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Abstract
High-resolution projections of climate change impacts on fire weather conditions in southeast Australia out to 2080 are presented.
Fire weather is represented by the McArthur Forest Fire Danger Index (FFDI), calculated from an objectively designed regional
climate model ensemble. Changes in annual cumulative FFDI vary widely, from − 337 (− 21%) to + 657 (+ 24%) in coastal areas
and − 237 (− 12%) to + 1143 (+ 26%) in inland areas. A similar spread is projected in extreme FFDI values. In coastal regions, the
number of prescribed burning days is projected to change from − 11 to + 10 in autumn and − 10 to + 3 in spring. Across the
ensemble, the most significant increases in fire weather and decreases in prescribed burn windows are projected to take place in
spring. Partial bias correction of FFDI leads to similar projections but with a greater spread, particularly in extreme values. The
partially bias-corrected FFDI performs similarly to uncorrected FFDI compared to the observed annual cumulative FFDI
(ensemble root mean square error spans 540 to 1583 for uncorrected output and 695 to 1398 for corrected) but is generally
worse for FFDI values above 50. This emphasizes the need to consider inter-variable relationships when bias-correcting for
complex phenomena such as fire weather. There is considerable uncertainty in the future trajectory of fire weather in southeast
Australia, including the potential for less prescribed burning days and substantially greater fire danger in spring. Selecting climate
models on the basis of multiple criteria can lead to more informative projections and allow an explicit exploration of uncertainty.

1 Introduction

Fire weather conditions are a critical factor in wildfire
incidence, along with fuel amount, fuel moisture and the
presence of ignitions (Archibald et al. 2009; Bradstock
2010). Fire weather also drives many wildfire impacts,
including fatalities (Blanchi et al. 2014), house loss
(Blanchi et al. 2010) and fire severity (Bradstock 2010;

Storey et al. 2016). In Australia, the most widely used
measure of fire weather conditions is the McArthur
Forest Fire Danger Index (FFDI; Luke and McArthur
1978), which incorporates surface air temperature, relative
humidity, wind speed and precipitation. There have been
significant increases in FFDI over Australia in recent de-
cades (Clarke et al. 2013a), although the impact of these
changes on fire occurrence in any given region depends on
the degree to which weather, rather than the other factors
mentioned above, limits overall wildfire incidence
(Bradstock et al. 2014).

Awide range of studies have examined possible changes to
FFDI under the influence of anthropogenic climate change in
Australia (e.g. Cary 2002; Pitman et al. 2007; Bradstock et al.
2009). Without exception, these studies suggest the potential
for significant increases in FFDI, particularly at the upper
extremes of the FFDI distribution, in southeast Australia and
under high emissions scenarios. For example, Fox-Hughes et
al. (2014) report increases in FFDI in Tasmania out to 2100,
with the area subject to 99th percentile fire danger values in
spring projected to increase from 6 to 21%. Another example
is the projections by Clarke et al. (2011) of strong increases in
mean and extreme FFDI and a longer overall fire season by
2100 in southeast Australia. Finally, a national report into
climate change in Australia reported high confidence that
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future fire weather climates will be more extreme, but less
confidence in the magnitude of change (CSIRO, Bureau of
Meteorology 2015). Nevertheless, regions and times of year
have been identified where relatively little change in fire
weather is projected, including in some cases decreases
(Flannigan et al. 2009). In contrast to projections of mean
and extreme fire weather, there has been very little focus to
date on quantitative changes in the moderate fire weather con-
ditions under which prescribed burning, a common risk man-
agement tool, takes place (Penman et al. 2011).

