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where a represents the time scale and H is the Hurst
exponent. This means time series x(t) remains statistically
similar if one zooms in or out, and its variability
exhibits scale invariance. Calculation of the auto-correlation
function C(s) shows that C(s) decays with time scale s

as a power-law for variables with the Hurst phenomenon,
and the mean correlation time diverges in an infinitely long
series. In this case, the present state of a system may have
long-lasting influences on its states in the future, and more
vividly, the Hurst phenomenon is also known as long-term
memory (LTM) (Koscielny-Bunde et al. 1998; Malamud
and Turcottr 1999).

Different from short-term memory of weather-systems
which only last for several days to weeks, long-term
memory indicates persistence of longer time scales (months,
years, and decades). LTM is ubiquitous in climate systems
and various explanations have been proposed. One physical
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1 Introduction

Ever since the middle of last century when the well-known
Hurst phenomenon was discovered (Hurst 1951), it has
been widely recognized that the variability of many climatic

variables on different time scales is not arbitrary, but follows
a scaling law:

x(at) = aH x(t) (1)
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mechanism to explain LTM is the non-stationary regime
behavior. As reported by Franzke et al. (2015), LTM
(Hurst effects) can be produced in the deterministic chaotic
Lorenz 63 model (Lorenz 1963) due to its regime behavior,
which is ubiquitous in the atmosphere. Another origin for
LTM may be the coupling of multi-scale processes. For
example, weather-scale excitations can store their impacts in
slow-change systems (e.g., oceans), which may exhibit the
influences slowly on a larger time scale (Yuan et al. 2013).

In recent years, with the development of many methods
including spectral analysis (Malamud and Turcottr 1999;
Weber and Talkner 2001), structure function method
(Lovejoy and Schertzer 2012), wavelet analysis (Arneodo
et al. 1995; Abry and Veitch 1998), detrended fluctuation
analysis (Peng et al. 1994; Kantelhardt et al. 2001), etc.,
climatic variables ranging from temperatures (Kurnaz 2004;
Pattantyús-Ábrahám et al. 2004; Király et al. 2006; Jiang
et al. 2015; Massh and Kantz 2016), relative humidity
(Chen et al. 2007) and precipitation (Kantelhardt et al.
2006; Jiang et al. 2017), to wind fields (Feng et al. 2009),
atmospheric general circulations (Vyushin and Kushner
2009) and total ozone anomalies (Varotsos and Kirk-
Davidoff 2006; Vyushin et al. 2007), are all found to
have LTM, even though the memory strength varies among
the variables in different regions. In contrast to traditional
climatic studies that focus on dynamic interactions among
multiple climatic processes over different time scales,
LTM represents multi-scale interactions in terms of fractals
(Mandelbrot and Van Ness 1968), which allows analysis of
the structural properties of the climate system, regardless
of the dynamic mechanisms. Therefore, in addition to
detecting the existence of LTM in different climate
variables, more studies are now concentrating on the
application of long-term climate memory, including (i)
developing new methods for trend evaluation (Lennartz and
Bunde 2009; Yuan et al. 2015; Ludescher et al. 2016);
(ii) designing early warning systems for extreme events
(Bunde et al. 2005; Bogachev and Bunde 2011); and (iii)
quality evaluation of reanalysis datasets/model simulations
using long-term climate memory as a test bed (Blender and
Fraedrich 2006; Rybski et al. 2008; Monselesan et al. 2015).
These studies have greatly increased the understanding of
climate memory.

As the name implies, one of the most straightforward
application of long-term climate memory is climate
prediction, which has not been studied systematically. It has
been shown that the stronger the level of memory possessed
by the climate variable, the stronger the predictability will
be Zhu et al. (2010), Yuan et al. (2013), Yuan et al.
(2014), and Anderson et al. (2016). However, most climate
prediction models have not properly included the effects of
climate memory into their predictions. Do we need to take
the long-term climate memory effect into consideration to

improve the accuracy of predictions? Also, which variables
and regions should be emphasized to determine the effects
of climate memory? These important questions need to be
addressed to improve climate predictions.

In this work, we analyzed different climatic variables
(e.g., 2-m air temperature, land surface temperature,
precipitation, etc.) observed over China. We used the
fractional integral statistical model (FISM) (Yuan et al.
2013, 2014) to extract the long-term climate memory
as a memory signal and quantify the contribution of
climate memory to climate variability. By studying different
variables over different regions, we were able to report
the specific variables and the specific regions where the
climate variability is more dependent on the long-term
climate memory and also the variables and regions where
the climate memory is not useful for climate prediction.
Accordingly, the importance of climate memory in climate
prediction is assessed quantitatively.

