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Abstract
The response of two rainfed winter cereal yields (wheat and barley) to drought conditions in the Iberian Peninsula (IP) was
investigated for a long period (1986–2012). Drought hazard was evaluated based on the multiscalar Standardized Precipitation
Evapotranspiration Index (SPEI) and three remote sensing indices, namely the Vegetation Condition (VCI), the Temperature
Condition (TCI), and the Vegetation Health (VHI) Indices. A correlation analysis between the yield and the drought indicators
was conducted, and multiple linear regression (MLR) and artificial neural network (ANN) models were established to estimate
yield at the regional level. The correlation values suggested that yield reduces with moisture depletion (low values of VCI) during
early-spring and with too high temperatures (low values of TCI) close to the harvest time. Generally, all drought indicators
displayed greatest influence during the plant stages in which the crop is photosynthetically more active (spring and summer), rather
than the earlier moments of plants life cycle (autumn/winter). Our results suggested that SPEI is more relevant in the southern sector
of the IP, while remote sensing indices are rather good in estimating cereal yield in the northern sector of the IP. The strength of the
statistical relationships found by MLR and ANN methods is quite similar, with some improvements found by the ANN. A great
number of true positives (hits) of occurrence of yield-losses exhibiting hit rate (HR) values higher than 69% was obtained.

1 Introduction

Crop production is directly affected by the weather and cli-
matic conditions (Capa-Morocho et al. 2016a). In the
Mediterranean basin, natural vegetation in general and crop
production in particular has always been affected by large
natural climate variability (Grasso and Feola 2012; Páscoa
et al. 2017; Gouveia et al. 2017) and is expected to continue
to be affected in the future (Nguyen et al. 2016). Particularly,
seasonal changes in precipitation and temperature and their
seasonal variability affect crop production, especially in re-
gions where crops are highly dependent on precipitation
(Ruiz-Ramos and Mínguez 2010). As a consequence of
long-term influence of precipitation and temperature on crop
production, drought is a major cause of unexpected crop

failure (Wilhelmi and Wilhite 2002; Wu and Wilhite 2004;
Li et al. 2009; Di Falco et al. 2014; Lesk et al. 2016). In a
climate change context, one of the key aims in the agricultural
sector for the next few decades will be the mitigation of the
risk associatedwith drought-related crop losses (Li et al. 2009;
Ferrise et al. 2011; Capa-Morocho et al. 2016b).

A significant part of the Iberian Peninsula (IP) countries’
economies and landscape is linked to agriculture. In 2014, the
IP had more than 26 million hectares of harvested area, and
about 2% of each IP countries’ gross domestic product (GDP)
came from the agriculture sector (FAO 2015). Among agricul-
tural crops, winter cereals such as wheat and barley are two
major world crop productions (FAO 2014) particularly signif-
icant in the Mediterranean regions, and the growing of these
cereals under rainfed conditions is dominant in the IP coun-
tries (Austin et al. 1998; Vicente-Serrano et al. 2006).

Presently, the increase of the frequency of occurrence of
drought events in the IP (Vicente-Serrano et al. 2014; Páscoa
et al. 2017) and the close relationship between cereal yield and
drought conditions in the Iberian territory is pointed out by
several authors (Vicente-Serrano et al. 2006; Iglesias and
Quiroga 2007; Páscoa et al. 2017). Austin et al. (1998) have
shown a strong dependence of wheat and barley on seasonal
rainfall in Spain, and the response of winter cereals in IP to the
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widely used precipitation-based Standard Precipitation Index
(SPI) have also been demonstrated in several works (Vicente-
Serrano et al. 2006; Iglesias and Quiroga 2007; Hernández-
Barrera and Rodríguez-Puebla 2017). Moreover, and aside from
rainfall variability, drought severity in southwestern Europe is
being reinforced by enhanced evaporative demand due to an
increased temperature scenario (Trigo et al. 2013; Vicente-
Serrano et al. 2014). Hernández-Barrera and Rodríguez-
Puebla (2017) have found wheat yields to be declining in
Spain due to warming climate conditions, and according to
Ferrero et al. (2014), maize yield in Spain using rainfed systems
may be at risk as heat waves will increase in intensity, frequency
and duration. Consequently, under the scope of climate change,
a sustainable agricultural management of rainfed crops requires
reliable estimations of the drought impacts using diverse
drought indicators at various spatial and temporal scales.

To include the effect of evapotranspiration on drought
monitoring, the Standardized Precipitation Evaporation
Index (SPEI) was proposed (Vicente-Serrano et al. 2010)
and is now widely used (Vicente-Serrano et al. 2014;
Gouveia et al. 2017; Zampieri et al. 2017). In the IP, rainfed
cereal yield have shown significant correlations with SPEI
varying with several factors, such as month and time scale
of the dry episode (Páscoa et al. 2017). Atmospheric patterns,
such as the North Atlantic Oscillation (NAO) have also shown
significant relationships with wheat yield in the IP (Gouveia
and Trigo 2008; Capa-Morocho et al. 2016a).

In addition to the hydro-meteorological influence, the re-
cent advances of remote sensing have strongly contributed to
the agricultural sector (Rojas et al. 2011; Kogan et al. 2015a;
Van Hoolst et al. 2016). The widely used Normalized
Difference Vegetation Index (NDVI) was reported to be
strongly correlated to the winter wheat yield over the southern
part of Portugal (Alentejo) (Gouveia and Trigo 2008) and
north of Spain (Ebro valley) (Vicente-Serrano et al. 2006).
Moreover, remote sensing indices based on NDVI and
Brightness Temperature (BT) have also been successfully
considered by several authors for modelling agricultural pro-
ductivity (Dalezios et al. 2014; Kogan et al. 2015a, b;
Bokusheva et al. 2016), including the Vegetation Health
Index (VHI) (Kogan 1995), the Vegetation Condition Index
(VCI) (Kogan 1990) and the Temperature Condition Index
(TCI) (Kogan 1995).

An important step towards developing strategies to miti-
gate agricultural drought risk is the establishment of models
for estimating crop yield under drought influence (Vicente-
Serrano et al. 2006; Mishra et al. 2015; Kogan et al. 2015a).
In mechanistic modelling, crop yield is estimated by equations
describing the relationships between complex biophysical var-
iables and crop growth, requiring a high degree of input data
(Paredes et al. 2014; Giménez et al. 2016; Paredes et al. 2016).
On the other hand, empirical modelling makes use of statisti-
cal relationships between yield data and predictor variables,

representing rather well larger scale impacts of drought con-
ditions (Vicente-Serrano et al. 2006; Matsumura et al. 2015;
Kogan et al. 2015a). Despite the lack of detailed representa-
tion of crop’s biophysical interactions, empirical modelling is
computationally easier and have lower computation costs than
mechanistic modelling, and the results are considered good
(Ferrise et al. 2011; Estes et al. 2013). Results found by
Ferrise et al. (2011) suggested a high level of correspondence
between a mechanistic model of durum wheat in the
Mediterranean with empirical model’s results. The authors
successfully used artificial neural network (ANN) models to
reproduce the results of a wheat yield mechanistic model out-
put by using mean spring temperature and precipitation
(Ferrise et al. 2011).