As climate models, model evaluation and computer pro-
cessing power have improved, there has been a shift in the
design of climate change experiments, allowing a more thor-
ough exploration of the uncertainty described above. Major
features of this shift include

& the use of regional climate models (RCMs) in preference
to global climate models (GCMs), with recent examples
including Parks et al. (2016) and Forzieri et al. (2016)

& the use of a subset of models that have been selected for
their skill in simulating the study area e.g. Litschert et al.
(2012), King et al. (2012) and Lehtonen et al. (2016)

& the use of a subset of models that have been selected to
span a range of plausible climate futures e.g. Bala et al.
(2013), Boulanger et al. (2014), Whitman et al. (2015)

Aiding these efforts has been the creation of several major
regional cl imate modelling ensembles, including
PRUDENCE (Christensen et al. 2007), ENSEMBLES (van
der Linden and Mitchell 2009) and NARCCAP (Mearns et
al. 2012). Along with investigations of future fire weather
conditions (Tang et al. 2015; Bedia et al. 2014), these projects
facilitate a wide range of climate and climate change impact
research. In Australia, the NSW and ACT Regional Climate
Modelling project (NARCliM; Evans et al. 2014) has deliv-
ered a set of climate projections that allows systematic explo-
ration of the uncertainty in future fire weather and other natu-
ral hazards in Australia. NARCliM comprises a 12-member
ensemble consisting of three RCMs forced by four GCMS.
The NARCliM ensemble was selected on the basis of two
criteria listed above (model skill and spanning a range of fu-
ture climate changes) as well as a third, model independence.
Ensemble members are often regarded as equally likely inde-
pendent projections of future climate, an assumption known to
be incorrect (Abramowitz 2010). Using Bishop and
Abramowitz’s (2013) definition based on covariance in model
errors, the NARCliM ensemble is selected to maximize model
independence.

Clarke et al. (2016) used output from the NARCliM en-
semble at a 50-km horizontal resolution to analyse
continental-scale trends in fire weather in the context of
modelled changes in fuel load. They found that FFDI was
uniformly projected to increase in temperate areas,

particularly in spring, but that projections spanned decreases
and increases for grassland and subtropical climate zones. The
aim of this study is to extend and deepen the fire weather
analysis from Clarke et al. (2016) by using higher-resolution
(10 km) NARCliM output and systematically exploring the
future change space for fire weather in fire-prone southeast
Australia. The availability of bias-corrected versions of tem-
perature and rainfall from the NARCliM ensemble facilitates
the adjunct goal of exploring the effects of partial bias correc-
tion on fire weather projections.

2 Data and methods

2.1 Study area

RCMs were run at a 50-km resolution over the CORDEX
AustralAsia region (Giorgi et al. 2009) and then at a 10-km
resolution over the NARCliM domain, which spans NSW,
Victoria, southeast Queensland, and eastern South Australia.
Results are presented here for NSW and are summarized by
state planning regions (SPRs; Fig. 1; NSW Government
2014), which combine human and biophysical characteristics
and form the basis for government planning decisions.
Dominant native vegetation in coastal SPRs is Eucalypt forest,
transitioning towards Eucalypt woodlands westwards from
the Great Dividing Range, followed by a mixture of cheno-
pod, hummock grassland, mallee and Acacia woodland in the
central and west of the state (Table 1). Fire occurs in all SPRs
in NSW but is most frequent and severe and has had the
greatest human impacts in forested areas. A further classi-
fication is made, between coastal SPRs, which share a bor-
der with the coastline and are predominantly forested, and
inland SPRs.

2.2 Regional climate model simulations

Future climate projections used the weather research and
forecasting (WRF) modelling system (Skamarock et al.
2005), which has demonstrated skill in simulating south-
east Australian fire weather (Clarke et al. 2013b) and cli-
mate more generally (Evans and McCabe 2010, 2013). The
Advanced Research WRF (ARW) version 3.3 was used.
For the NARCliM ensemble, four GCMs were downscaled
using three configurations of WRF, giving a 12-member
ensemble. GCMs were selected in three stages. First, a
large set from the 3rd Coupled Model Intercomparison
Project (CMIP3; Meehl et al. 2007) was evaluated and
the worst-performing models removed. Second, better-
performing models were ranked according to their inde-
pendence (Bishop and Abramowitz 2013). Last, GCMs
were placed within the future change space and the most in-
dependent models that span that space were chosen (Fig. S1).
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A similar process was used to select RCMs. A large set based
on different physical parameterizations was evaluated in order
to remove the worst-performing RCMs. A subset of the better-
performing models was chosen such that each selected RCM
is as independent as possible from the other RCMs. GCMs are
downscaled in two time slices 1990–2009 (‘present’) and
2060–2079 (‘future’). Due to computational and resourcing

constraints, a single emissions scenario, SRES A2, is used
for future projections (Nakicenovic et al. 2000). A full de-
scription of the NARCliM ensemble is presented in Evans et
al. (2014). Many aspects of the climate produced in the
NARCliM ensemble have been tested and found to perform
well in terms of general climate (Olson et al. 2016),
teleconnections with large-scale climate modes such as El