The rest of this paper is organized as follows. In
Section 2, we will make a brief introduction of the data and
the methods we used for analysis. The effects of climate
memory on different variables are estimated in Section 3,
and the results are compared with those calculated from
artificially generated data. After a detailed discussion of
the climate memory effects among different variables and
regions, we suggest specific variables/regions where the
climate memory effects are non-negligible. In Section 4, we
summarize this work and present a future outlook.

2 Data andmethods

2.1 Data

Monthly maximum air temperature (MAT), monthly min-
imum air temperature (MIT), monthly precipitation sums
(PRE), and monthly land temperature (LT) from Chinese
international exchange stations were analyzed. For the air
temperature and precipitation, homogenized daily records
were provided by the information center of China Meteoro-
logical Administration. For the land temperature, however,
daily records downloaded from the China Meteorological
Data Sharing Service System (http://data.cma.cn) were only
quality controlled, but not homogenized. The monthly data
were calculated from the daily records. A total of 177 sta-
tions for MAT, MIT, and PRE and 150 stations for LT
were selected based on (i) data lengths and (ii) data gaps.
Only data covering the period 1961–2010 (50 years) without
any missing values were used in this analysis (see Fig. 1).
Each time series therefore had a length of 600 months.
Before analysis, seasonal trends were removed by subtract-
ing annual cycle from the observed climate data (Koscielny-
Bunde et al. 1998), as xi = τi− < τi >, i = 1, ..., 600,

http://data.cma.cn
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Fig. 1 Spatial distributions of the meteorological stations where the
observed temperatures/precipitation are used in this study. Hollow
circles represent the stations, where the maximum air temperature,
minimum air temperature, and precipitation records are analyzed.
Solid circles represent the stations, where the 0-m average land
temperature records are studied. There are 177 hollow circles and 150
solid circles

where {τ } is the observed climate data and < τi > is
long-time climatological average for each calendar.

To verify the results from observational data, we
performed the same analysis on artificial data with LTM.
Using Fourier filtering technique, artificial datasets with
different LTM strengths were generated (Turcotte 1997).
For each LTM strength, 3,000 samples were used for
adequate statistical accuracy.

2.2 Methods

2.2.1 Detecting long-term climate memory

Long-term climate memory can be detected directly using
the auto-correlation function C(s). If C(s) decays with the
time scale s as a power-law, C(s) ∼ s−γ (0 < γ < 1),
the time series being studied can be considered as long-
term correlated and the exponent γ can be used to measure
the strength of the long-term climate memory. However,
affected by noise and underlying trends, which may exist
in the considered time series, C(s) is normally calculated
with big uncertainties, and it is difficult to measure the
scaling behavior between C(s) and s accurately. Therefore,
we employed detrended fluctuation analysis of the second-
order (DFA-2) (Kantelhardt et al. 2001). With a time series
{xi, i = 1, ..., N}, in DFA-2, one considers the cumulated
sum {Yi, Yi = ∑i

k=1 xk} and studies non-overlapping
time windows of size s. In each window, the local trend
through second-order polynomial fitting is determined, and
the square fluctuation Fs(j) is calculated as the variance of
{Ys×(j−1)+1, ..., Ys×j } around the best quadratic fit, where
j is the j th window. By averaging over all windows, we
obtained the fluctuation function F(s) = ∑[N/s]

j=1 Fs(j). For

time series with long-term memory, F(s) increases with s

as F(s) ∼ sα , with the exponent α larger than 0.5. The
bigger α is, the stronger the long-term memory will be.
For stationary time series, the DFA-2 exponent α equals
the Hurst exponent H (see Eq.1) (Talkner and Weber 2000;
Kantelhardt et al. 2001). One can also use α to derive the
exponent γ in C(s) ∼ s−γ by using γ = 2(1 − α)

(Kantelhardt et al. 2001).

2.2.2 Extracting climate memory signals

To extract the long-term climate memory quantitatively as
a memory signal, we used the FISM (Yuan et al. 2013,
2014). FISM was developed in analogy to the stochastic
climate model proposed by Hasselmann (1976). It is based
on fractional integrals and can decompose climate variables
at any given time point into two parts: the memory part and
the non-memory part, as shown below,

x(t) = M(t) + ε(t) (2)

where M(t) represents the memory part and ε(t) stands for
the weather-scale dynamical excitation (non-memory part).
M(t) and ε(t) are connected via a fractional integral, and the
FISM was designed using the Riemann-Lioville fractional
integral formula, as shown below:

x(t) = 1

�(q)