The applications of ANN have been increasing in the re-
cent past for modelling and prediction on environmental stud-
ies (Morid et al. 2007; Russo et al. 2013; Le et al. 2017) and
have proved to add significant improvements to traditional
statistical modelling, such as Multiple Linear Regression
(MLR) models, namely in the case of crop yield modelling
(Jiang et al. 2004; Matsumura et al. 2015).

The purpose of the current work is to model, through the
application of MLR and ANN techniques, the influence of
drought conditions in rainfed winter cereal yields (wheat and
barley) over the major agricultural areas in the IP, examining
the potential of combining remote sensing indices (VCI, TCI
and VHI) with a multiscalar drought indicator (SPEI). The
results presented in this paper constitute a first step towards
the development of an agricultural drought risk model for IP
and may contribute to assist final users and insurance compa-
nies with some guidance on decision making process.

2 Data and methods

2.1 Rainfed cereal yields and land cover in Iberia

Agricultural drought especially affects the growing of crops
under rainfed conditions (Páscoa et al. 2017) making data on
agricultural land use and harvested yields key factors in agri-
cultural drought risk reduction. Hence, maps of land cover
information and data on two major rainfed crops in the IP
(wheat and barley) were analysed over the Iberian territory.
In IP, the precipitation regime is marked by a strong variability
(Martin-Vide and Lopez-Bustins 2006; Muñoz-Díaz and
Rodrigo 2006; Martins et al. 2012); hence, there is a high
probability of occurrence of droughts and the agricultural ac-
tivities are particularly prone to its effects. The highly variable
precipitation regime in space and time over the IP is strongly
associated with the geographic diversity of the peninsula, like
the orography, and the influence of diverse circulation weather
patterns (Cortesi et al. 2014). The spatial patterns of rainfall in
the IP exhibit strong gradients, with higher values in the
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northwestern sector and lower values in the southeastern sec-
tor, and most of the precipitation is concentrated between
October and May (Belo-Pereira et al. 2011). In addition to
the lack of rain, drier conditions in the summer are enhanced
by high temperatures during the summer in the IP (Vicente-
Serrano et al. 2014). The spatial heterogeneity of vegetation
dynamics in the IP is pronounced, with predominance of the
vegetation classes with the maximum of vegetation greenness
in spring (Gouveia et al. 2017). According to the classification
by Gouveia et al. (2017), the spatial distribution of vegetation
clusters exhibits a northwestern-southeastern gradient:
Temperate Oceanic–Mediterranean Oceanic–Mediterranean
dry. The vegetation behaviour in the IP ecosystems is mainly
driven by the precipitation regimes (Gouveia et al. 2008),
being expressed in the vegetative cycle of the winter crops:
sowing usually occurs between October and November and
the harvest occurs during June and July of the following year
(Gouveia and Trigo 2008; Capa-Morocho et al. 2016a).

Annual production (tons, t) and total area (ha) of barley and
wheat crops were obtained from the Portuguese National
Statistics Institute (INE) and the Spanish Agriculture, Food
and Environment Ministry, for the regions of Portugal and
the provinces of Spain, respectively. Annual crop yield time-
series were calculated as the ratio between the collected crop’s
production and harvested area during the period of 1986–2012
(Páscoa et al. 2017). The year 1986 corresponds to the year
when the crop yield time-series in Portugal started to be ag-
gregated at the regional (and not only at district level as until
1985) level, as they are available in Spain, and therefore con-
sidered as the beginning of the analysis (Páscoa et al. 2017).
The crop yield anomalies were computed by removing the
crop yield time series linear trend, in order to exclude non-
climatic factors (Gouveia and Trigo 2008; Páscoa et al. 2017).

The pixels corresponding to rainfed cereal crop areas were
identified considering the non-irrigated arable land classifica-
tion from the more recent CORINE Land Cover map (CLC
2012) which is a standard procedure (e.g. Vicente-Serrano
et al. 2006; Gouveia et al. 2011; Atzberger et al. 2014;
Blauhut et al. 2016; Gouveia et al. 2016). As not all provinces
are strongly dominated by agricultural practices, a selection of
the major rainfed agricultural areas in the IP is required. The
provincial clusters selected for the present analysis have been
determined according to three criteria: (1) the provincial land
use is dominated by agricultural practices, i.e. more than half
of the pixels at each province correspond to agricultural areas;
(2) the agricultural areas are dominated by rainfed crops, i.e.
more than half of the agricultural areas correspond to non-
irrigated arable land; (3) the provinces are contiguous and
non-isolated. Selecting provincial clusters provides the advan-
tage of estimating a short number of models for a larger num-
ber of provinces. In this way, we intend to estimate the best
model for each cereal over each cluster, applicable to more
than one province.

2.2 Remote sensing and multiscalar indices

With the aim of evaluating the response of the rainfed winter
cereal yields (wheat and barley) to the regional drought con-
ditions, drought hazard was evaluated based on the multiscalar
drought index SPEI and the remote sensing indices VCI, TCI,
and VHI. The potential of modelling cereal crop in the IP
based on these drought indicators, considering different com-
binations of the possible predictors (as will be described later),
is one of the goals of the present study.

The above mentioned remote sensing indices are based on
NDVI and BT, given that green vegetation reflects visible and
emits thermal solar radiation. The VCI and TCI are mathemat-
ically expressed by weekly NDVI and BT values, respective-
ly, relative to their minimum and maximum limits and further
normalised relative to their amplitude interval (Eqs. 1 and 2).
Mathematical expressions of VCI and TCI were first intro-
duced by Kogan (1990 and 1995), respectively, where a de-
tailed description of the indices calculation was provided. The
VCI and TCI characterise the moisture and thermal conditions
of vegetation, respectively, and the VHI (Eq. 3) is assumed as
an average of the two in order to consider their combined
effect on vegetation health (Kogan 1997).

VCI ¼ 100� NDVI−NDVImin
NDVImax−NDVImin

ð1Þ

TCI ¼ 100� BTmax−BT
BTmax−BTmin

ð2Þ

VHI ¼ VCI þ TCI
2

� �
ð3Þ

The values of VCI, TCI, and VHI vary from 0 to 100, and
index values below 40 are indicative of drought conditions
(Kogan 2001). The reason for employing these remote sensing
indices in the present study, instead of the popular NDVI, is
the inclusion of the thermal component (BT) and their ability
to consider ecosystem changes in terms of fluctuations be-
tween the maximum and minimum values of NDVI and BT.
Accordingly with their definition (Kogan 1997), low values of
VCI indicate vegetation stress due to lack of water content and
low TCI values correspond to vegetation stress due to high
temperatures.

The weekly global maps of VCI, TCI, and VHI were re-
trieved at 4 km spatial resolution from NOAA’s ftp server
(ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/
VHP_4km/geo_TIFF/), during 1985–2012. The reason of the
inclusion of weekly data for 1985 is because the plant life
cycle of the cereals harvested in 1986 starts in the autumn/
winter of the year before, in this case 1985. Missing week
values were substituted by the climatological value of each
week, and the analysis was performed between the week 35
(approximately the beginning of September of the year n – 1)
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and 25 (approximately the end of June of the year n), com-
prising the major crop life cycle moments: pre-sowing and
sowing (autumn/winter), vegetative phase (winter/early
spring), reproductive phase (middle of spring), stage of for-
mation and maturation of the grain (end of spring), and begin-
ning of crop harvest (early summer). The spatial averages of
VCI, TCI, and VHI were computed for each provincial cluster
and used for further cereal yield modelling.