Table 1 State planning regions of NSW

Region Division IBRA bioregion Major vegetation types

Far West Inland Channel Country, Simpson Strzelecki Dunefields,
Broken Hill Complex, Mulga Lands, Darling
Riverine Plains, Murray Darling Depression,
Cobar Peneplain, Brigalow Belt South, Riverina

Chenopod, hummock
grassland, Acacia
woodland, Eucalypt
woodland, mallee

New England and North West Inland Brigalow Belt South, Darling Riverine Plains,
Nandewar, New England Tablelands, NSW
North Coast, South Eastern Queensland

Eucalypt Forest,
Eucalypt Woodland

Central West and Orana Inland Cobar Peneplain, Darling Riverine Plains, Brigalow
Belt South, NSW South Western Slopes, South
Eastern Highlands, Sydney Basin

Eucalypt woodland,
Eucalypt forest

Murray Murrumbidgee Inland Murray Darling Depression, Riverina, Cobar
Peneplain, NSW South Western Slopes,
South Eastern Highlands, Australian Alps

Chenopod, mallee,
Eucalypt woodland,
Eucalypt forest

ACT Inland Australian Alps, South Eastern Highlands Eucalypt woodland,
Eucalypt forest

North Coast Coastal NSW North Coast, South Eastern Queensland,
New England Tablelands

Eucalypt forest

Hunter Coastal Sydney Basin, Brigalow Belt South,
NSW North Coast

Eucalypt forest,
Eucalypt woodland

Central Coast Coastal Sydney Basin Eucalypt forest

Metropolitan Sydney Coastal Sydney Basin, South Eastern Highlands Eucalypt forest

Illawarra Coastal Sydney Basin, South East Corner Eucalypt forest

South East and Tablelands Coastal Australian Alps, NSW South Western Slopes,
South Eastern Highlands, South East Corner

Eucalypt woodland,
Eucalypt forest
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Nino–Southern Oscillation (ENSO; Fita et al. 2017), extreme
precipitation (Evans et al. 2017) and storm systems (Di Luca
et al. 2016).

2.3 Fire weather estimation

Following Noble et al. (1980), FFDI is computed as

FFDI ¼ 2� exp 0:987� ln DFð Þ − 0:0345� Hþ 0:0338� Tþ 0:0234� V − 0:45ð Þ ð1Þ

where DF is the drought factor, T the daily maximum temper-
ature (°C), V the 3-pm wind speed (km h−1) and H the 3-pm
relative humidity (%). The drought factor is an estimate of fuel
dryness (Griffiths 1999) and is computed using the Keetch-
Byram Drought Index (Keetch and Byram 1968) based on
total daily rainfall for the previous day. Daily FFDI was cal-
culated from the 12-member regional climate model ensem-
ble. The observed FFDI is calculated similarly, except that the
drought factor is based on daily rainfall through to 9 a.m. on
the day of calculation (Lucas 2010). This is not expected to
have a large impact on results.