∫ t−δ

u=0

ε(u)

(t − u)1−q
du + ε(t) (3)

where � denotes the gamma function, q is the integral order,
t − u represents the distance between historical time point
u and present time t , and δ is the sampling time interval
(e.g., monthly). From FISM, the memory part M(t) can
be calculated quantitatively when the historical ε(u) =
ε(0), ε(δ), ..., ε(t − δ) is known, as shown below:

M(t) = 1

�(q)

∫ t−δ

u=0

ε(u)

(t − u)1−q
du (4)

Since the integral order q is connected with the DFA
exponent α as q = α − 0.5, using α obtained from DFA, the
historical ε(u) can be derived from Eq. (3). After about 100
steps of “spin-up” time, the reverse derived historical ε(u)

has been proved reliable with negligible errors (Yuan et al.
2014). Therefore, by fractionally integrating the historical
ε(u), the climate memory signal accumulated from the past
can be extracted.

It is worth to note that long-term climate memory is
essentially a scaling behavior that spans more than one
order of magnitude. For some variables, even the climate
states from hundred years ago may have influences on the
current climate (Fraedrich and Blender 2003). Therefore,
the longer the historical ε(u), the better the climate memory
signal estimation. However, due to practical limitations
on the length of observed data, only a certain length of
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historical ε(u) is available. For example, the length of the
data analyzed in this study is 50 years, which is normal
data length for most meteorological stations in the world.
With the first 10 years ε(u) sacrificed as the “spin-up”
time (∼ 120 months) and the last 10 years serving as the
test zone, only the middle 30 years data is available for
calculation of M(t). Therefore, in this study, the climate
memory signals are extracted using only the past 30 years
of ε(u) (see Fig. S1 in the Supporting Information (SI)).

2.2.3 Estimating climate memory effects

After extracting climate memory signals, it is natural to
ask how much climate variability was explained by past
influences. In this study, the extracted M(t) stands for
the influences accumulated from the past 30 years, while
the remaining part {x(t) − M(t)} mainly depends on the
non-memory part at the current time. Since M(t) and
{x(t) − M(t)} are uncorrelated (see Fig. S2 in SI), the
contribution of climate memory to climate variability may
be approximately estimated as follows:

EV = var(M(t))

var(M(t)) + var(x(t) − M(t))
, (5)

assuming the terms M(t) and {x(t)−M(t)} are independent
from each other. The higher the explained variance (EV)
obtained, the greater the amount of climate variability
shared by climate memory. We used the last 10 years as test
period, to calculate the variance of M(t) and {x(t)−M(t)}.

3 Results

To extract climate memory signals and estimate the climate
memory effects, we first needed to determine if long-term
climate memory exists in the variable of interest. Using
DFA-2, the climate variables observed over China were
analyzed. Figure 2 shows the DFA-2 results for the four
variables (PRE, MAT, MIT, and LT) at Xingyi (Station ID:
57902; Lat: 25.26N, Lon: 105.11E), as an example. In this
log-log plot, straight lines ranging from 9 months to more
than one decade were observed, indicating the power-law
increase of F(s) with s. The slope of the straight line is
the DFA-2 exponent α. For MAT, MIT, and LT, the DFA-
2 exponents were 0.65, 0.64, and 0.64, respectively. Since
the estimated DFA exponent α has an uncertainty of about
± 0.05 (see SI, DFA-2 was applied to 1,000 shuffled data
to estimate the uncertainty of α), these α values indicate
the existence of long-term climate memory. For PRE, the
DFA-2 exponent α was only 0.52, which may imply the
absence of (or very weak) long-term climate memory in
precipitation records. For all other stations in China, similar
power-law increases of F(s) were obtained. As previously

Fig. 2 DFA-2 results of the precipitation, maximum air temperature,
minimum air temperature, and 0-m average land temperature (from
top to bottom) observed in Xingyi station. From the measured DFA-
2 exponent α, one can see that the maximum air temperature, the
minimum air temperature and 0-m average land temperature are all
characterized by significant long-term memory (α ∼ 0.65), while the
precipitation only has very weak long-term memory (α = 0.52)

reported (Yuan et al. 2010), the DFA-2 exponent α varied
from 0.5 to 0.8 over the whole country. Therefore, it is
necessary to identify the different contributions of climate
memory to climate variability in different regions. The
DFA-2 exponents α in all stations are provided in Table S1
of the Supporting Information (SI).

