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Abstract
General CirculationModels (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show
that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to
evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and
precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for
the period of 1901–2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe
efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen’s slope estimator, and the Taylor
diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show
that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. Themajority of the GCMs
have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent
temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and
theMRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological
studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

1 Introduction

Climate change alters the long-term weather patterns and con-
ditions. The Fifth Assessment Report (AR5) of the
Intergovernmental Panel on Climate Change (IPCC) demon-
strated that the surface temperature over the period of 2003–
2012 has a warming of 0.78 °C (with a confidence interval of
0.72–0.85 °C) relative to the period of 1850–1900, and there
is an upward trend in surface temperature of almost the entire
globe, while there is a medium confidence in change of the

average precipitation over all lands after 1951 (IPCC 2013).
As we know, there is an uncertainty in the future climate due
to the non-stationarity of variables. Thus, the projected mean
and the distribution of the variables are important to climatol-
ogists and water resources planners, particularly in semiarid
and arid regions where climate change has greater impacts
(IPCC 1996).

Currently, the General Circulation Models (GCMs) are the
most promising tools for projecting future climate trends and
variability (Kharin et al. 2007; Loukas et al. 2008). However,
before assessing future climate changes based on the GCMs
simulations, it is crucial to evaluate the performance of the
GCMs in simulating climate variables (Dessai 2005; Reifen
and Toumi 2009; Belda et al. 2015; Nasrollahi et al. 2015).
Many studies aimed to assess the GCMs outputs relative to
observations. Some researchers evaluated the GCMs at global
scales. Gleckler et al. (2008) evaluated the performance of 22
CMIP3 GCMs in simulating several atmospheric variables
relative to NCEP/NCAR reanalysis datasets. They ranked
models for each variable using a measure of the relative error
and showed that the performance of GCMs varies substantial-
ly. They also concluded that using just a single index of the
model performance can be misleading. Their results showed
that the relative ranking of models differs significantly for
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different variables; however, some GCMs (e.g., HadCM3)
perform well in many respects. Hao et al. (2013) compared
the joint occurrence of monthly continental precipitation and
temperature extremes in 13 GCMs from the fifth phase of the
Coupled Model Intercomparison Project (CMIP5) with the
Climatic Research Unit (CRU) and the University of
Delaware (UD) observations. The results showed that
CMIP5 GCMs can reasonably represent the trends in the joint
extremes. However, there are noticeable differences between
the regional patterns and the magnitude of changes in the
GCM simulations relative to the observations. Knutti et al.
(2013) constructed a model family tree from CMIP3 and
CMIP5 GCMs using a hierarchical clustering of pairwise dis-
tance matrix for temperature and precipitation. The results
showed that most CMIP5 GCMs are very similar to their
predecessors, while they are in close agreement with NCEP
and Global Precipitation Climatology Center (GPCC) obser-
vations. Sillmann et al. (2013) evaluated CMIP5 GCMs in
simulating 27 climate extreme indices and compared CMIP5
and CMIP3 GCMs. Their analyses showed that CMIP5
GCMs are able to represent climate extremes and their
trends relative to four reanalysis datasets. They also
indicated that CMIP5 GCMs have a better performance in
representing the magnitude of the precipitation indices
compared to CMIP3 GCMs. Furthermore, the results
revealed that the variability of the CMIP5 GCMs for the
temperature indices is smaller than those of the CMIP3
GCMs. Pascale et al. (2014) proposed two new indicators of
the rainfall seasonality namely the relative entropy (RE) and
the dimensionless seasonality index (DSI). They claimed that
the RE and DSI allow objective metrics for model
intercomparison and ranking. The results showed that the
RE is overestimated over tropical Latin America and is
underestimated in Western Africa, West Mexico, and East
Asia in the CMIP5 simulations. In addition, no model can
represent well the DSI spatial variability. Belda et al. (2015)
evaluated 43 CMIP5 GCMs using the Köppen-Trewartha cli-
mate classifications. They suggested that the annual and
monthly mean values of temperature and precipitation and
their periodicity can be summarized in the climate classifica-
tions. The results showed that manymodels cannot capture the
rainforest climate type (Ar), and almost half of the models
underestimate the desert climate type (BW). Additionally,
many models overestimate the boreal climate type (E). They
also measured the similarity between the GCMs using a hier-
archical cluster analysis. The analysis showed that the GCMs
from the same modeling center are often grouped in the same
cluster and therefore have quite similar results. McMahon
et al. (2015) assessed the precipitation and temperature data
from 23 CMIP3 GCMs. They compared the GCM estimates
of the mean annual precipitation and temperature and the stan-
dard deviation of the annual precipitation and those of the
observed CRU data using the Nash-Sutcliffe efficiency

(NSE), the coefficient of determination (R2), and six other
statistics. They also assessed the ability of the GCMs to rep-
resent the Köppen-Geiger climate classification. They con-
cluded that the HadCM3 is the best GCM among CMIP3
GCMs over globe. Nasrollahi et al. (2015) assessed the per-
formance of 41 CMIP5 GCMs in representing the CRU ob-
servations of continental drought areas and their trends. They
defined meteorological drought in terms of the Standardized
Precipitation Index (SPI) and analyzed the trend of SPI using
the Mann-Kendall test. The results showed that the envelope
of the CMIP5 SPI time series encompasses the CRU SPI time
series for drought regions during 1902–2005. However, most
GCMs overestimate the index over the extreme drought re-
gions. In addition, the trend in the CRU data can be represent-
ed by about three-fourths of the GCMs. They also evaluated
the consistency of the precipitation distribution functions of
the GCM simulations with those of the observations using the
Kullback-Leibler divergent test. The test measures the dis-
tance between two distributions. The results indicated no sig-
nificant difference between the distributions of the simulations
and observations.

