.32 1.52

Tob 0.72 20,569.52 1.59 0.73 20,008.75 1.57

Table 4 Summary of model fit
statistics for the estimation of
precipitation amount

Without Quinta Normal With Quinta Normal

Station R2 Mean absolute error (MAE) R2 Mean absolute error (MAE)

Ccal 0.74 5.76 0.78 5.68

Cerr 0.78 4.22 0.82 3.98

EYEm 0.47 15.15 0.51 11.30

LP 0.65 6.52 0.72 6.49

Mel 0.54 11.32 0.55 8

Pir 0.68 6.24 0.74 5.91

Pud 0.78 3.43 0.83 2.98

Run 0.55 11.11 0.59 9.43

Tob 0.64 7.06 0.69 6.20
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stations. PC2 had NLR2m, RH500mbar, AT2m, and VW2m as
the most significant variables.

HGT500mbar and AT500mbar had significant loading
values with PC12. The scores of this principal component re-
lated with HGT500mbar participated in eight of the nine esti-
mation for Tn, and in all stations for Tx. AR500mbar partici-
pated thought the PC12 in the 18 possible estimations. In 17 of
the 18 estimations, at least nine of the 12 principal components
participated. For the Embalse el Yeso station, only seven PCs
were needed to obtain a model with the lowest AIC.

3.2.2 Precipitation

The principal components PC1 and PC4were the only variables
used to estimate the occurrence of precipitation events in the
GLMM, explaining 14.38 and 8.64% of the variance.
Individually, PC1 loadings were associated with HGT500mbar
(above 0.3 in the all the 9 stations), UW500mbar (used in 8
stations), and AT500mbar (5 stations). Meanwhile, PC4 was
related to RH500mbar (7 stations), SH500mbar (6 stations),
SHF2m, and VW500 (5 stations each). Despite PC2 having
significant loadings in eight of the nine stations, with the addi-
tional variable PWS, this principal component was selected in
only three cases (Cerro Calán, Cerrillos, and Embalse el Yeso).
The other added variable associated to precipitation (PR) had a

presence in six out of nine of the loadings of PC6 and was used
in the GLMM in six occasions.

Occurrence probabilities of precipitation were estimated for
each station. The performance of the binomial GLMM in-
creased by 25.5% on average (6.2–39.6%) when the reference
station (QN) was added to the model. Mean hit rate values
(Wilks 2006) were around 90% in all stations, with the lowest
being Melipilla (87%) and the highest El Yeso Embalse (95%).

Unlike the estimation of extreme temperatures and the precip-
itation occurrence probabilities, the effect of the reference station
in the estimation of precipitation amounts is very important
(Table 4). The poorest result is observed in the station El Yeso
Embalse probably due to the fact that the station has the highest
elevation, and thus, some of the precipitation falls as snow in
winter time. In addition, we noticed that in all precipitation esti-
mations, we did not obtain an estimated value greater than the
highest observed value during a single day. Figure 9 showswater
precipitation amounts for discretized data and the final disaggre-
gation to the complete time span for Cerro Calán station.

3.3 Comparison with other methods and validation

We compare the results with a simple and yet commonly used
interpolation method. We used a regional regression model
with several correlated stations and geographical variables
derived from a digital elevation model as covariates (lat, long,
distance from shoreline, and major water bodies, vegetation
indices derived from remote sensing). The model was run for
the period 2000–2012 at 1-km spatial resolution.We applied it
to Pirque and Los Panguiles stations with the following re-
sults: min temperature (Tn), at los Panguiles had an RMSE
value of 2.52 °C and R2 of 0.827, while at Pirque, the values
were 0.8 °C and 0.876, respectively. For the case of maximum
temperature (Tx), values found for Los Panguiles were an
RMSE value of 2.03 and R2 of 0.907, and at Pirque, values
were 1.67 °C and 0.905, respectively.