2.4 Bias correction

Bias correction is a common tool used in interpreting and
reporting results from climate change studies (Ehret et al.
2012). However, it is typically applied to individual variables
for which there are high-quality, long-term, spatially exten-
sive observations i.e. temperature and precipitation. The

lack of appropriate data with which to bias correct relative
humidity and wind speed means that any bias correction of
FFDI will only be partial, with associated uncertainty in
the physical consistency of this composite index.
Nevertheless, partial bias correction of FFDI has been done
before with reasonable results (Fox-Hughes et al. 2014).
To meet stakeholder needs, the NARCliM project supplied
both raw and bias-corrected precipitation and temperature
datasets (Evans et al. 2014). Briefly, both quantities were
corrected based on the method of Piani et al. (2010), which
involves adjustment of the simulated daily precipitation
(temperature) cumulative probability density function
(CDF) towards the observed CDF as given by fitting gam-
ma (Gaussian) distributions. The observations used were
from the Bureau of Meteorology’s Australian Water
Availability Project (AWAP; Jones et al. 2009), which has
a 5-km resolution. The availability of bias-corrected data
allows an analysis of both uncorrected and partially bias-
corrected versions of FFDI.
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Fig. 2 Weather stations used to evaluate simulations



2.5 Analysis

The analysis is focused on ensemble measures of extreme,
mean and moderate FFDI and its underlying variables, both
annually and seasonally, and for NSW as a whole, as well as
individual SPRs. Extreme FFDI is represented by the number
of days over 50. Fires that break out under these conditions are
very difficult to control, with 90% of property loss frommajor
fires in Australia occurring during times when FFDI was
above 50 (Blanchi et al. 2010). Mean FFDI is represented
using annual cumulative FFDI (ΣFFDI; the sum of all daily
values in a year) and seasonal mean daily FFDI. Mean chang-
es in the variables from which FFDI is calculated are also
examined. FFDI values between 3 and 12 are used as a proxy
for the moderate conditions under which prescribed burning
takes place, based on current guidelines for dry sclerophyll
forests in NSW (NSW National Parks and Wildlife Service,
pers. comm.). Operational prescriptions tend to include a
range of variables and thresholds, depending on the fire agen-
cy, fuel type and local conditions. However, they all include a
measure of fire weather conditions and many include both

upper and lower bounds, reflecting the need to ensure that a
fire can start and spread but also be controlled. The prescribed
burning analysis is restricted to coastal SPRs, where dry
sclerophyll forests predominate and is calculated for all sea-
sons except summer. The statistical significance of projected
changes in seasonal mean FFDI, its underlying variables and
the number of prescribed burning windows is tested using a
two-sided t test (α = 0.05) for the difference of means assum-
ing equal variance. The test was repeated relaxing the assump-
tion of equal variance, and results were not substantially dif-
ferent. Very similar results were obtained using a Wilcoxon
rank-sum test, which does not assume normality of data.

2.6 Evaluation

Uncorrected and partially bias-corrected annual cumulative
FFDI, seasonal mean FFDI and days with FFDI over 50 are
evaluated against observations at 17 weather stations drawn from
a high-quality historical FFDI dataset (Fig. 2; Lucas 2010). The
nearest grid cell to each station is used.Model error is aggregated
across stations and ensemble members using mean error, error
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Fig. 3 Projected change in annual
cumulative FFDI. The 12-
member ensemble is derived from
four global climate models (rows)
and three regional climate models
(columns). Stipling indicates a
significant change



range and root mean square error (RMSE). As noted by Clarke et
al. (2013b), point data is not ideal for evaluating model output,
which is typically considered as representing area-averaged

rather than point processes (Osborn and Hulme 1998).
However, it is the best option available in the absence of long-
term grid-based FFDI observations.

Table 2 Projected change (lower and upper ensemble bounds) in FFDI and related variables by state planning region—annual

ΣFFDI Days FFDI > 50 Days 3 < FFDI < 12 Tmax (°C) DF RH (%) W (km h−1)

L U L U L U L U L U L U L U

NSW − 162 842 − 0.7 4.5 − 17 − 3 1.8 2.6 − 0.2 0.6 − 5.8 9.2 − 1.2 0.2

Far West − 144 1143 − 1.2 6.9 − 22 0 1.8 2.7 − 0.2 0.7 − 8.0 9.1 − 1.2 0.2

New England and North West − 220 741 − 0.6 2.5 − 16 7 1.9 2.7 − 0.2 0.7 − 6.3 15.1 − 1.1 − 0.1
Central West and Orana − 237 788 − 0.6 3.5 − 22 1 1.8 2.7 − 0.2 0.6 − 6.8 10.5 − 1.3 0.2