Many studies evaluated the GCMs at regional scales.
Bonsal and Prowse (2006) assessed the ability of seven
GCMs to simulate the mean values and the spatial variability
of temperature and precipitation over four regions across
Northern Canada. They calculated the differences between
seasonal mean temperature and precipitation of the GCM sim-
ulations and those of the CRU data. They also plotted the
Taylor diagram for annual precipitation and temperature.
The results showed that the HadCM3 can best represent an-
nual and seasonal temperature over all sub-regions, while
there is an obvious regional difference between GCMs’
precipitation and observed CRU one, and all models
significantly overestimate this variable. Perkins et al. (2007)
evaluated the performance of the CMIP3 GCMs in simulating
precipitation, minimum temperature, and maximum tempera-
ture over Australia using Probability Density Functions
(PDFs) of the variables. They claimed that it is better to eval-
uate the GCMs using their PDFs than their first or second
moments. The results showed that although most GCMs can
reasonably simulate the distribution of precipitation, they
overestimate precipitation at low quantiles. Additionally, only
3 of the 14 GCMs can capture 80% of the observed PDFs of
the precipitation. For minimum and maximum temperature,
10 of the 13 GCMs and 6 of the 10 GCMs can capture 80%
of the observed PDFs, respectively. Johnson and Sharma
(2009) assessed the performance of nine GCMs in simulating
eight variables over Australia using a skill score. They con-
cluded that pressure, temperature, and humidity are the
variables with the highest skill score and precipitation is the
variable with the lowest. Yin et al. (2012) evaluated the per-
formance of 11 CMIP5 GCMs in simulating rainfall over
tropical South America. The results showed that most models
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underestimate both convective and large-scale precipitation
during the dry season. Moreover, most models underestimate
large-scale precipitation during the wet season. Chen and
Frauenfeld (2014) evaluated the precipitation simulations of
20 CMIP5 GCMs over China and quantified CMIP5 improve-
ments over CMIP3. They calculated the differences, the root
mean square error (RMSE), the standard deviation of the error,
and the linear correlation coefficient (r) between the CRU and
GPCC observed datasets and CMIP3 and CMIP5 outputs. In
addition, they evaluated the performance of the GCMs in
simulating the spatial distribution of precipitation over China
using a skill score. They concluded that the CMIP5 models
represent a significant improvement over the CMIP3 models.
However, both CMIP5 and CMIP3 GCMs overestimate
seasonal and annual precipitation.Miao et al. (2014) evaluated
the performance of 24 CMIP5 GCMs in simulating intra-an-
nual, annual, and decadal temperature over Northern Eurasia
by the analysis of the bias, linear trend, and Taylor diagram.
The analysis by the bias showed that although most GCMs
give reasonably accurate simulations of the annual and the
seasonal mean temperature, they mostly overestimate the
annual mean temperature. Furthermore, most GCMs can
approximate the trend of temperature. The Taylor diagram
showed that the accuracy of the GCMs in simulating decadal
temperature is better than those of the annual temperature.
Sonali et al. (2016) assessed the performance of 46 GCMs
from CMIP3 and CMIP5 in simulating monthly and seasonal
maximum and minimum temperature over India. They com-
pared the PDFs of the observations and the GCM simulations
using a scale measure. In addition, they quantified the differ-
ences between the models and the observed datasets by the
RMSE and r. Then, they defined a new scale measure that is
an intersection of above three metrics to evaluate and rank the
GCMs. This new metric demonstrated the superiority of the
CMIP5 GCMs over the CMIP3 GCMs. They also compared
the model trends with the observed trends using the Sen’s
slope estimator. Based on the studies, the performance of the
GCMs varies significantly for different variables in different
locations; therefore, it is necessary to evaluate the perfor-
mance of the GCMs for the study region prior to using their
outputs.

Iran is located in the arid and semi-arid belt of the northern
hemisphere extended from 44° E to 64° E longitude and from
25° N to 40° N latitude. Many studies focused on the conse-
quences of climate change over Iran using the GCMs’ outputs,
such as climate impacts on temperature and precipitation (e.g.,
Samadi et al. 2013; Abbasnia and Toros 2016; Nazemosadat
et al. 2016), runoff (e.g., Zarghami et al. 2011; Samadi et al.
2012; Razmara et al. 2013; Shadkam et al. 2016), groundwa-
ter (e.g., Hashemi et al. 2015), drought (e.g., Sayari et al.
2012), flood (e.g., Khazaei et al. 2011), and crop yield (e.g.,
Abbaspour et al. 2009; Gohari et al. 2013). However, to the
knowledge of the authors, there is no complete evaluation of

the GCMs’ simulations over Iran, and hence the performance
of different GCMs over this region is unclear. This paper pre-
sents the first comprehensive evaluation of the CMIP5 climate
models in simulating temperature and precipitation over Iran.
Temperature and precipitation are two predominant variables
among climate and hydrological variables. Temperature plays
a pivotal role in potential evapotranspiration, soil moisture,
crop yield, water demand, and water quality (e.g., by its direct
influence on the rate of reactions and microorganism growth).
Precipitation affects runoff and groundwater recharge, and
characterizes flood and different types of drought such as me-
teorological, agricultural, hydrological, and socioeconomic
drought. The performance of the climate models is evaluated
using performance criteria including the mean bias, RMSE,
NSE, r, Kolmogorov-Smirnov statistic (KS), Sen’s slope esti-
mator, and Taylor diagram. Those criteria can determine the
ability of the models to simulate the climate variables.
Section 2 describes the CMIP5 and observational datasets.
Section 3 explains the methodology and measures of the per-
formance. Section 4 presents the results of the evaluation for
temperature and precipitation simulations with discussion,
followed by summary and concluding remarks in Section 5.