One of the aims of the present study is to discuss the utility
of the remote sensing indices for cereal yield modelling,
assessing the relative contribution of the moisture and thermal
term and the further combination with the additional informa-
tion of the drought index SPEI. Thus, the monthly drought
index SPEI gridded values, with spatial resolution of 0.5°,
were computed based on precipitation and temperature values
from the Climate Research Unit (CRU TS3.21). The SPEI
computation uses the monthly difference between precipita-
tion (P) and potential evapotranspiration (PET) as shown in
Eq. 4, where D provides a simple measure of the water deficit
for the analysed month at different time-scales.

D ¼ P−PET ð4Þ

A log-logistic distribution was used, as suggested by
Vicente-Serrano et al. (2010), and the Hargreaves method
was considered for the estimation of the reference evapotrans-
piration (Beguería et al. 2014). A discussion of several com-
puting options for the use of SPEI is provided by Beguería
et al. (2014). The spatial averages of SPEI at the time-scales
1–12 months were computed for each provincial cluster from
January to June. The use of a variety of time-scales (1–
12 months) incorporates the memory of the respective past
months, which does not happen with remote sensing indices,
and for this reason the SPEI data considered for the analysis
covers approximately the period between the crop growth
vegetative phase to the harvest (January to June). In other
words, the SPEI period in analysis does not include the typical
months of pre-sowing and sowing because their drought con-
ditions are intrinsically considered in the medium and longer
time-scales of the SPEI intervals (4 to 12 months).

2.3 Linear correlation analysis

Having identified the cluster of provinces more exposed to
agricultural drought, a correlation analysis is conducted to
assess the linear relationships between the winter cereal yields
and the drought indicators (remote sensing and multiscalar
indices) in terms of the Pearson correlation coefficient (R)
(Wilks 2006). Statistical significant evidence is assessed with
a 95% significance level.

The moments of the vegetative cycle of the highest crop’s
requirements to moisture and thermal conditions are assessed
in terms of VCI and TCI, respectively. The relationships

between the cereal yield and the VHI indicate the impacts of
the combined effect of water and heat stress during the crop
growth cycle. In addition, the winter cereal yield response to
each time scale of drought occurrence is assessed based on the
multiscalar drought index SPEI during the development stages
of the cereals.

2.4 Selection of significant predictors and their
possible combinations

The range of predictors encompasses three remote sensing
indices (43-week intervals for each) and one multiscalar
drought index (6months (January to June) by 12 time-scales =
72 SPEI intervals) for each of the provincial clusters. The
time scales and months of SPEI, together with the weeks of
VHI, VCI, and TCI better related with wheat and barley yield
were chosen based on a stepwise regression (95% confidence
level). The stepwise regression algorithm carries out an ex-
haustive search and generates a subset of predictors which
together have the largest contribution to the variability of each
cereal yield in each provincial cluster (predictands). For each
provincial cluster and each winter cereal (wheat and barley),
stepwise regression models are performed based on the mois-
ture and thermal components (VCI and TCI) separately from
models based on the VHI, to avoid collinearity since VHI is a
combination of both VCI and TCI. Subsequently, stepwise
regression models combining SPEI with the remote sensing
indices (VCI + TCI + SPEI and VHI + SPEI) are performed to
evaluate the relative contribution of the remote sensing indices
and the further combination with the multiscalar index for the
simulation of the variability of winter cereal yield.

2.5 Cereal yield estimation models

After the selection of the significant predictors, the
standardisation of both dependent and independent variables
is performed by computing the z scores for further statistical
modelling (Wilks 2006). Multiple linear regression (MLR) and
artificial neural network (ANN) techniques are applied for
modelling the wheat and barley yields at the provincial clusters.
The reason for the application of a non-linear methodology in
addition to the classical MLR models is to discuss the use of
alternative promising tools, such as the ANN (Morid et al.
2007; Russo et al. 2015), to simulate the complexity of the
non-linear character of the agricultural systems under drought
conditions (Jiang et al. 2004; Matsumura et al. 2015).

InMLR, the functional relationship between the predictand
(cereal yield) and the predictors (previously statistically select-
ed) can be described bymeans of the intercept and the slope of
the regression line, usually called regression coefficients. The
regression coefficients are estimated byminimising the sum of
the squared differences between the observations of cereal
yield and the regression line (Wilks 2006).
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ANN are mathematical models inspired by the behaviour
of the human nervous system, composed by several layers and
respective neurons. In this study, a simple three-layer structure
was adopted with one input layer, one hidden layer and one
output layer. The input variables corresponding to the statisti-
cally significant predictors are forced by the weight and bias,
which alter the initial information at the neurons, and then
pass the combined information to the next layer and conse-
quently reach the output value of the simulated cereal yield
(target). The ANN training that updates the weights and bias
on each cycle was here performed according to the
Levenberg-Marquardt backpropagation method and consider-
ing the same statistical significant predictors (input variables)
as the MLR models. Different architectures were examined in
which different number of neurons in the hidden layers be-
tween 1 and 4 were considered. In order to compare the dif-
ferent architectures a fixed seed was considered for the initial
random weights. The use of a second hidden layer was tested
but it was found to be redundant. The number of neurons in
the input layer corresponds to the number of selected predic-
tors for each target (wheat and barley yield at cluster 1 and 2).
For the single node in the output layer a linear transfer func-
tion was considered, and for each hidden neuron a log-
sigmoid function was considered to account for the non-
linear behaviour.

The MLR and ANN model’s performance is assessed in
terms of leave-one-out cross-validation, obtaining unbiased
estimations by avoiding overfitting associated to the models,
which occurs when the same data is used for the fit and for the
performance assessment. The leave-one-out cross-validation
assesses how well the model performs by successively using a
small set of observations from the original sample for valida-
tion, and the remaining observations as the training data. In
other words, in the present work, one observation is succes-
sively removed from the total sample for the model’s fit (train-
ing data), and the left-out observation is used for validation
(validation data). This procedure ensures that every data is
used for training and validation independently, since the
model’s performance is assessed on independent data not con-
sidered on the fit. This approach is commonly used and ap-
propriate for cases which have a low number of samples
(Wilks 2006), as is the present study. To support the robust-
ness of the leave-one-out cross-validation scheme, the results
of explained variance in terms of adjusted coefficient of deter-
mination (R2

adj) are analysed with and without cross-
validation mode (R2

adj_no_cv). The adjusted R2
adj is an unbi-

ased R2 considering the finite sample and the number of pre-
dictors used as input for the MLR and ANN models. Other
widely used accuracymeasures are also considered to evaluate
the performance of the linear and non-linear methods, such as
the root mean squared error (RMSE) and the skill score based
on the RMSE (SSRMSE, Eq. 5). The total deviance of simulat-
ed values from observed values is assessed in terms of the

RMSE, and the SSRMSE (Eq. 5) is used in this paper consid-
ering persistence (the previous year yield value) as a reference
model.