Murray Murrumbidgee − 118 866 − 0.4 4.3 − 18 0 1.6 2.5 − 0.1 0.7 − 5.1 8.0 − 1.4 0.3

ACT − 28 479 0.0 0.8 − 26 15 1.8 2.5 − 0.2 0.5 − 5.5 3.0 − 1.4 0.4

North Coast − 337 426 − 0.4 1.0 − 23 18 1.5 2.4 − 0.3 0.6 − 2.7 11.2 − 1.0 0.1

Hunter − 290 657 − 0.9 2.6 − 20 23 1.6 2.6 − 0.2 0.6 − 4.8 12.6 − 1.4 0.6

Central Coast − 336 428 − 0.7 1.8 − 24 23 1.4 2.5 − 0.2 0.5 − 3.4 9.3 − 1.2 0.5

Metropolitan Sydney − 334 517 − 0.7 2.0 − 23 24 1.6 2.5 − 0.2 0.6 − 3.7 8.9 − 1.5 0.4

Illawarra − 222 387 − 0.2 1.1 − 15 16 1.6 2.3 − 0.1 0.6 − 2.1 7.6 − 1.3 0.6

South East and Tablelands − 84 539 − 0.1 1.3 − 22 19 1.8 2.5 − 0.1 0.6 − 3.9 4.7 − 1.5 0.5
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Fig. 4 Projected change in days
with FFDI over 50. The 12-
member ensemble is derived from
four global climate models (rows)
and three regional climate models
(columns). Stipling indicates a
significant change



3 Results

Not all models in the 12-member ensemble agree on the di-
rection or magnitude of change in annual cumulative FFDI
under climate change (Fig. 3; Table 2). Simulations forced
by the CCCMA3.1 and MIROC3.2 GCM project either mod-
est decreases or relatively little change. Simulations forced by
CSIRO-MK3.0 and ECHAM5 almost uniformly project in-
creases. Across the entire ensemble, projected increases are
largest in inland SPRs. A similar pattern holds for days with
FFDI above 50, although in this case only MIROC3.2-forced
simulations show more decreases than increases (Fig. 4). For
mean and extreme FFDI, GCMs appear to exert greater influ-
ence over the magnitude of changes than RCMs.

Bar plots showing the ensemble range of projected change
in mean and extreme FFDI (Fig. 5) emphasize that increases
are not uniformly projected in any SPR, although the ACTand
Southeast and Tablelands come close. These plots also show
that increases are greater inland than on the coast, and greater
for extreme values than mean values. Of the four variables
underlying mean FFDI, only temperature is projected by all
ensemble members to increase (Fig. 5). Positive and negative
changes are projected for mean annual drought factor, relative
humidity and wind speed, with a modest amount of spatial
variation. For relative humidity and wind speed, the largest
projected changes tend to favour less fire danger, whereas the
largest projected changes to drought factor are increases,
which favour greater fire danger. The New England and
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Fig. 5 Projected change in annual
cumulative FFDI, days with FFDI
over 50 and drivers of FFDI by
state planning region. Lines
represent individual models.
Regions are NSW, Far West
(FW), New England and North
West (NE&NW), Central West
and Orana (CW&O), Murray
Murrumbidgee (MM), ACT,
North Coast (NC), Hunter (H),
Central Coast (CC), Metropolitan
Sydney (MS), Illawarra (I) and
South East and Tablelands
(SE&T)



North West SPR is the only region in which all 12 ensemble
members agree on the direction of change, in this case a de-
crease in mean annual wind speed.

There are strong seasonal patterns to the projected changes
in FFDI (Fig. 6; Table S1). Although positive and negative
changes are projected in all seasons, the greatest increases in
both mean and extreme FFDI are in spring and summer. The
greatest decreases in mean FFDI occur in autumn, whereas the
autumn and winter baseline levels of days with FFDI above 50
are too low to allow any substantial decrease under climate
change. The clearest climate change signal appears to be in
spring. Multiple ensemble members project significant chang-
es in FFDI, maximum temperature, drought factor and wind
speed in every SPR and for NSW as a whole (Table S2).