2 Datasets

2.1 General circulation models (GCMs)

GCMs are extremely complex models, which can represent
physical processes with geochemical and biological (mostly
carbon cycle) interactions in the atmosphere, ocean, land sur-
face, and cryosphere using three-dimensional grids (IPCC
2007). In addition, they are the most advanced tools to predict
the future climate under climate change scenarios. Since there
are many climate models developed by different modeling
g roups a round the wor ld , t h e Coup l ed Mode l
Intercomparison Project (CMIP) was established as a standard
framework for the GCM evaluation, intercomparison, docu-
mentation, and access. CMIP5 is the latest phase of the CMIP
that provides the simulations of more than 50 state-of-the-art
GCMs from more than 20 modeling groups. The CMIP5
datasets include two types of the climate simulations: the
long-term experiments (century time scales) and the near-
term experiments (10–30 years). Both experiments are the
outputs of the Atmosphere-Ocean General Circulation
Models (AOGCMs) or the Earth System Models (ESMs).
AOGCMs couple the Atmospheric GCMs (AGCMs) to the
Oceanic GCMs (OGCMs). AGCMs aim to model the atmo-
sphere using predefined sea surface temperatures, while
OGCMs try to model the ocean with predefined fluxes from
the atmosphere. AOGCMs intend to model the interaction
between the atmosphere and ocean, and therefore, they do
not need to predefine fluxes across the atmosphere-ocean
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interface. ESMs are the AOGCMs that are coupled to bio-
chemical components to calculate the predominant fluxes of
carbon between the atmosphere, ocean, and terrestrial bio-
sphere carbon reservoirs so that they can consider the effects
of vegetation changes on climate (Hannah 2015). ESMs are
capable of interactively determining the concentrations of
constituents using their time-dependent emissions. For de-
tailed information about the CMIP5 experiments, the reader
is referred to Taylor et al. (2009, 2012). This study uses GCMs
that have historical experiment (Table 1); thus monthly pre-
cipitation and temperature simulations of 37 GCMs for the
period of 1901–2005 are obtained from the Bhistorical
experiment^ of the CMIP5 datasets (https://esgf-node.llnl.
gov). The historical experiment is a long-term experiment
(1850–2005) used for evaluating the performance of the
GCMs in the simulation of climate variables. Note that the
original GCMs datasets are used.

2.2 Climatic Research Unit (CRU) datasets

CRU is an institution that provides a globally land-only
monthly time series for commonly used surface climate vari-
ables including mean temperature and precipitation. CRU has
been used in many fields including climate, hydrology, agri-
culture, ecology, biodiversity, and forestry. CRU uses the
Climate Anomaly Method (CAM) to produce 0.5° × 0.5°
gridded data frommonthly observations of the meteorological
stations. Each station should have more than 75% non-
missing data in the base period (1961–1990) to calculate the
average values of the baseline. The influence of each station is
measured in terms of Correlation Decay Distances (CDDs).
CDDs vary with time and between variables ranging from
1200 km for mean temperature to 450 km for precipitation.
Each grid is filled with data interpolated from stations within
the CDD range. Consequently, CRU aims to make the dataset
as complete as possible using distant stations. For detailed
information about CRU dataset, the reader is referred to
Harris et al. (2013). This study used monthly CRU precipita-
tion and temperature (CRU TS 3.24.01) for the period of
1901–2005 (http://badc.nerc.ac.uk/data/cru/).

3 Methodology

3.1 Data preparation

To evaluate the GCM simulations relative to the CRU obser-
vations, all GCM simulations and CRU data are re-gridded
into a common 3.75° × 3.75° resolution by the bilinear inter-
polation, which is a widely used method (Wang and Chen
2013; Chen and Frauenfeld 2014; Belda et al. 2015;
Aloysius et al. 2016).

The annual and seasonal time series of temperature in each
grid are determined by averaging monthly temperature over
each year and each season, respectively. Similarly, the annual
and seasonal precipitation is calculated by aggregating month-
ly precipitation over each year and each season. Hence, each
year has four seasonal values (winter: December to February,
spring: March to May, summer: June to August, and fall:
September to November).

3.2 Measures of the performance

In this study, six different measures of the performance are
used to evaluate GCMs’ ability to simulate temperature and
precipitation over Iran. For each measure, GCMs are ranked
such that the GCM with the best performance is designated as
rank 1. Since all these metrics can be important to hydrologists
and climatologists, they can choose suitable GCMs based on
their criteria and priorities for a specific application.

3.2.1 Mean Bias

Incomplete understanding of the climate system and simpli-
fied assumptions can cause biases in climate model simula-
tions (Reichler and Kim 2008). Therefore, the mean bias is a
critical indicator of the model performance. The mean bias is
defined as follows:

mean bias ¼ y
m
−y

o
ð1Þ

where ym and yo are the mean of the GCM simulations and
observations, respectively. It is clear that the positive and neg-
ative values of the bias represent overestimation and underes-
timation of the GCMs, respectively. The GCMs are ranked
based on the minimum absolute value of the mean bias, i.e.,
the GCM with the closest mean bias to zero has rank 1.