SSRMSE ¼ 1−

1

N
∑N

i¼1 ŷ−yið Þ2
1

N
∑N

i¼1 yiþ1−yi
� �2 � 100 ð5Þ

Having statistically modelled the standardised anomalies of
wheat and barley yields at the regional level by MLR and
ANN techniques, the potential of the modelled cereal data
for prediction of crop losses is assessed. Here, crop yield loss
is defined as values of standardised yield anomaly below zero,
indicating the years when harvested cereal crops are below the
mean value. TheMLR andANNmodel’s performance regard-
ing the loss of crop yield (yield anomaly < 0) is assessed in
terms of contingency tables and the associated categorical
scores (Wilks 2006): frequency bias (FB), success ratio
(SR), hit rate (HR), and false alarm rate (FAR). The score
FB describes the ratio of the estimated and observed events
and measures the ability of the models to underestimate (FB <
1) or overestimate (FB > 1) the occurrences of crop-loss. For
example, models with FB > 1 indicate that occurrences of
crop-loss were modelled more often than they occur and
FB = 1 indicates that the model is unbiased. The score SR
describes the ratio between the hits and the estimated events
and gives information about the likelihood of a crop loss,
given that it was predicted by the model. The HR and FAR
scores correspond respectively to the rate of correct forecast of
crop loss (proportion of occurrences which are hits) and the
rate of wrong forecast of crop loss (proportion of non-
occurrences which are false alarms).

3 Results

3.1 Cereals and drought indicators during low yield
years

Two clusters of provinces dominated by rainfed agricultural
practices are identified (Fig. 1), according to the criteria de-
scribed in Section 2.1. Both clusters are in Spain, approxi-
mately in the regions of Castilla-Léon and Castilla-La
Mancha. The northern provincial cluster (Cluster 1) includes
5 provinces (Zamora, Valladolid, Palencia, Segovia, and
Burgos) and the southern provincial cluster (Cluster 2) in-
cludes 4 provinces (Toledo, Cuenca, Ciudad Real, and
Albacete). Figure 2 shows the spatial averages of wheat and
barley yield from 1986 to 2012, computed for each provincial
cluster. The corresponding trends and detrended time-series
(yield anomalies) are also illustrated. The temporal evolution
of the yield anomalies shows low values (i.e. below the 25th
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percentile) during drought episodes over the IP, particularly
during the events which took place during 1992, 1995, and
2005 (years associated with low yield at both clusters and
cereals). Figure 2 shows that the more recent events of 1995
and 2005 experienced yield anomalies more negative in the
southern sector of the IP (cluster 2—Fig. 2 bottom panel),
while the year of 1992 exhibited yield anomalies more nega-
tive in the northern sector (cluster 1—Fig. 2 top panel).

Overall, the temporal evolution of wheat and barley yield
anomalies is similar at both provincial clusters, although the
respective productions and total crop areas are quite distinct at
the province level (not shown).

Figures 3 and 4 show drought severity during the individual
low yield years of 1992, 1995, and 2005, based on the spatially
distributed averaged values over each cluster of the remote sens-
ing indices (VCI, TCI and VHI, Fig. 3) and the SPEI (Fig. 4).
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Fig. 1 Selected clusters of
provinces correspondent to the
agricultural drought prone areas.
Cluster 1 provinces: Burgos (1),
Palencia (2), Segovia (3),
Valladolid (4), and Zamora (5).
Cluster 2 provinces: Albacete (6),
Ciudad Real (7), Cuenca (8), and
Toledo (9)

Fig. 2 Wheat and barley yields
(grey line), trends (dashed line
and respective equation),
anomalies (black line) and 25th
percentile of yield anomalies
(dotted line) during the period
1986–2012 over the two selected
provincial clusters. The common
years associated with low yield
anomalies (i.e. below the 25th
percentile) are denoted by a circle:
1992, 1995 and 2005



Figure 3 shows the weekly values of VCI, TCI, and VHI from
the week 35 (year n—1) to week 25 (year n), corresponding
approximately to the period between the sowing and harvesting
of the winter cereals, i.e. between September of previous year to
June of harvest year. According to the remote sensing indices
(Fig. 3), there is little or no evidence of drought conditions
(values below 40) during the first growth stages (until
January) for both clusters during the 3 considered years, partic-
ularly featuring cold autumn/winter weeks based on the high
values of TCI (low values of BT) during 1992. Similar values
of TCI are found in 2005 during intermediate growth stages of
the cereal life cycle (week 11), indicating a spring with low
temperatures. On the other hand, in 1995 during the intermedi-
ate and final growth stages (more evident in cluster 1), the VCI
values are indicative of favourable moisture conditions (NDVI
increase), in contrast with hotter conditions found by low values
of TCI (BT increase). Nevertheless, there is almost no evidence
of drought based on VHI, during 1995 and 2005 in cluster 1
(except June). The highest number of drought weeks recorded
by the VHI (also coincident with low values of VCI and TCI)
are found in cluster 1 during 1992, and in cluster 2 during 1995
and 2005.While the onset of drought conditions in 1992 (cluster
1) is experienced during vegetative growth stages (winter), 1995
and 2005 (cluster 2) show less favourable conditions slightly

later. This feature is in accordance with the regions of Iberia that
were more affected by drought in 2005 which was more intense
in southern Iberia (Gouveia et al. 2012).

Figure 4 shows the monthly values of the SPEI at the dif-
ferent time-scales (1–12 months) between January and June,
corresponding approximately to the period between the vege-
tative growth stage and harvesting. In 1992, the overall pattern
shows values of SPEI indicating drought or near normal con-
ditions, namely for the first months of the year and for longer
times scales. On the other hand, spring months do not present
a marked pattern, showing a tendency to wet conditions, in
particular in June for cluster 2. This feature may be associated
with the non-drought conditions based on TCI and VHI (low
temperatures and favourable vegetation conditions), in con-
trast with drought conditions displayed by the VCI (moisture
stress) (see Fig. 3 top panels). This finding suggests that de-
spite the presence of favourable conditions according to SPEI,
TCI, and VHI, the greenness of vegetation was shallow (low
values of VCI) during the final growth stages. Moreover, clus-
ter 1 does not show a clear pattern of drought conditions in
1995 and 2005. In fact, during these years the drought, as
obtained by SPEI, is evident only in April (June) during
1995 (2005). On the other hand, extreme drought conditions,
accordingly to SPEI, were observed in 1995 and 2005 over
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Fig. 3 Weekly values of spatial
averages of VCI (Vegetation
Condition Index), TCI
(Temperature Condition Index)
and VHI (Vegetation Health
Index) between the week 35
(beginning of September of the
year n-1) and 25 (end of June of
the year n), during the low yield
years of 1992 (top panel), 1995
(middle panel) and 2005 (middle
panel) at the cluster 1 (left) and
cluster 2 (right). Values below 40
indicate drought conditions



cluster 2, being stronger in May (June) during 1995 (2005).
These results are also in accordance with the ones obtained
using the vegetation indices (Fig. 3).

In general, a good agreement is found between the higher
values of negative yield anomalies (Fig. 2) and the drought-
affected weeks according to the remote sensing indices and
the months of SPEI (Figs. 3 and 4). In 1992, detrended yield
time-series display higher negative anomalies in cluster 1 rath-
er than in cluster 2 (Fig. 2), in accordancewith drier conditions
suggested by the remote sensing indices and SPEI in cluster 1
as well (Figs. 3 and 4). Similarly, 1995 and 2005 display more
pronounced negative anomalies of yield (Fig. 2) and drier

conditions (Figs. 3 and 4) in cluster 2. In conclusion, negative
yield anomalies followed by dry conditions in 1992 were
more pronounced in the northern sector of the IP (cluster 1),
while the same conditions in 1995 and 2005 were more pro-
nounced in the southern sector (cluster 2).