Normally, a higher DFA exponent α implies a greater
contributions of climate memory to climate variability (Zhu
et al. 2010). However, α alone does not precisely indicate
the level of variance shared by climate memory. Therefore,
in addition to the exponent α, we determined the climate
memory effects by calculating the explained variance of
climate memory signals (Eq. (5)). We used the FISM to
extract the climate memory signal M(t) (see Fig. S1)
and further decomposed the variable of interest x(t) into
two parts: M(t) and {x(t) − M(t)}. After calculating the
variances of the two parts, the variance shared by the
memory part was determined. Figure 3 shows the explained
variances by climate memory for all four different variables
(dots). We verified the results by comparing them with
those obtained from artificial data of different long-term
memory strength (lines). The black solid line represents
the mean explained variance estimated from artificial data,
while the red and blue-dashed lines are the upper and
lower boundaries of the 95% distribution range. The results
from the observed records were in good agreement with
the results from artificial data, indicating that the explained
variances calculated from real records are indeed governed
by the strength of long-term memory. With the increased
α, the variance explained by climate memory increased
rapidly. For PRE, the α mainly ranged from 0.5 to 0.6.
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Fig. 3 Explained variance of long-term climate memory in the four
variables: a precipitation (PRE), b maximum air temperature (MAT),
c minimum air temperature (MIT), and d land temperature (LT). With
the increase of DFA exponent α, in general, the contributions of cli-
mate memory also increase. To verify the results, the same analysis is
also made to artificial data of different long-term memory strengths.

The black solid line represents the mean explained variance estimated
from artificial data. The red- and blue-dashed lines are the upper and
lower bounds of 95% distribution range. There are six stations for MIT
and eight stations for LT that fall out of the 95% distribution range (see
the solid black points)

Correspondingly, the climate memory normally contributes
less than 5% of the variability. For temperature records
(MAT, MIT, and LT), the climate memory was stronger and
the estimated explained variance was also higher. For most
cases, the α values ranged from 0.5 to 0.75. Consequently,
the explained variance by climate memory can reach 10%.
In some extreme cases (Fig. 3c, d), the explained variances
even exceeded 15%.

To illustrate the different climate memory effects among
different variables, we summarized the explained variances
for PRE, MAT, MIT, and LT, respectively. By counting
the explained variances obtained from all the stations (177
stations for PRE, MAT, and MIT; 150 stations for LT),
we found that precipitation has the lowest climate memory
effects (Fig. 4). On average, only 0.6% of the variance
is shared by climate memory. For MAT, MIT, and LT,
the climate memory effects were higher, but the average
explained variances were still low, around 3∼4%. The
low explained variance in the four variables suggests that
the contribution of climate memory to climate prediction
may be unimportant, especially for precipitation where
the long-term climate memory is very weak (or absent).
However, in addition to the low average explained variances
shown in Fig. 4, there is large variation for each variable,
which suggests different climate memory effects in different
regions. For precipitation, the upper boundary of the 95%
distribution is around 2–3%, while for temperatures (MAT,

MIT, and LT), the upper boundaries are around 10%.
Except for precipitation, the climate memory effects on
temperatures are thus non-negligible, especially in specific
regions.

Fig. 4 Summary of the explained variances of the four variables:
PRE (black), MAT (red), MIT (blue), and LT (cyan). The solid
circle represents the mean explained variance averaged over all the
considered stations, while the horizontal line shows the median value.
The upper and lower borders represent the 75 and 25 percentage of the
explained variances of all the stations, while the vertical line shows the
95 and 5 percentage
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To better describe the regions where climate variability
is more dependent on the climate memory, geographical
distributions of the climate memory effects of different
variables are presented in Fig. 5. For precipitation (Fig. 5a),
due to the weak long-term climate memory, the variance
explained by climate memory is very low (close to 0) in
most stations. In southeast of China, there are a few stations
with slightly higher climate memory effects (∼ 3%). For
air temperatures, similar spatial patterns are found between
the maximum air temperatures (Fig. 5b) and the minimum
air temperatures (Fig. 5c). The contributions of climate
memory to climate variability are smaller than 5% in most
regions. Especially in south of the Yangtze River, the
explained variances are even lower than 3%. For stations
in the northeast and the southwest, however, higher climate
memory effects (> 8%) are highlighted. For some stations,
the explained variance by climate memory can even exceed
10%, indicating non-negligible climate memory effects.
Slightly different from the results of the maximum air
temperature, relatively high climate memory effects are
also found in southernmost China for the minimum air
temperature, where the explained variances by climate
memory exceed 6%. For the land temperatures (Fig. 5d), the
spatial distribution of climate memory effects is not as clear
as those obtained from the air temperatures, but there is a
similar pattern. Low climate memory effects were found in
most regions, especially in south of the Yangtze River. But
for some stations located in the northeast and southwest,
higher than 10% explained variance were found. These data
characterized these two regions as specific areas, where the
temperature variabilities are more dependent on the climate
memory.