3.2.2 Root mean square error

The root mean square error (RMSE), a very common metric
providing the relative performance of the models in
representing the exact observed values, is defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1∑
T
j¼1 ymij −yoij

� �2

N

vuut
ð2Þ

where ymij and yoij are the GCMs simulations and observations

at the jth time step in the ith grid, respectively, T is the total
number of the time steps, M is the total number of the grid
cells, and N is the total number of the data. The RMSE is a
non-negative value and the GCM with the lowest RMSE has
rank 1.
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3.2.3 Nash-Sutcliffe efficiency

The Nash-Sutcliffe efficiency (NSE) can evaluate the predictive
performance of the models (Nash and Sutcliffe 1970). It reflects
howwell the plot of themodel simulation versus observed data is
close to the 1:1 line. The NSE is defined as follows:

NSE ¼ 1−
∑M

i¼1∑
T
j¼1 ymij −yoij

� �2

∑M
i¼1∑

T
j¼1 yoij−y

o� �2 ð3Þ

The terms are defined in Eqs. (1) and (2). The NSE ranges from
− ∞ to 1, and negative values indicate that the variance of the model

errors exceeds the variance of the observations, and therefore, the
predictive performance of the model is poor. In other words, a model
with a negativeNSE isweak in the prediction of the observed values.
Note that theNSE is sensitive to extremes; hence, a negativeNSEcan
indicate a poor performance of themodel in simulationof the extreme
values. The GCMwith the highest NSE is designated as rank 1.

3.2.4 Linear correlation coefficient

The linear correlation coefficient (r), the measure of the sim-
ilarity between the model simulation and the observation, can
be determined as follows:

Table 1 CMIP5 climate models evaluated in this study

Model name Modeling center Resolution (latitude × longitude)

ACCESS1.0
ACCESS1.3

Commonwealth Scientific and Industrial Research Organization and Bureau
of Meteorology, Australia

1.25° × 1.875°
1.25° × 1.875°

CanCM4
CanESM2

National Center for Atmospheric Research, Canada 2.7906° × 2.8125°
2.7906° × 2.8125°

CMCC-CESM
CMCC-CM
CMCC-CMS

Euro-Mediterranean Center on Climate Change, Italy 3.4431° × 3.75°
0.7484° × 0.75°
3.7111° × 3.75°

CNRM-CM5
CNRM-CM5–2

National Center for Meteorological Research/European
Center for Research and Advanced Training in Scientific Computing, France

1.4008° × 1.40625°
1.4008° × 1.40625°

FGOALS-s2.0 Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric
Physics, Chinese Academy of Sciences, China

1.6590° × 2.8125°

GFDL-CM2p1
GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M

NOAA Geophysical Fluid Dynamics Laboratory, USA 2.0225° × 2.5°
2° × 2.5°
2.0225° × 2°
2.0225° × 2.5°

GISS-E2-H
GISS-E2-H-CC
GISS-E2-R
GISS-E2-R-CC

NASA Goddard Institute for Space Studies, USA 2° × 2.5°
2° × 2.5°
2° × 2.5°
2° × 2.5°

HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological
Administration, Korea

1.25° × 1.875°

HadCM3
HadGEM2-CC
HadGEM2-ES

Met Office Hadley Center, UK 2.5° × 3.75°
1.25° × 1.25°
1.25° × 1.25°

INM-CM4 Institute for Numerical Mathematics, Russia 1.5° × 2°

IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR

Institute Pierre-Simon Laplace, France 1.8947° × 3.75°
1.2676° × 2°
1.8947° × 3.75°

MIROC4h
MIROC5

Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for Marine-Earth
Science and Technology, Japan

0.5616° × 0.5625°
1.4008° × 1.40625°

MIROC-ESM
MIROC-ESM-CHEM

Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The University of Tokyo),
and National Institute for Environmental Studies, Japan

2.7906° × 2.8125°
2.7906° × 2.8125°

MPI-ESM-LR
MPI-ESM-MR
MPI-ESM-P

Max Planck Institute for Meteorology, Germany 1.8653° × 1.875°
1.8653° × 1.875°
1.8653° × 1.875°

MRI-CGCM3
MRI-ESM1

Meteorological Research Institute, Japan 1.12148° × 1.125°
1.12148° × 1.125°

NorESM1-M
NorESM1-ME

Norwegian Climate Center, Norway 1.8947° × 2.5°
1.8947° × 2.5°
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r ¼
∑M

i¼1∑
T
j¼1 ymij −y

m� �
yoij−y

o� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1∑
T
j¼1 ymij −y

m� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑M
i¼1∑

T
j¼1 yoij−y

o� �2
r ð4Þ

All terms are defined previously. The value of r close to the
unity indicates that the overall temporal change of the model
simulations agrees with the observations. Hence, the larger the
value of r, the lower the rank of the GCMs.

3.2.5 Kolmogorov-Smirnov statistic

The Kolmogorov-Smirnov test (KS, Kolmogorov 1933;
Smirnov 1933) is a measure to determine the ability of the
GCMs to represent the PDFs of the observed variables
(CRU temperature and precipitation). The KS measures the
maximum vertical distance between the Cumulative
Distribution Functions (CDFs) of the model simulation and
the observation. This statistic is sensitive to the median, vari-
ance, and the shape of the CDFs and can be expressed as
follows:

KS ¼ max
y

jFm yð Þ−Fo yð Þjf g ð5Þ

where Fm and Fo are the CDFs of the model simulations and
observations, respectively. The GCMwith the lowest value of
KS has rank 1. For a better comparison of the GCM simula-
tions and observations, the boxplots and the empirical CDFs
(ECDFs) of the GCMs simulations and observations are pro-
vided (Figs. 3 and 7).