3.2 Relationships between cereal yield and drought
indicators

To investigate the strength of the relationship between the winter
cereals crop yield and the remote sensing indices, and to identify
the moments of the vegetative cycle of the highest crop’s
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Fig. 4 Monthly values of spatial
averages of SPEI at time scales
from 1 to 12 months (y axis)
between January and June during
1992 (top panel), 1995 (middle
panel) and 2005 (bottom panel) at
the cluster 1 (left) and cluster 2
(right). Values between 1 and − 1
correspond to near normal condi-
tions, and values below − 1 and
above 1 indicate dryness and
wetness, respectively



requirements to moisture (VCI) and thermal conditions (TCI), a
correlation analysis was performed (Fig. 5). Figure 5 shows the
correlation coefficients between the winter cereals yield (barley
and wheat) and the remote sensing indices over the two agricul-
tural provincial clusters from week 35 to week 25. Generally,
VCI, TCI, and VHI display low correlations during the first
growth stages of both rainfed cereal (during autumn and begin
of winter) and a sharp increase from the intermediate growth
stages to the harvest time over both provincial clusters. This
feature is consistent with Fig. 3, which shows no evidences of
drought conditions until further growth stages during the low
yield years (1992, 1995, and 2005) according to the VCI, TCI,
and VHI. In the same way, correlation values suggest that the
greatest influence of the remote sensing indices is observed dur-
ing the spring and summer months, corresponding to the mo-
ments in which the vegetation is photosynthetically more active.

Moreover, between the late winter and the early summer,
VHI and VCI correlation values are statistically significant,
whereas TCI significant correlations are found between early
spring and early summer. This aspect points out that while

water stress (VCI) on vegetation exhibits stronger correlations
during early-spring (late February and early March approxi-
mately), heat stress (TCI) shows stronger correlations slightly
afterwards during the latter growth stages (from the 14th week
(April) onwards). In other words, Fig. 5 suggests that crop
yield decline is associated with moisture depletion on vegeta-
tion (lowVCI) during early-spring and with high temperatures
(low TCI) close to the harvest time. The correlations obtained
with the VHI are generally stronger than with the VCI and
TCI and exhibit a peak during late-spring with potential im-
pacts on the maturation of both wheat and barley grains. The
temporal evolution of the correlation values is very similar in
both cereals throughout the crop life cycle, with some barley
correlation values slightly stronger in cluster 2.

The crop response to each SPEI time-scale (1 to 12 months)
was evaluated for each cereal at each cluster, approximately
from the vegetative phase to the harvesting moment (January
to June). The results are illustrated in Fig. 6 for the 1-, 3-, 6-, 9-,
and 12-month time-scales, representative of the shorter (1 and
3), medium (6) and longer time-scales (9 and 12). Similarly to
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Fig. 5 Correlations between the
weekly values of VCI (Vegetation
Condition Index), TCI
(Temperature Condition Index),
VHI (Vegetation Health Index),
and the wheat yield (full line) and
the barley yield (dashed line) in
cluster 1 (left) and cluster 2
(right), between 1986 and 2012.
The significant correlations at
95% level of confidence are
marked with a dot over the line



Fig. 5, SPEI displays lower correlations during the vegetative
growth stages of both rainfed cereals, over the two provincial
clusters (Fig. 6). As a matter of fact, the SPEI exerts major
influence during the springer months (April to June), particu-
larly at the shorter time-scales (1 and 3-months), corresponding
to intermediate and final growth stages. May exhibits the stron-
gest correlations in all cases. At the time-scales of 6, 9, and
12 months, the correlation values during the winter are more

pronounced than for the shorter time-scales (1 and 3 months),
and the difference between the different seasons is not so evi-
dent. In cluster 2, the correlation values of SPEI with 6- and 9-
month time-scales are statistically significant during the whole
growth cycle, while in the other cases most of the statistical
significance is found during intermediate growth stages
(spring). At all time-scales, the number of statistically signifi-
cant correlations is higher in cluster 2 (southern sector) rather
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Fig. 6 Correlations between
average SPEI and wheat yield
(full line) and barley yield
(dashed line) in cluster 1 (left) and
cluster 2 (right), between January
and June of 1986–2012. The re-
sults are illustrated for 1, 3, 6, 9
and 12-month time-scales, repre-
sentative of the shorter, medium
and longer time-scales. The sig-
nificant correlations at 95% level
of confidence are marked with a
circle



than in cluster 1 (northern sector). Moreover, the impact of
SPEI on cereal yield in cluster 2 is registered earlier than on
cluster 1, considering all the temporal scales.

In general, the correlations in cluster 1 during spring in Fig.
5 reach stronger values than in Fig. 6, suggesting stronger re-
lationships between remote sensing indices and cereal yield in
the northern sector, rather than SPEI. On the other hand, cluster
2 exhibits more months with statistically significant correla-
tions in Fig. 6 (particularly at 6- and 9-month time-scales) than
in Fig. 5, suggesting stronger relationships between SPEI and
cereal yield in the southern sector (cluster 2).

3.3 Statistical significant predictors/inputs

The correlation analysis between yield and the drought indica-
tors pointed out significant temporal differences of the drought
impact, and pointed to different moments of the vegetative
cycle when the crops are more vulnerable to drought conditions
(Figs. 5 and 6). Therefore, the redundant information should be
removed to find the time scales and months of SPEI, together
with the weeks of VHI, VCI, and TCI most suitable to accu-
rately estimate the cereal yield. The statistical significant pre-
dictors were chosen based on stepwise regression (95% confi-
dence level). Table 1 shows the selected predictors for each of
the 4 combinations of predictors, resulting on 11 different sub-
sets of input variables for the MLR and ANN models.

Each resulting model nomenclature (Table 1) refers to
the target cereal species (letter BW^ for wheat and letter
BB^ for barley), the respective provincial cluster (clusters
1 and 2), and the possible combination of predictors
(VCI and TCI—Ba^; VHI—Bb^; VCI, TCI, and SPEI—
Bc^; VHI and SPEI—Bd^). For example, the model W1a
refers to the wheat yield at cluster 1, based on the sta-
tistically significant weeks of VCI and TCI, and model
W2c refers to the wheat yield at cluster 2, based on the
statistically significant time scales and months of SPEI in
addition to the better related weeks of VCI and TCI.

In accordance with the correlation analysis in Fig. 6, the
results from the stepwise regression (Table 1) indicate that the
inclusion of the drought index SPEI in the pool of possible
predictors is only significant in the cluster 2 for both cereals.
In the case of the cluster 1, the predictor selection chooses the
same variables for the pair of models Ba^ and Bc,^ and the
same for Bb^ and Bd.^ In other words, the inclusion of SPEI
information is redundant in cluster 1. In consequence, only
models based on VCI and TCI together (W1a and B1a based
on late spring weeks 18, 20, 21, 23) and VHI (W1b and B1b
based on mid-winter and late-spring weeks 50, 1 and 22) are
performed in cluster 1. The SPEI of February, April, May, and
June display significant influence at cluster 2, when SPEI is
included in the predictors’ pools. In fact, in models W2c and
B2d the remote sensing indices weeks are removed by the

stepwise regression, remaining only SPEI information to esti-
mate the cereal yields.