We then used IDW interpolation method to estimate Tx and
IDWand spline interpolation for Pp. We estimated the values
registered at Pudahuel and Melipilla stations during year
1979. These methods were compared with the results obtained
using the method based on Reanalysis without the inclusion of
the observations of Quinta Normal as covariate.

IDW outperforms the method based on reanalysis data. At
Pudahuel station, RMSE values of 0.85 and 3.3 °C for IDW
and the method based on Reanalysis were obtained, whereas
RMSE values of 2.2 and 3.4 °C were obtained for these
methods at the Melipilla station. IDW better reproduce heat
waves (or extreme cold temperatures) as it uses observed
values in the neighbor stations at the moment of interpolation.
This advantage becomes more evident if the neighbor stations
are close in space, as they tend to be highly correlated.

In the case of precipitation, the method based on the
Reanalysis data outperforms IDW and spline methods for
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Fig. 9 a Estimated vs observed precipitation data for discretized values in
5-mm intervals. b Estimation of the amount of precipitation greater than
0.5 mm. Both graphics refer to the Cerro Calán station
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the Pudahuel station (RMSE of 0.78, 1.24 and 3.44 mm, re-
spectively) and gives better results than the spline method for
the Melipilla station (RMSE of 3.94 for Reanalysis, 2.6 for
IDW and 14.6 mm for spline). IDW highly depends on the
occurrence of precipitation in one station the occurrence in the
neighbor stations. Spline functions tend to smooth values, but
the effect of distance is very relevant leading to inconsis-
tencies when stations are not strongly correlated.

Results of the cross validation experiment are presented in
Table 5. While maximum and minimum temperatures show
little variation among stations in terms of RMSE and Bias and
show the highest R2 values, precipitation shows a higher var-
iability. Results are more variable for the case of precipitation.
In two stations (El Yeso Embalse and Melipilla), R2 values are
around or less than 0.5; nevertheless, the regression coeffi-
cients of the model are all significantly different than zero at
0.05 level contributing to partially explain the variance of the
observations and, thus, significantly improve the estimations
of missing data.

To test the performance of the method in generating sec-
ondary information, we calculated the Standardized
Precipitation Evapotranspiration Index. SPEI is an indicator
of the temporal changes between dry periods (SPEI < 0) and
wet periods (SPEI > 0). We observed a good agreement when
comparing SPEI values calculated using the gap filling/record
extension method and when using real data (Fig. 10) in both
series for the same time period. The average of R2 was 0.87,
varying between 0.78 forMelipilla station to 0.91 for Cerrillos
station (Table 6). It is possible to detect climatic trends in all
stations consistent with observed data.

4 Discussion

There is no limitation regarding of the plausible Reanalysis
variables to be used in the presented methodology: however,
the selection of those having the highest temporal correlation
with climatic variables increase the predictive power of the

Table 5 Summary of goodness of fit statistics of a cross validation experiment for each station. Values in parentheses correspond standard deviations of
100 simulations

Variable Station RMSE MAE Bias R2

Tn Ccal 1.66 (0.05) 1.23 (0.03) 0 (0.05) 0.81 (0.01)

Cer 1.91 (0.04) 1.45 (0.03) − 0.01 (0.05) 0.75 (0.01)

EYEm 1.7 (0.04) 1.25 (0.03) 0 (0.05) 0.81 (0.01)

LP 1.94 (0.04) 1.49 (0.03) 0 (0.05) 0.75 (0.01)

Mel 1.97 (0.05) 1.51 (0.03) 0 (0.06) 0.74 (0.01)

Pir 1.92 (0.05) 1.46 (0.04) 0.02 (0.05) 0.75 (0.01)

Pud 1.94 (0.05) 1.48 (0.04) 0 (0.06) 0.75 (0.01)

Run 1.91 (0.05) 1.46 (0.03) 0 (0.05) 0.75 (0.01)