3.2.6 Sen’s slope estimator

GCMs are expected to represent the long-term trends of the
hydroclimatological variables. Hence, the Sen’s slope estima-
tor (Sen 1968) is used to assess the ability of the GCMs to
represent the trend of the observations. The Sen’s slope is a
non-parametric method for estimating the magnitude of the
trend in a time series, and it is robust against outliers. To
calculate the Sen’s slope for each GCM and the CRU data,
first, the monthly data are averaged over all grids to obtain a
single time series over Iran. Then, a set of linear slopes (S) for
the time series is determined as follows:

sk ¼ ym−yl
m−l

ð6Þ

where sk is the kth element of set S, ym, and yl are the values of
the variable at themth and lth time steps, respectively, l and m
are indices where 1 ≤ l <m ≤ L, and L is the length of the time
series. The Sen’s slope is the median of S. To determine the
significance of the trend, the non-parametric 95% confidence
intervals of the Sen’s slope are calculated by the method de-
scribed by Sen (1968). The time series has a significant

upward trend if the lower and upper confidence intervals are
both positive and has a significant downward trend if confi-
dence intervals are negative. Absolute differences between the
Sen’s slopes of the GCMs simulations and the CRU time
series are calculated and the GCMwith the minimum absolute
difference is labeled rank 1.

3.2.7 Taylor diagram

The Taylor diagram (Taylor 2001) can evaluate the perfor-
mance of different models relative to observations. It can il-
lustrate the statistical relationship between the model simula-
tions and observations and represent three different statistics
including the centered root mean squared error (CRMSE), the
linear correlation coefficient, and the standard deviation. The
means of the simulations and observations are removed before
computing second-order statistics (Taylor 2001). The standard
deviation of the observed times series is calculated as

sdo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1∑
T
j¼1 yoij−y

o� �2

N

vuut
ð7Þ

and the standard deviation of the time series simulated by a
GCM is given by

sdm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1∑
T
j¼1 ymij −y

m� �2

N

vuut
ð8Þ

The correlation coefficient can be expressed as

r ¼
∑M

i¼1∑
T
j¼1 ymij −y

m� �
yoij−y

o� �
N ⋅sdo⋅sdm

ð9Þ

and the CRMSE as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1∑
T
j¼1 ymij −y

m� �
− yoij−y

o� �h i2
N

vuut
ð10Þ

All terms in the above equations are defined in Eqs. (1), (2),
and (3).

4 Results and discussion

The defined measures are used to evaluate the performance of
the GCMs in simulating annual and seasonal temperature and
precipitation as follows:

The measures of the performance (mean bias, RMSE,
NSE, r, KS, and Sen’s slope) are calculated for tempera-
ture. The results are shown in terms of the bar plot for
annual temperature (Fig. 1) and seasonal temperature (Fig.
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2). The GCMs are ranked based on the values of the
performance measures (Table 2). For the seasonal ranking,
the sum of the ranks for all seasons is calculated for each
GCM. Then, seasonal ranking is determined based on the
sum of the ranks, such that the GCM with the minimum
value of summation has rank 1. In other words, the best
GCM at seasonal scale is the one with the overall best
performance for all seasons. To have a more complete
comparison between the GCMs’ simulations and observa-
tions, the ECDFs and boxplots are illustrated (Fig. 3).

The mean bias of the majority of the GCMs for the annual
temperature is less than 2 °C (Fig. 1a), which can indicate the
high performance of the GCMs in simulating annual temper-
ature. Figure 2a illustrates more detailed information about the
GCMs’ errors. Although some GCMs (e.g., the ACCESS1.0,
CNRM-CM5, CNRM-CM5-2, and MPI-ESM-P) have rela-
tively large positive and negative seasonal mean biases for
temperature, they have small annual mean biases. The reason
is that negative seasonal errors may cancel positive seasonal
errors, and therefore, errors become relatively small for the

Fig. 1 The measures of the
performance for annual
temperature. a Mean bias. b
RMSE. c NSE. d r. e KS. f Sen’s
slope of the trend
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annual time scale. In addition, some GCMs (e.g., the GFDL-
ESM2M, HadGEM2-AO, INM-CM4, IPSL-CM5B-LR,
MIROC4h, andMIROC5) consistently overestimate or under-
estimate temperature in all seasons; therefore, they may have
systematic errors in simulating temperature. As a result,
assessing GCMs at both annual and intra-annual time scales
may provide a better evaluation of the GCMs’ performance.
Based on the mean bias in the GCMs’ rank at both annual and
seasonal time scales (Table 2), the CMCC-CMS, NorESM1-
M, and NorESM1-ME are defined as the best performing

GCMs. On the other hand, the ACCESS1.3, INM-CM4, and
MIROC5 show a poor performance.

The average annual RMSE of the GCMs is 2.5 °C (Fig.
1b), i.e., the average variance of the GCMs’ error in simulat-
ing annual temperature is 2.5 °C. The average seasonal RMSE
of the GCMs (excluding the ACCESS1.0, ACCESS1.3, and
MPI-ESM-P) is 3.5 °C (Fig. 2b). The average RMSEs can
represent the overall errors of the GCMs in simulating tem-
perature. The GISS-E2-H, CMCC-CMS, and GISS-E2-R-CC
have the best and the ACCESS1.3, INM-CM4, and IPSL-

Fig. 2 The measures of the
performance for seasonal
temperature a Mean bias. b
RMSE. cNSE (for the GCMs that
have at least one season with a
NSE less than − 1, the minimum
value of seasonal NSE is written).
d r. e KS. f Sen’s slope of the
trend
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CM5B-LR have the poor performance to simulate tempera-
ture in annual and seasonal time scales (Table 2).