The selected remote sensing indices weeks suggest a predic-
tive power based on the autumn/early-winter period and mid-
spring/early-summer weeks (Table 1). Between the week 18
(~mid-April) and 25 (~mid-June) 10 predictors (remote sensing
indices) are selected, and between the week 35 (~early-
September) and 1 (early-January) 9 predictors are selected.
Between January and mid-spring only the SPEI of February
with 5-months’ time-scale is selected as a predictor. In compar-
ison with cluster 1, the predictor selection in cluster 2 selects a
larger number of winter and late autumn variables, particularly
in the case of barley (Table 1). The models B2a, B2b, and B2c
select the earlier week values of the three predictors (vegetation
indices in late autumn, winter and spring), and model B2d
selects SPEI of February, April, and June, similarly to models
W2c and B2c. Only the barley model B2c selects VCI and
SPEI together as statistical significant predictors.

Finally, it is important to stress that most of the models
select 2 or 3 predictors, whereas the model B2c is the one with
the highest number of predictors (p = 5). On the other hand,
only one model (W2b) chooses only 1 predictor (VHI).

Table 1 Results of the stepwise regression at the 95% confidence level
for the selection of the statistical significant predictors of wheat and
barley yields (p indicates the number of predictors selected for each
model). The numbers of the remote sensing indices correspond to the
respective weeks selected to predict the cereal yield, and the numbers of
SPEI correspond to the respective month and time-scale selected by each
model

Model name p VCI TCI VHI SPEI

W1a 2 21 23 - -

W1b 2 - - 1
22

-

B1a 2 18 20 - -

B1b 2 - - 50
22

-

W2a 2 35
25

- - -

W2b 1 - - 20 -

W2c 4 - - - Feb-5
Apr-1
May-12
Jun-9

B2a 3 40
52
25

- - -

B2b 3 - - 43
49
19

-

B2c 5 40
51

- - Feb-5
Apr-1
Jun-6

B2d 3 - - - Feb-5
Apr-1
Jun-5
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3.4 MLR and ANN models

The overall performance of the MLR leave-one-out cross-
validation is shown in Table 2 in terms of the statistical mea-
sures described in the Data and Methods section, for the 11
possible models. The results indicate that model B2c presents
the highest values of performance explaining 85% of the vari-
ance of barley yield in cluster 2, based on the VCI, TCI and
SPEI. The values of the explained variance without cross-
validation (R2

adj_no_cv) are slightly less conservative than the
values obtained by cross-validation (R2

adj) in all models,
supporting the robustness and reliability of the models. While
models W2a and B2a explain less 11% of the variance with
cross-validation, the remaining models explain less than 10%
with cross-validation reaching a low of 5% less by the models
W1b and B1b.

Concerning the wheat cereal in cluster 1 (Table 2), the R2
adj

andRMSE of themodelsW1a andW1b display the same values
(73%), while the W1a values of SSRMSE display marginally
higher percentage of performance against persistence. The bar-
ley cereal in cluster 1 denotes higher explained variance (76%)
and lower RMSE considering the VHI as predictor (B1b). The
rainfed cereals in cluster 1 exhibit the strongest linear relation-
ship considering the late-spring weeks of VCI and TCI as pre-
dictors in the case of wheat (W1a), and the mid-winter and late-
spring weeks of VHI in the case of barley (B1b).

Regarding the cluster 2, the use of SPEI in the predictors’
pool shows an added value in combination with VCI and TCI
(W2c and B2c). Models W2c and B2c display the highest
values of explained variance (71 and 85%, respectively) and
69 and 78% of the skill against persistence. While barley at
cluster 2 displays the strongest linear relationship based on a
remote sensing index (VCI) and SPEI together, the model W2c
consists only of SPEI values (VCI and TCI are not significant
predictors). In comparison with models without the multiscalar

drought index in cluster 2, the inclusion of SPEI reduces the
importance of the VCI and VHI values (TCI is not a significant
predictor in any model in cluster 2). In the case of the model
B2c, the VCI duringweek-25 (proximate to the harvest) used in
model B2a is Breplaced^ by the SPEI predictors.

Table 3 shows the performance of the ANN models in
terms of the same statistical measures as those used for
MLR models. For the sake of simplicity, the presented ANN
results are shown based on the most suitable ANN architec-
tures according to the skill against persistence prediction
(SSRMSE). In general, a good performance is observed consid-
ering between 1 and 5 hidden neurons. The model B2c also
presents the highest values of performance but explains slight-
ly less variance (84%) than the B2c MLR model (85%).
Similar to Table 2, the ANN statistics support the robustness
of the models using cross-validation (Table 3). However,
models W2a and W2b significantly decrease the explained
variance by using cross-validation, while in the remaining
models the difference with and without cross-validation is
similar to the observed by MLR models.

The statistics present in Table 3 indicate that 5 ANNmodels
(W1a, B1a, B1b, W2c and B2b denoted by a ‘) improve the
MLR results (Table 2). Similar to the linear regression statistics,
the models W1a, B1b, W2c, and B2c display the strongest
relationships explaining 85, 83, 73, and 84% of the variance
in the case of ANN models, against 73, 76, 71, and 85% in the
case of MLR models respectively (denoted by a * in Tables 2
and 3). Hereafter, results are presented only for the models
W1a, B1b, W2c, and B2c since they present the best perfor-
mance for each cereal in each cluster considering both MLR
and ANN techniques (Tables 2 and 3). Except for the case of
B2c, the highest performance models are slightly improved
using ANN techniques. The overall good performance of the
models is illustrated in Fig. 7, which shows the time-series of
the cereal observations in each cluster, together with the

Table 2 Summary of the regression equations and the overall
performance of the MLR leave-one-out cross-validation models of wheat
and barley at cluster 1 and 2 (p indicates the number of predictors selected

for each model). For each cereal and cluster, the models with highest
performance are denoted by a *

Model name p Summary of regression equations R2adj_no_cv R2adj RMSE SSRMSE (%)

W1a* 2 W1 = 0.67*VCI21 + 0.76*TCI23 0.79 0.73 0.49 69.31

W1b 2 W1= 0.24*VHI1 + 0.88*VHI22 0.78 0.73 0.49 68.87

B1a 2 B1 = 0.47*VCI18 + 0.82*TCI20 0.76 0.69 0.52 66.86

B1b* 2 B1 = 0.23*VHI50 + 0.91*VHI22 0.81 0.76 0.47 70.41

W2a 3 W2= −0.39*VCI35 + 0.63*VCI25 0.50 0.39 0.74 53.42

W2b 1 W2= 0.70*VHI20 0.47 0.39 0.75 52.40

W2c* 4 W2 = 0.94*SPEI2–5 + 1.05*SPEI4–1 – 0.53*SPEI5–12 – 0.32*SPEI6–9 0.80 0.71 0.49 69.23

B2a 3 B2 = − 0.63*VCI40 + 0.52*VCI52 + 0.65*VCI25 0.67 0.56 0.61 60.99

B2b 3 B2 = − 0.34*VHI43 + 0.49*VHI49 + 0.76*VHI19 0.68 0.58 0.60 61.69

B2c* 5 B2 = −0.39*VCI40 + 0.34*VCI51 + 1.07*SPEI2–5 + 0.91*SPEI4–1–0.84*SPEI6–6 0.91 0.85 0.34 78.20

B2d 3 B2 = 1.14*SPEI2–5 + 0.86*SPEI4–1–0.78*SPEI6–6 0.83 0.75 0.46 70.74
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respective estimations using ANN and MLR methods. The
considerable similarities between the two techniques in model
B2c are well shown in the bottom panel of Fig. 7, while some
differences are observed in the other models.