Tob 1.86 (0.04) 1.41 (0.03) 0 (0.05) 0.77 (0.01)

Tx Ccal 2.03 (0.04) 1.59 (0.03) 0.01 (0.07) 0.72 (0.01)

Cer 1.99 (0.05) 1.55 (0.03) 0 (0.06) 0.73 (0.01)

EYEm 1.88 (0.04) 1.46 (0.03) 0 (0.05) 0.76 (0.01)

LP 1.97 (0.05) 1.55 (0.04) 0 (0.06) 0.74 (0.01)

Mel 2.06 (0.04) 1.62 (0.03) 0 (0.07) 0.71 (0.01)

Pir 2.05 (0.04) 1.61 (0.03) 0 (0.05) 0.72 (0.01)

Pud 2.01 (0.04) 1.58 (0.03) 0.01 (0.06) 0.73 (0.01)

Run 1.93 (0.04) 1.51 (0.03) − 0.01 (0.06) 0.75 (0.01)

Tob 1.99 (0.04) 1.56 (0.03) 0.01 (0.06) 0.73 (0.01)

Pp Ccal 8.96 (0.36) 6.68 (0.41) 3.63 (0.99) 0.74 (0.02)

Cer 7.38 (0.74) 4.42 (0.75) 2.29 (0.74) 0.78 (0.03)

EYEm 25.48 (1.80) 18.25 (1.20) 9.57 (1.02) 0.40 (0.04)

LP 10.71 (1.55) 7.76 (1.00) 3.30 (1.08) 0.64 (0.04)

Mel 22.53 (3.41) 16.07 (2.43) 10.38 (2.54) 0.51 (0.06)

Pir 11.16 (3.05) 7.74 (2.18) 3.09 (1.98) 0.65 (0.09)

Pud 6.84 (0.61) 4.11 (0.59) 1.82 (0.35) 0.77 (0.03)

Run 16.02 (0.74) 10.31 (0.52) 4.17 (0.82) 0.55 (0.03)

Tob 10.82 (0.40) 7.00 (0.33) 2.67 (0.29) 0.61 (0.02)
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method, especially on a monthly basis. Therefore, any climat-
ic variable could be potentially estimated for reconstruction of
past time series. The main limitation is the initial extension of
the candidate time series being reconstructed, considering that
a large temporal database is crucial for detecting temporal
trends and periodicity. Also, in this case, monthly decompo-
sition needs a sufficient number of years to produce estimates
with high goodness-of-fit. This work used data with at least
30 years of continuous data. The length of the time series is
related to the consistence of the obtained products, indepen-
dent of the estimation procedure applied (Bengtsson et al.
2004). Nevertheless, in most cases, this criterion is used for
filling temporal data gaps with its own data (Tardivo and Berti
2012) than for data extension in any time direction.

At the meteorological station level, the values estimated for
some particular variable to fill temporal gaps have been the
focus in the use of neighbor stations (Sterl 2001; Tardivo and
Berti 2014). In this case, the restriction lies in the time series
length of the shortest neighbor station, which means that the
final result is limited by data length within the neighborhood.
With sufficiently large series for calibration, this method can be
useful in expanding records and detecting temporal trends in
variables like temperature, precipitation, and solar radiation
(Betts et al. 2006; Bojanowski et al. 2014; Refslund et al. 2014).

Since 1979, the assimilation algorithm of the NCEP/NCAR
Reanalysis began using remote sensing data (Kalnay et al.
1996), modifying the database slightly with respect to the
1948–1971 period. This could be a source of error that may
introduce problems in trend detection and be misleading.

In precipitation, the error associated with the observer can
be very important. The discretization approach followed here
is a solution but might not be the best one, particularly if a
particular study requires greater precision in the estimation of
the amount of precipitation.