According to the annual NSE (Fig. 1c), the performance of
the most GCMs for annual temperature is good, while the
seasonal NSE (Fig. 2c) of the GCMs varies markedly. This
difference can be well illustrated through the boxplots (Fig. 3).
For example, for the ACCESS1.0, the annual NSE is 0.81,

which is a relatively high value, and the boxplot of its annual
temperature is close to the boxplot of the CRU annual tem-
perature. Conversely, the seasonal NSE values of this GCM
are largely negative, and the boxplots of its seasonal simula-
tions are entirely incompatible with those of the CRU ones for
all seasons. Hence, better GCMs are those that have positive
values for annual and seasonal NSEs. The best GCMs in terms

Table 2 Rank of the GCMs for annual and seasonal temperature based on the mean bias, RMSE, NSE, r, KS, and the Sen’s slope of the trend

GCM Measure of the performance

Mean bias RMSE NSE r KS Sen’s slope

Annual Seasonal Annual Seasonal Annual Seasonal Annual Seasonal Annual Seasonal Annual Seasonal

ACCESS1.0 15 36 20 36 20 36 27 35 15 35 11 23

ACCESS1.3 35 37 34 37 34 37 37 34 33 37 31 24

CanCM4 9 14 6 17 6 17 2 1 11 17 5 8

CanESM2 4 15 2 18 2 18 6 6 1 23 25 18

CMCC-CESM 18 7 23 13 23 13 36 33 13 6 4 1

CMCC-CM 16 4 11 3 11 3 10 3 18 2 17 9

CMCC-CMS 2 1 7 1 7 1 11 9 4 1 7 6

CNRM-CM5 1 24 14 21 14 21 13 7 5 20 36 35

CNRM-CM5–2 5 20 15 26 15 26 14 4 3 24 33 32

FGOALS-s2 34 23 33 22 33 22 35 37 35 26 32 33

GFDL-CM2.1 6 16 8 20 8 20 18 24 2 15 27 12

GFDL-CM3 17 8 9 6 9 6 22 20 10 8 12 15

GFDL-ESM2G 21 9 18 7 18 7 19 22 26 12 19 3

GFDL-ESM2M 31 19 27 14 27 14 23 23 30 21 21 30

GISS-E2-H 14 12 4 2 4 2 3 8 9 7 35 36

GISS-E2-H-CC 11 10 3 8 3 8 4 11 7 13 22 26

GISS-E2-R 8 17 5 16 5 16 5 21 6 18 37 37

GISS-E2-R-CC 10 18 1 11 1 11 1 16 8 19 23 17

HadCM3 13 5 10 5 10 5 7 12 16 9 24 28

HadGEM2-AO 27 22 25 25 25 25 29 30 25 14 3 2

HadGEM2-CC 23 13 17 19 17 19 25 27 24 10 26 21

HadGEM2-ES 28 21 26 24 26 24 26 25 28 16 6 7

INM-CM4 37 34 37 33 37 33 34 26 36 31 29 29

IPSL-CM5A-LR 24 11 29 15 29 15 24 18 20 11 13 5

IPSL-CM5A-MR 12 6 16 4 16 4 15 10 14 3 9 4

IPSL-CM5B-LR 33 30 36 32 36 32 31 29 32 28 15 19

MIROC4h 30 29 32 30 32 30 33 36 31 32 28 27

MIROC5 29 31 31 29 31 29 28 31 29 33 1 25

MIROC-ESM 32 26 28 9 28 9 8 2 34 22 34 34

MIROC-ESM-CHEM 36 33 35 28 35 28 9 5 37 34 8 13

MPI-ESM-LR 26 27 22 23 22 23 17 13 27 30 16 20

MPI-ESM-MR 20 32 13 27 13 27 21 19 23 29 14 16

MPI-ESM-P 25 35 12 35 12 35 12 14 22 36 20 22

MRI-CGCM3 22 28 30 34 30 34 20 17 21 27 18 10

MRI-ESM1 19 25 24 31 24 31 16 15 19 25 30 31

NorESM1-M 3 2 21 10 21 10 32 32 12 4 2 14

NorESM1-ME 7 3 19 12 19 12 30 28 17 5 10 11

Performance of the general circulation models in simulating temperature and precipitation over Iran 1473



of the NSE for annual and seasonal time scales are the GISS-
E2-H, CMCC-CMS, and GISS-E2-R-CC, while the
ACCESS1.3, INM-CM4, and IPSL-CM5B-LR are the
GCMs with the lowest performance (Table 2).

The correlation coefficient (r) is relatively high for most
GCMs at both annual and seasonal time scales (Figs. 1d and
2d). In other words, the GCMs’ simulations can represent
similar results to the observation for seasonal and annual tem-
perature. Based on the annual and seasonal ranking of the
GCMs (Table 2), the CanCM4, MIROC4h, and GISS-E2-H

have the best correlation with the observed temperature (the
CMCC-CMS is among the top ten), while the FGOALS-s2,
ACCESS1.3, and MIROC-ESM have the lowest correlation.