Fig. 5 Geographical distributions of the climate memory effects of
different variables, a PRE, b MAT, c MIT, and d LT. For precipitation,
slightly higher climate memory effects (∼ 3%) are found in the
southeast of China. While for temperatures, non-negligible climate
memory effects (8∼10%) are found in the northeast and the southwest
of China

4 Discussion and conclusion

In recent years, long-term climate memory has become a
well-known concept in the climate community (Koscielny-
Bunde et al. 1998; Fraedrich and Blender 2003; Rybski et al.
2008; Yuan and Fu 2014; Yuan et al. 2015; Monselesan
et al. 2015; Ludescher et al. 2016; He and Zhao 2018).
It can be considered as a kind of “inertia” in climate
system, that historical climate conditions may have long-
lasting influences on the current climate (Yuan et al.
2013). Therefore, when predicting future climate, it is
natural to ask whether the effects of long-term climate
memory are important enough for consideration. In this
study, we addressed this question by (i) extracting the
climate memory signals quantitatively and (ii) calculating
the variance explained by climate memory. After analyzing
different climate variables over China, we found non-
negligible climate memory effects in temperature records
(both air and land temperature), but low climate effects
in precipitation records. For temperatures, the effects of
climate memory can account for more than 10% of the
temperature variability in the northeast and southwest of
China, while for precipitation, the contributions of climate
memory were smaller than 3% in most stations over
China. The higher climate memory effects in temperatures
suggest stronger predictability from the perspective of
climate memory. Therefore, to obtain reliable temperature
predictions in the northeast and southwest of China,
climate memory effects need to be properly considered. For
precipitation, however, predictions made with or without
consideration of climate memory effects will have no big
differences. It is worth to note that the air temperature and
precipitation data used in this study are homogenized, while
the land temperature data are not. By comparing the results
from homogenized air temperature/precipitation data with
those from non-homogenized data, it has been found that
the results from only less than 10% stations suffered from
the inhomogeneity (Fig. S3 in SI), and the main conclusion
remain unchanged (Fig. S4 in SI). Therefore, although the
land temperature data are not homogenized, they still can
provide approximately reliable estimations of the climate
memory effects. But in view of the potential biases due to
inhomogeneity, we also emphasize the importance of using
homogenized data, in order to further improve the accuracy
of the calculations.

In contrast to traditional studies where climate memory
is discussed in terms of DFA exponent α (or Hurst
exponent H ), we translated the exponents α or H into
climate memory effects. In previous studies, there are
several other methods that can be used to study the
effects of climate memory. For example, by calculating
the potentially predictable variance fraction (ppvf) (Boer
2000, 2004; Zhu et al. 2010) found that for time series
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with strong climate memory, the potentially predictable
component on longer time scales also accounts for a
large fraction of the total variance. As in our data, the
inter-annual temperature variability accounts for around
30% of the total variance. By further studying the inter-
annual variability from artificial data of the same memory
strength, similar to the calculations suggested by Franzke
and Woollings (2011), there is on average 46% of the inter-
annual temperature variability originated from the climate
memory. However, these calculations only estimated the
potential predictability of the considered time series on a
given time scale. In our study, we quantified the influences
from the past and decomposed the considered time series
into the memory parts and the remaining part. The explained
variance of M(t) describes how large a fraction of the
current climate states is determined by past influences.
Therefore, the calculations in this study is closer to a real
prediction. M(t), which can be extracted quantitatively
from FISM, determines the bottom line of the prediction.

We emphasize that for variables with strong climate
memory effects, it is necessary to include the influences
from the past into future climate predictions. In current
prediction models, few have incorporated the effects of
climate memory. In statistical models, predictions are
usually made from several predictors and linear/nonlinear
regression equations without considering past effects. For
process-based dynamical models, due to the imperfect
representation of physical processes, it is questionable
whether the dynamical models can accurately reproduce
the long-term climate memory (Govindan et al. 2002;
Vyushin et al. 2004; Rybski et al. 2008; Doblas-Reyes
et al. 2013). Since the climate memory signals M(t) can
be quantitatively extracted using FISM, a potential way to
consider the effects of climate memory is that one may
first extract M(t), then predict the weather-scale dynamical
excitations ε(t). In this way, the ability to estimating
ε(t) determines predictive accuracy. To improve climate
predictive skills with climate memory effects properly
considered, studies on ε(t) are important and deserve more
research attentions.
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