The selection of potential predictors is highly relevant in
improving the results of the algorithm. The selection of the
Reanalysis variables was conducted by choosing those with a
seasonal and meteorological component; their combined ef-
fects increase model predictive power (Hwang et al. 2013;
Yoshimura and Kanamitsu 2008). In addition, the use of a
reference station has a positive effect in improving estimates,
especially if a strong correlation with the candidate station is
found (Daly 2006), because it provides non-explained local
effects. This inclusion is more relevant in the estimation of
precipitation than in the case of temperature.

The local effect in each station, mainly influenced by its
topography and altitude, can be detected within the heteroge-
neous area of theMaipo basin. Three stations (Tobalaba, Quinta
Normal, and Pudahuel) are located in the Santiagometropolitan
area, with a marked heat island effect, which can affect esti-
mates (Buyadi et al. 2013). However, monthly aggregated esti-
mates in the case of extreme temperature and seasonal estima-
tions of rainfall appear to mask this negative effect.

Not all complementary variables showed the same degree
of contribution to the models in the algorithm. AT2m,
AT500mbar, and RH500mbar were the most significant in
models of extreme temperatures, while UW500mbar played
a significant role in estimating occurrences of precipitation.
The variables HGT500mbar and RH500mbar were found to
have a high presence through their weight in the precipitation
and both temperature models.

Concerning spatial correlation selection, over 70% of these
were located in a 25-pixel neighborhood around the central
pixel from the station location for almost all complementary
variables. Some selected pixels had low geographical and phys-
iographical association with the basin. However, we decided
not to omit them, because their inclusion improved the final
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Fig. 10 a SPEI values calculated with real Tn, Tx, and Pp data. b SPEI
values calculated with estimated data of Tn, Tx, and Pp. Both graphics
refer to the Cerrillos station (R2 = 0.87)

Table 6 Coefficient of
determination (R2)
between SPEI values
calculated from real and
estimated data

Station acronym R2

Ccal 0.78

Cerr 0.87

EYEm 0.70

LP 0.74

Mel 0.67

Pir 0.71

Pud 0.73

Run 0.81

Tob 0.76
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adjustment. Both positive and significantly negative correla-
tions appeared along the defined spatial window, and although
there were no spatial criteria, we selected only those pixels with
a greater absolute correlation, no matter where they were.

One potential limitation of the method proposed here that
arises when the length of the time series to be filled or expanded
is significantly large is that the assumption of homogeneity of
variance may no longer hold as well as other characteristics of
the distribution. In our example, we tested the hypothesis that
the reconstructed minimum temperature followed the normal
distribution using the Kolmogorov-Smirnov test. The hypothe-
sis is rejected only in 10%of the 108 time series (9 stations times
12months). On the other hand, only half of the time series fulfill
the assumption of variance homogeneity when looking at the
Bartlett homogeneity test. Because of the statistical properties of
a parametrical method, extreme temperature values are normally
underestimated (we detected a deviation of 3.6 and 3.4 °C for
maximum and minimum temperatures, respectively). If the
number of data gaps or length of the time series to be recon-
structed is large, there is a risk of obtaining a heteroscedastic
model that fails in the estimation of extreme temperature values.

5 Conclusion

We have presented a methodology for filling gaps and
expanding data records of minimum and maximum tempera-
tures and precipitation within a GLMM framework, using cli-
matic information from theReanalysis project. Results show that
the estimations of temperature and precipitation are good and
correctly represent the spatio-temporal pattern observed in the
basin under study. The use of a reference station improves the
estimations of precipitation amounts, although the effect is not
significant if the model is fitted considering only the probabili-
ties of rainfall occurrences extracted from the binomial GLMM.

This methodology can be used to fill gaps and expand data
records of information gathered since 1950. Since it is not ex-
clusive, new weather variables may be included for estimation.
It is important to emphasize that in the future, land use associ-
ated with the weather station may be considered in order to
include the effect of urban heat islands, water bodies, and other
land uses that significantly influence local climatic variables.
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