The KS shows that the simulated distribution of tempera-
ture varies significantly among the GCMs (Figs. 1e and 2e).
This difference is also demonstrated by the boxplots, particu-
larly for seasonal temperature (Fig. 3). Figure 3 illustrates that
the CDFs of the CRU observation lie between those of the
GCMs’ simulations for annual and seasonal temperature. We
can correct the biases of some GCMs’ simulations (e.g., the

Fig. 3 The ECDFs of the CRU
observations (thick blue lines on
the left plots), the ECDFs of the
GCM simulations (thin gray lines
on the left plots), the boxplots of
the CRU observations (shaded
boxes on the right plots), and the
boxplots of the GCM simulations
(blank boxes on the right plots)
for annual (first row), winter
(second row), spring (third row),
summer (fourth row), and fall
temperature (fifth row)
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CMCC-CM, HadGEM2-CC, HadGEM2-ES, and MPI-ESM-
LR) for annual temperature using the methods that can adjust
only the mean of the simulations such as the additive linear
scaling method. For some other GCMs, the variance scaling
method can be proper to correct both the mean and variance of
the simulations. The distribution of the temperature (observa-
tions and most simulations) is approximately normal with few
extreme values (see Fig. 3); thus, most temperature simula-
tions (but not those that have biases in their quantiles) can be
corrected using simple bias correction methods. The CMCC-
CMS, GISS-E2-H, and NorESM1-M are the best GCMs at the
annual and seasonal scales, while the MIROC5, ACCESS1.3,
and INM-CM4 show a poor performance in simulating
temperature.

Trend, a long-term increase or decrease in values over time,
is one of the most important properties of the time series in
climate change analyses. The trend of the annual, winter,
spring, summer, and fall temperature of the CRU dataset is
0.012, 0.013, 0.012, 0.013, and 0.009 °C per year, respective-
ly (they are significant). There is also a significant upward
trend in the annual and seasonal temperature of the most
GCMs (Figs. 1f and 2f). None of the GCMs (excluding
CNRM-CM5 and HadGEM2-CC for spring and winter, re-
spectively) show a negative trend. The CMCC-CESM,
HadGEM2-AO, CanCM4, and CMCC-CMS are the leading
GCMs in the ranking for both annual and seasonal time scales,
and the GISS-E2-R, GISS-E2-H, and CNRM-CM5 are at the
end of the ranking.

The performance of the GCMs is further illustrated in
Fig. 4 through the Taylor diagram for annual and seasonal
temperature. Figure 4a illustrates that for the annual tem-
perature, the CRMSE of the GCMs is less than 2 °C, the
correlation between simulations and observed time series is
larger than 0.9, and the standard deviations of the simula-
tions are close to that of observations. Therefore, we can
conclude that most GCMs can reasonably simulate annual
temperature. Similarly, the Taylor diagrams show that most
GCMs have a good performance in simulating spring and
fall temperature (Fig. 4c, e). However, for winter and sum-
mer temperature (Fig. 4b, d), the two extreme seasons,
most GCMs have a poor performance compared to spring
and fall temperature. For winter temperature, many GCMs
have correlations less than 0.9, and the standard deviations
of the simulations are more spread out around the standard
deviation of the observations. For summer temperature,
most GCMs systematically overestimate the standard devi-
ation. The CanCM4, CanESM2, CMCC-CM, CMCC-
CMS, MIROC4h, and MIROC5 can be defined as the best
GCMs in terms of the Taylor diagram. Note that the Taylor
diagram assesses GCMs solely based on the three afore-
mentioned statistics. Consequently, the final decision for
the best GCM can be made by the users based on their
priorities and performance criteria.

The measures of the performance for annual and seasonal
precipitation are illustrated through bar plots in Figs. 5 and 6,
respectively. Furthermore, the annual and seasonal ranking of
the GCMs for eachmeasure of the performance is presented in
Table 3. To further investigate the performance of the GCMs
in simulating annual and seasonal precipitation, the ECDFs
and boxplots of the GCM simulations and the CRU observa-
tion are illustrated in Fig. 7. We can compare the mean, stan-
dard deviation, skewness, and extreme values of the GCMs’
simulations and CRU observations using the ECDFs and
boxplots.

Figure 5c shows that only 13 GCMs from 7 modeling
groups have positive NSE for annual precipitation and, there-
fore, have a relatively good performance in simulating precip-
itation, while other GCMs have a poor performance over Iran,
such that the mean annual precipitation of the CRU dataset is a
better predictor than the GCMs’ simulations. The result dem-
onstrates that the performance of the GCMs in simulating
temperature is much better than precipitation. The seasonal
NSE shows that the performance of the GCMs is even more
critical for the seasonal precipitation (Fig. 6c). The boxplots
show that there is a large difference between the distribution of
the simulations and observations, especially in the right tail of
the distributions (Fig. 7). Precipitation is a skewed variable,
but most GCMs overestimate or underestimate the skewness,
and since the NSE is sensitive to extremes, it becomes nega-
tive for most GCMs. In terms of annual and seasonal NSE,
The CMCC-CM, MRI-CGCM3, MRI-ESM1, and CMCC-
CMS are the best performing GCMs, while ACCESS1.0,
GISS-E2-R, and MIROC5 exhibit poor performance.

The average absolute mean bias of all GCMs for the annual
precipitation is 37 mm, while the mean annual precipitation of
the CRU dataset is 200 mm (Fig. 5a). Similar to the tempera-
ture simulations, some GCMs consistently overestimate or
underestimate precipitation for all seasons, which can indicate
a systematic bias in simulating physical processes of precipi-
tation over Iran (Fig. 6a). For example, the IPSL-CM5A-LR
underestimates temperature and precipitation, while the
MIROC4h and MIROC5 overestimate those variables in all
seasons. The GFDL-CM2p1, GFDL-ESM2G, NorESM1-M,
and CMCC-CMS are the best GCMs based on the annual and
seasonal mean bias ranking, and the ACCESS1.0, GISS-E2-
R-CC, and MIROC4h have the largest biases (Table 3).