A summary of contingency table results of the occurrence of
crop yield losses (standardised yield anomaly < 0) is presented
in Fig. 8, comparing the performance of the MLR and ANN
techniques of the modelsW1a, B1b,W2c, and B2c. The results
show that the models W1a, B1b, and B2c based on ANN, and
B1b based onMLR slightly overestimate the yield losses, while
the remaining models are almost unbiased (FB~1). Generally,
all models predict a great number of true positives (hits) of
occurrence of crop-loss exhibiting HR values higher than
69%. Except for B2c, the ANN models display values of HR
higher than MLRmodels, estimating more occurrences of crop
loss. The SR values indicate that in the case of B1b and W2c,
the likelihood of crop loss occurrence, given that it was esti-
mated by the model, is higher based on ANN rather than on
MLR techniques. In comparison with wheat, the barley models
display slightly higher values of SR andHR. The cereal models

Table 3 Summary of the ANN architectures according to the maximum
SSRMSE value and the overall performance of the respective ANN leave-
one-out cross-validation (p indicates the number of predictors selected for
each model). The architectures indicate the number of neurons in input,
hidden and the output layers respectively. For each cereal and cluster, the
models with highest performance are denoted by a *. The models whose
performance of the ANN techniques improves the MLR results (Table 2)
are denoted by a ‘

Model p Architecture R2
adj_no_cv R2

adj RMSE SSRMSE (%)

W1a*’ 2 2-3-1 0.93 0.85 0.36 77.30

W1b 2 2-1-1 0.80 0.71 0.51 67.85

B1a’ 2 2-4-1 0.90 0.80 0.42 73.30

B1b*’ 2 2-4-1 0.89 0.83 0.39 75.20

W2a 2 2-3-1 0.65 0.36 0.76 52.04

W2b 1 1-2-1 0.57 0.12 0.90 43.20

W2c*’ 4 4-2-1 0.89 0.73 0.47 70.34

B2a 3 3-1-1 0.67 0.49 0.66 57.76

B2b’ 3 3-3-1 0.89 0.75 0.46 70.56

B2c* 5 5-1-1 0.91 0.84 0.36 76.96

B2d 3 3-1-1 0.83 0.74 0.47 69.92
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Fig. 7 Wheat and barley time-
series of observations (full line)
from 1986 to 2012 in clusters 1
(top two panels) and 2 (bottom
two panels) and respective statis-
tical estimations using MLR
(dotted line) and ANN (dashed
line) methods with the strongest
statistical relationships (W1a,
B1b, W2c, and B2c)



in cluster 2 display the lower values of SR, HR and higher
values of FAR, in comparison with the cluster 1.

4 Discussion and conclusions

This work aimed to assess the influence of drought conditions
in agricultural yields over the IP, considering remote sensing
(VCI, TCI, and VHI) and multiscalar (SPEI) drought indices
as predictors of rainfed cereal yields. The exposure analysis
performed in this work allowed for the identification of dis-
tinct geographical areas in the IP exposed to agricultural
drought, according to the use of dryland for agriculture. In a
different way from the criteria applied in the present work,
Hernández-Barrera and Rodríguez-Puebla (2017) have also
specified two different regions in the IP by applying a cluster
analysis based on wheat yield data variability. Other approach
followed by Iglesias and Quiroga (2007) selected 5 sites
representing the major rainfed and irrigated agricultural re-
gions of Spain. In this work, the analysis of exposure to agri-
cultural drought in terms of dryland allowed for the study of
more than one cereal growing in rainfed conditions, and
proved to be rather suitable for wheat and barley. Moreover,
the aggregation of provinces with similar percentage of arable
land allowed the estimation of a few number of models suit-
able for a larger number of provinces.

We found that the spatial averages of wheat and barley com-
puted for each cluster exhibited low values of yield anomalies
during the years of 1992, 1995, and 2005 (Fig. 2), coinciding
with main drought events that affected the IP (García-Herrera

et al. 2007; Andrade and Belo-Pereira 2015). As a matter of
fact, the drought conditions identified with the remote sensing
and multiscalar indices (Figs. 3 and 4) are coincident with the
low yield anomalies: drier conditions were found in the north-
ern cluster in 1992 (anomalies more negative in cluster 1
according to Fig. 1), while drier conditions (anomalies more
negative in cluster 2 according to Fig. 1) were found in the
southern cluster in 1995 and 2005. The temporal evolution of
the drought hazard during the individual low yield years of
1992, 1995 and 2005 (Figs. 3 and 4) and the correlation anal-
ysis (Figs. 5 and 6) also suggested minor influence of drought
conditions during the initial growth stages (autumn/winter),
and greatest influence during the intermediate and final growth
stages (spring/summer), corresponding to the moments in
which the vegetation is photosynthetically more active.
Stronger relationships with NDVI were also found by
Vicente-Serrano et al. 2006 during flowering stages of wheat
and barley yield in north-east Spain (Middle Ebro valley).

Given the importance of assessing crop’s vulnerability to
dry conditions at different stages of plant development, we
also looked for the highest crop’s requirements to moisture
(VCI) and thermal (TCI) conditions at different moments of
the vegetative cycle (Fig. 5). The correlation values be-
tween crop yield and remote sensing indices suggested that
crop yield reduces with moisture depletion (low values of
VCI) during early-spring (and enhance with water content
increase) and with too high temperatures (low values of
TCI) close to the harvest time (and improve with tempera-
ture decrease). This highlights the importance of both water
content and air temperature for cereals productivity and the
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Fig. 8 Summary of
the contingency table results of
the occurrence of crop-loss
(standardised yield anomaly < 0)
in terms of frequency bias (FB),
success ratio (SR), hit rate (HR),
and false alarm rate (FAR), based
on MLR (white bars) and ANN
(black bars) methods of the
models W1a, B1b, W2c, and B2c



advantage of combining the contributions of moisture and
thermal conditions using the remote sensing indices. The
effects of water stress and high temperatures during middle
growth stages of the crop life cycle are in accordance with
previous studies (García del Moral et al. 2003; Iglesias and
Quiroga 2007; Ferrise et al. 2011).

The use of remote sensing and multiscalar indices (Figs. 2
and 3) allowed analysing the vegetation responses to drought
conditions over large regions and at different time-scales of
drought occurrence. The dominant time-scales at which
drought influences the crop yield correspond to longer time-
scales (6 to 12 months) throughout January to June, and a
pronounced impact is verified during the springer months
(April to June) at the shorter time-scales (1 to 6 months)
(Figs. 5 and 6). These results are in accordance with previous
work performed by the authors, which stress the stronger im-
pact of longer timescales and identify spring as the dominant
season of winter cereal yield dependence on drought condi-
tions based on SPEI, particularly in Spain (Páscoa et al. 2017).