Further, all models projecting such changes agree on the di-
rection of change: positive for FFDI, temperature and drought
factor and negative for wind speed. Temperature is projected
to increase significantly in all SPRs and in all seasons. Results
are mixed for relative humidity in spring, with significant
decreases generally limited to central and southern coastal
areas and some significant increases in the coastal north.
Many significant changes are projected in winter, but there
is almost no model agreement on the direction of change,
except for increasing relative humidity in the North Coast
SPR and decreasing wind speed in several regions. In most
regions, only one or two models project a significant change
in autumn FFDI, usually negative. In contrast, while no more
than five ensemble members project a significant change in

520 H. Clarke, J. P. Evans

Fig. 6 Projected change in annual
cumulative FFDI, days with FFDI
over 50 and drivers of FFDI by
season in NSW. Lines represent
individual models



summer FFDI, the North Coast is the only region where this
change is not uniformly positive. Interestingly, these summer
changes appear to be driven largely by temperature; in only
one region (Central West and Orana), there is an agreement
betweenmultiple models in projecting a significant change (in
relative humidity) that would lead to a greater FFDI.

A seasonal analysis also reveals potential changes in the
distribution of prescribed burning days in coastal SPRs
(Fig. 7; Table S2). As with mean FFDI and its drivers, the
clearest climate change signal is in spring, with projected
changes ranging from − 10 to + 3. Out of 24 significant spring
changes across all simulations in coastal SPRs, only one is
positive (in the Hunter, where five ensemble members project
significant declines). No spring increases are projected in the

Central Coast and South East and Tablelands SPRs. In au-
tumn, projections span − 11 to + 10 burning days, but only
five significant changes in total are projected across all coastal
SPRs, with just one increase in Illawarra. Also similar to mean
daily FFDI and its drivers, there are many significant changes
in winter but little model agreement, with 38 significant
changes overall comprised of 20 increases and 18 decreases
and a model range of − 16 to + 22.

The full ensemble tends to underestimate both mean and
extreme FFDI on average, with the exception of simulations
forced by ECHAM5 (Table 3; Figs. 8 and 9). The absolute
error tends to be largest and negative in inland areas, where
baseline values of mean and extreme FFDI are high. For an-
nual cumulative FFDI, the model error range narrows and
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Fig. 7 Projected change in
prescribed burning days (3 <
FFDI < 12) in autumn, winter and
spring for coastal state planning
regions. Lines represent
individual models. Regions are
North Coast (NC), Hunter (H),
Central Coast (CC), Metropolitan
Sydney (MS), Illawarra (I) and
South East and Tablelands
(SE&T)



tends towards overestimates moving from inland to coastal
locations and from north to south. Two exceptions are
Broken Hill and Hay, which are known to have significant
data inhomogeneity issues (Lucas 2010). Overall, the ensem-
ble range spans the actual observation inmost cases. Grouping
evaluation results by GCM and RCM, the ECHAM5-R3 com-
bination stands out as having the smallest error on average.
Nevertheless, the diversity in performance is such that the
worst-performing ensembles are not worst at all stations, and
can actually be the best at a given station e.g. MIROC3.2-R1
has the highest mean error in simulating annual cumulative
FFDI but the lowest error for the Richmond station. Partial
bias correction does not systematically improve model perfor-
mance (Table 3). Rather, it tends to lead to an increase in mean
and extreme FFDI values. In some cases, this improves per-
formance, but in other cases it is degraded. It also leads to a
much greater spread of values in extreme FFDI (Fig. 9).
Model error bounds for corrected and uncorrected annual cu-
mulative FFDI and days with FFDI over 50 are in Table S3.