Spatial differences were also pointed out by the correlation
analysis and the statistical modelling, suggesting that in com-
parison with cluster 1 (northern sector), cluster 2 (southern
sector) is impacted by dry conditions beforehand (Figs. 5
and 6), in accordance with the geographical location and re-
spective climate variability of the provinces. According to
Rodriguez-Puebla et al. (1998), the spatial patterns of the pre-
cipitation regime in Spain exhibit strong gradients, with
higher values in the northwestern sector and lower values in
the southeastern sector. In addition, the southern sector of
Iberia have been exceptionally affected by severe drought
events, particularly during the recent episode of 2004/2005
(García-Herrera et al. 2007; Gouveia et al. 2009, 2012), which
was also a year with higher negative yield anomalies in cluster
2 (Figs. 2, 3, and 4).

Significant regional differences were also found consider-
ing the potential of combining the multiscalar and remote
sensing approaches. Correlation analysis results from Figs. 5
and 6 suggested stronger relationships between remote sens-
ing indices and cereal yield in the northern sector (cluster 1),
and stronger relationships between SPEI and cereal yield in
the southern sector (cluster 2). In agreement, the results of the
stepwise regression for significant predictors selection
(Table 1) suggested that the inclusion of the drought index
SPEI in the possible predictors pools is only significant in
the cluster 2 for both cereals. These findings propose that the
southern sector crop yield is better inferred from the drought
index SPEI information, rather than remote sensing indices,
and sensitive to balance between precipitation and evapotrans-
piration. On the contrary, cluster 1 models suggest strong de-
pendence of the health of the vegetation, and only predictors
based on VCI, TCI, and VHI are selected (Table 1). Kogan
et al. 2015a and Kogan et al. 2004 have also performed accu-
rate predictions of crop yield based on VCI, TCI, and VHI for

Russia and China, respectively, and have suggested the poten-
tial of using the remote sensing of vegetation health to assess
weather-related crop losses.

The combined use of remote sensing data (NDVI) and
multiscalar drought indices (SPI) have already been con-
sidered by Vicente-Serrano et al. 2006 to model wheat and
barley yields in Spain. Vicente-Serrano et al. 2006 have
found that the inclusion of NDVI in a linear regression
model based on SPI (February at 1-month time-scale) in-
creases the model’s performance. Moreover, Vicente-
Serrano et al. 2006 have shown the potential of the com-
bined use of NDVI and SPI to predict cereal production
four months prior to harvest. Similarly, we also addressed
the ability to estimate crop yield during growth stages
early enough before harvesting. Table 1 indicates that the
models based on remote sensing indices depend largely on
the weekly values of mid-winter (December and January)
and mid-spring to early-summer (late-April to June), sug-
gesting a predictive power of crop yield based of the
satellite-based data. The selection of SPEI of February,
April, May, and June in cluster 2 also suggests the pre-
dictive power of a range of drought time-scales for crop-
loss estimation.

The MLR and ANN results suggest that the models
displaying the strongest relationships are the same in both
statistical techniques, and the strength of the statistical
relationships found by the linear and non-linear methods
is quite similar (Tables 2 and 3). However, regarding the 4
models with the strongest relationships for the two cereals
in the two clusters (W1a, B1b, W2c and B2c), the ANN
techniques improve the MLR models except in the case of
barley in cluster 2 (Table 3 and Fig. 7). The explained
variance of the model W1a using MLR increases 12%
using ANN techniques, models B1b and W2c increase 7
and 2% respectively.

Despite the slight overperforming of the ANN over the
MLR techniques in 3 of the best 4 models (W1a, B1b, W2c,
and exception of B2c), the ability to estimate yield losses is
overrated (HR and SR display higher values using ANN rather
than MLR but FB values by ANN are generally indicative of
overestimation). The cereal models in cluster 2 display the
lower values of SR, HR and higher values of FAR, in com-
parison with the cluster 1, suggesting that despite the ability of
SPEI in representing the average variability in the southern
sector, it underperforms the estimation of crop loss in compar-
ison with remote sensing indices in cluster 1. However, most
of the crop loss events are estimated (high values of HR) by all
models, suggesting the potential of the proposedmethodology
for the modelling of wheat and barley losses in IP.

A substantial number of studies have already suggested the
better performing skills of ANN in comparison to MLR in
cereal yield modelling (Jiang et al. 2004; Matsumura et al.
2015). In the Mediterranean region in particular, Incerti et al.
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(2007) proposed a drought risk analysis based on ANN for
South Italy based on precipitation, temperature, evapotranspi-
ration, NDVI and land cover. Climate change impact on
durum wheat over the Mediterranean basin has been
addressed by Ferrise et al. (2011) based on ANN as well.
Using other alternative statistical techniques, such as partial
least square regression, Hernandez-Barrera et al. (2017) had
analysed the climate change impacts on wheat yield over
Spain. Results by Ferrise et al. (2011) suggested that the
projected warmer and drier climate will increase the risk of
yield loss in the Mediterranean, and Hernandez-Barrera et al.
(2017) suggested that climatic warming will lead to about
32% decrease in Spanish wheat production in the twenty-
first century. Henceforth, an improved assessment of the agri-
cultural crop yield impacts under current drought conditions is
becoming crucial in a climate change context. The establish-
ment of novel statistical techniques for crop modelling, such
as ANN, constitutes an important step towards developing
strategies to mitigate agricultural drought risk.

Besides some slight overestimation of yield losses, limitations
of the presented results arise from the lack of forecasting of future
yield-losses of wheat and barley. Nevertheless, the present study
indicates that based on mid-winter and mid-spring drought indi-
cators, the estimation of the harvestable yield is predictable for
the current year. In addition, the results from the calculation of
the drought index SPEI using climate projections of precipitation
and temperature, and further application using the statistical re-
lationships found in the present study, would be rather interesting
to compare with recent works. Other potential usefulness of this
study for future research is to evaluate the suitability of the
regional-scale crop yield models to each province of the IP indi-
vidually. More future work should also cover other agro-areas of
the IP and look towards the development of crop-specific agri-
cultural drought risk models (e.g. using a probabilistic approach)
based on the established models.

In summary, the statistical methodology used in this anal-
ysis relied on yield information at the province scale, and the
results have shown the potential of crop yield modelling based
on multiscalar (SPEI) and remote sensing (VCI, TCI, and
VHI) indices, using two empirical techniques (MLR and
ANN), providing estimations of drought-impacts over large
areas. In contrast, numerous modelling tools integrating the
complex biophysical interactions of crop growth (mechanistic
crop simulation models) have been used by several authors
(Paredes et al. 2014; Giménez et al. 2016; Paredes et al. 2016),
generally requiring careful calibration and several in-situ mea-
surements, usually limited to the local/field scales. The model
outcomes using the presented methodology are suitable for
broader scales, and highlight the usefulness of such analysis
in the framework of developing an agricultural drought risk
model for cereal yields in the IP. In terms of an operational
point of view, the results aim to contribute to an improved
understanding of crop yield management under dry

conditions, particularly regarding rainfed winter crops.
Moreover, the present study will provide some guidance on
user’s decision-making process in agricultural practices in the
IP, assisting farmers in deciding whether to purchase crop
insurance.
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