4 Discussion and conclusions

These findings reinforce previous studies showing the poten-
tial for major increases in fire danger in southeast Australia
under climate change, particularly in spring (Fox-Hughes et
al. 2014; CSIRO, Bureau of Meteorology 2015). The upper-
most ensemble values represent major increases in fire weath-
er—a doubling or worse in days over 50 each year and strong
increases in mean conditions out to 2070. Across all ensemble
members and all regions analyzed here, the most significant
changes and the biggest increases in fire weather conditions
are projected for spring, suggesting an intensification and/or
lengthening of the fire season, depending on when the current
peak fire season is. However, the lowermost ensemble values
represent little change overall in fire danger, including some
significant decreases outside the peak fire season in autumn

and winter. Based on the NARCliM ensemble, there is con-
siderable uncertainty over projected fire weather, in terms of
both magnitude and direction of change. Clarke et al. (2011)
also found regions of little change or decrease in fire weather
in eastern Australia. However, these were limited to northeast-
ern Australia, including the north of the present study area in
NSW, and to the middle rather than later part of the twenty-
first century. In contrast, the uncertainty in future fire weather
reported here extends to western NSWand the far southeast of
continental Australia.

Given that maximum temperature is uniformly projected to
increase across the entire study area, it alone cannot explain
the variation in FFDI projections. The NARCliM ensemble
intentionally includes GCMs projecting overall declines and
increases in rainfall over the study area, in order to span the
range of plausible climate futures. Drought factor is derived
largely from antecedent rainfall and is projected to decrease
significantly in the few instances where FFDI is projected to
decrease significantly. Likewise, changes in relative humidity
tend to correlate with the direction of change in FFDI. Wind
speed, in contrast, is frequently projected to decline, often
significantly. The strong increases in FFDI in spring appear
to occur in spite of these decreases in wind speed. Future
research should explore patterns in FFDI drivers coincident
with the most extreme values of FFDI, which will not neces-
sarily align with those at the centre of the distribution (Harris
et al. 2017).

The uncertainty in the future trajectory of mean and
extreme FFDI also applies to moderate values, used here
as a proxy for windows of opportunity for conducting
prescribed burning. These are currently conducted largely
in autumn and spring in NSW (NSW National Parks and
Wildlife Service 2012). Although there is wide uncertain-
ty over changes in the total days available each year for
such burning, there are seasonal patterns. The clearest of
these is in spring, with significant declines in the number
of suitable burning days projected in every region in

Table 3 Summary of uncorrected and partially bias-corrected model performance compared to observations

ΣFFDI Days FFDI over 50

Uncorrected Bias corrected Uncorrected Bias corrected

Error
range

Mean
error RMSE

Error
range

Mean
error RMSE

Error
range

Mean
error RMSE

Error
range

Mean
error RMSE

CCCMA3.1 3276 − 246 878 2811 − 229 720 20.1 − 2.0 4.7 20.1 − 1.8 4.3

CSIRO-MK3.0 3372 − 646 1039 3477 493 940 16.1 − 2.1 3.8 16.4 1.7 4.2

ECHAM5 2487 61 619 3107 961 1222 15.0 0.3 2.8 19.0 4.8 7.3

MIROC3.2 4308 − 944 1472 2852 502 830 17.1 − 2.1 4.2 17.8 3.0 5.3

R1 4333 − 656 1180 4733 292 867 22.7 − 1.5 4.0 31.6 1.9 5.4

R2 4124 − 242 944 4979 625 1079 23.4 − 1.1 3.7 32.5 2.6 6.1

R3 4608 − 447 1009 4841 378 880 22.9 − 1.8 4.1 31.9 1.2 4.8
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NSW. Only in two regions—New England and North
West and Hunter—are significant increases in spring
burning days projected, and even here there are many
more models projecting decreases than increases. There
is far less certainty in autumn, with very few significant
changes in suitable burning days projected. In some sce-
narios, spring declines are accompanied by a compensat-
ing increase in prescribed burning conditions in winter.
Any significant changes in the amount or timing of these
windows could have important implications for fire man-
agement and resource sharing across jurisdictions, partic-
ularly if they coincide with more severe weather condi-
tions during the peak fire season. More work is required

to understand climate change impacts on the precise me-
teorological conditions underpinning prescribed burning.

Evaluation of the NARCliM ensemble with respect to ob-
served fire weather shows a tendency to underestimate mean
and extreme values, particularly in the inland of the state. This
is consistent with previous evaluations of the WRF modelling
system over NSW, which found that errors in humidity and
wind speed were particularly influential in mean and extreme
FFDI values respectively (Clarke et al. 2013b). The ensemble
as a whole captures the overall magnitude and spatial gradient
in mean and extreme FFDI, with the ECHAM5 GCM in com-
bination with the R2 RCM having the lowest errors on aver-
age. However, model performance varies strongly by region
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Fig. 8 Model error in annual
cumulative FFDI and days with
FFDI over 50 by station. Lines
represent individual models



and measure, meaning the selection of a ‘best’ model will
depend on user priorities. In contrast to a previous
Tasmanian study (Fox-Hughes et al. 2014), our findings sug-
gest that partial bias correction of FFDI does not consistently
improve model performance and can lead to a much greater
spread in model projections, particularly for extreme values.
Until and unless suitable observational datasets are available
with which to bias correct relative humidity and wind speed,
and include inter-variable relationships, bias correction of
FFDI should proceed with caution. Given that the bias correc-
tion was done independent of and prior to this study, a rigor-
ous evaluation of this and other bias correction techniques
with respect to FFDI is a topic that merits further research.

Interestingly, recent efforts to undertake systematic bias cor-
rection of WRF fire weather simulations in Victoria show
promise and may be applicable to future climate projection
studies (Brown et al. 2016).

Overall, model selection on the basis of multiple criteria
leads to more informative projections with greater utility to
end users. Such ensembles allow an explicit exploration of
uncertainty in projections, highlighting regions and times of
agreement and suggesting targets for future research to narrow
uncertainty bounds. For example, uncertainty is greatest in win-
ter, where despite a majority of models projecting significant
changes in FFDI there is no agreement on the direction of
change. This is reversed in spring, with around half of the
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Fig. 9 Mean error in annual
cumulative FFDI and days with
FFDI over 50 across all stations
by ensemble member, for
uncorrected and partially bias-
corrected model output



models projecting significant increases in FFDI in all regions
and none projecting significant declines. In spring, there is also
model agreement where projected changes are significant for
drought factor (increase), prescribed burning days (decline)
and, in the other direction, wind speed (decline). Although the
number of models projecting significant changes in autumn is
small, there is agreement amongst these for drought factor (de-
crease), relative humidity (increase), wind speed (decrease) and
prescribed burning days (decline). Again, temperature increases
occur in all models and all seasons and are all statistically sig-
nificant. While NARCliM represented best practice at the time
of its design, ensemble design and interpretation remains an
active area of study, with recent developments including
Bayesian model averaging (Olson et al. 2016), ‘representative
democracies’ (Sanderson et al. 2015) and other weighting
schemes (Haughton et al. 2015).

Our results suggest that changes in fire weather in NSW by
the latter part of the twenty-first century are uncertain and
location and model-dependent. The high end of ensemble
projections represents substantial increases in severe fire
weather conditions combined with decreases in available pre-
scribed burning windows, particularly in spring. The lower
end represents little change or evenmodest decreases in severe
fire weather conditions and a potential increase in the amount
of suitable days for conducting prescribed burning. It may be
prudent for fire managers to understand their sensitivity to
both of these possibilities, which will be based in part on
how seasonal fire weather conditions currently influence fire
risk (Williamson et al. 2016). The impacts of projected chang-
es in fire weather conditions will depend on the relative im-
portance of weather as a limiting switch on overall fire inci-
dence (Bradstock 2010; Bedia et al. 2015). Broadly speaking,
coastal forested areas are more likely to respond to greater fire
weather conditions with more fire than inland areas, where
overall fire incidence is limited more by fuel amount than
weather. More comprehensive analyses therefore will need
to draw in climate change impacts on fuel load, over which
there remains much uncertainty (e.g. Clarke et al. 2016;
Collins et al. 2017), and other drivers of fire incidence.
Impacts of these projected fire weather changes will also be
contingent on the wide range of fire management activities
available to mitigate fire risk, such as prescribed burning and
suppression (e.g. Plucinski 2012; Price et al. 2015).
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