The average annual RMSE of all GCMs is 134 mm, which is
a large value relative to the mean annual observed precipitation.
Results reveal that the GCMs have relatively poor performance
in representing annual precipitation values for Iran (Fig. 5b).
According to Table 3, the CMCC-CM, MRI-CGCM3, MRI-
ESM1, andCMCC-CMS are the best GCMs based on the annual
and seasonal RMSE, and the ACCESS1.0, GISS-E2-R, and
MIROC5 show a poor performance.Note thatmanyGCMs have
larger RMSEs for winter and spring precipitation (Fig. 6b) be-
cause themeanwinter (87mm) and themean spring precipitation
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(78mm) are larger than themean summer (10mm) and themean
fall precipitation (25 mm).

The average r is 0.70, 0.35, 0.54, 0.65, and 0.50 for the
annual, winter, spring, summer, and fall GCMs’ precipitation,
respectively (Figs. 5d and 6d). The results can indicate that
although most GCMs cannot properly represent observed pre-
cipitation values (according to the mean bias, RMSE, and
NSE), they can approximately simulate the long-term time
series (trend) of the observed annual and seasonal precipita-
tion. The MRI-CGCM3, MRI-ESM1, and GISS-E2-H have
the highest, and the FGOALS-s2, CMCC-CESM, and
MIROC-ESM have the lowest correlations. The negative
values of the NSE, relatively large values of the RMSE, and
relatively low values of r indicate that the highly complex
nonlinear processes of precipitation make it difficult to
simulate.

The distribution of precipitation is important for various hy-
drological and climatological studies such as frequency analysis,
forecasting, drought, and rainfall runoff. Figure 7 illustrates that
the ECDF of the CRU precipitation is inside the envelope of the
ECDFs of the GCMs for annual and seasonal precipitation.
However, the boxplots of the GCMs simulations (Fig. 7) show
that the GCMs cannot properly represent the distribution of the
seasonal precipitation nor annual precipitation. The results con-
firm that the majority of the precipitation simulations need more
complex bias correction methods than the temperature simula-
tions. This conclusion is compatible with previous studies (e.g.,
Argüeso et al. 2013). The distribution mapping approach with
the local intensity scaling method (for correcting the wet-day
frequencies) can be useful for improving the GCM simulations.
The annual and seasonal KS ranking of the GCMs (Table 3)
shows that the annual and seasonal distributions of the CMCC-

Fig. 4 The Taylor diagram of the
GCMs simulations for a annual, b
winter, c spring, d summer, and e
fall temperature
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CMS, GFDL-ESM2G, and NorESM1-M are closest to those of
the CRU dataset, and the distributions of the MIROC4h,
ACCESS1.0, and IPSL-CM5A-MR have the largest difference
from those of the observed precipitation.

The Sen’s slope of the trend for the CRU precipitation is −
0.35, 0.13,− 0.27,− 0.01, and− 0.04mm/year for annual, winter,
spring, summer, and fall precipitation, respectively. Note that all
trends are insignificant. Similarly, most GCMs represent insig-
nificant trends for annual and seasonal precipitation excluding
the CanESM2 and MPI-ESM-P for winter, GFDL-CM2p1 and

MPI-ESM-P for spring, GISS-E2-R-CC and IPSL-CM5A-LR
for summer, and CMCC-CM and CMCC-CMS for fall. The
ACCESS1.0, MRI-CGCM3, and HadCM3 are at the top of the
ranking for trend, while the MPI-ESM-P, CNRM-CM5-2, and
MIROC5 are at the bottom.

To better evaluate the performance of the GCMs relative to
the CRU observations, the Taylor diagrams for annual and
seasonal precipitation are illustrated in Fig. 8. Precipitation
simulations are more spread out on the Taylor diagram com-
pared to the temperature simulations (Figs. 4 and 8). This can

Fig. 5 The measures of the
performance for annual
precipitation. a Mean bias. b
RMSE. c NSE. d r. e KS. f Sen’s
slope of the trend
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confirm that the performance of the GCMs to simulate tem-
perature is better than those of the precipitation. In addition,
the diagram indicates that the GCMs from the same modeling
group lie close together and behave similarly. The correlation
of the simulations with observed annual precipitation varies
between 0.4 and 0.7 (Fig. 8a), while this correlation is smaller
for seasonal precipitation (Fig. 8b–e). According to the Taylor
diagram, the CMCC-CM, CMCC-CMS, IPSL-CM5A-LR,
IPSL-CM5A-MR, MRI-CGCM3, and MRI-ESM1 can be

identified as the best GCMs for annual and seasonal precipi-
tation (Fig. 8).

5 Summary and concluding remarks

GCMs are the vital tool to simulate atmosphere-land-ocean
circulations and to project climate change. Although many

Fig. 6 The measures of the
performance for seasonal
precipitation. a Mean bias. b
RMSE. cNSE (for the GCMs that
have at least one season with a
NSE less than − 1, the minimum
value of seasonal NSE is written).
d r. e KS. f Sen’s slope of the
trend
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studies use GCMs for the climate change research and impact
assessment, there is no credibility evaluation of the GCMs’
simulations over Iran. This work is the first study that evalu-
ated the performance of the GCMs’ simulations (temperature
and precipitation) including 37 CMIP5 GCMs (Table 1) with
seven measures of the performance (mean bias, RMSE, NSE,
r, KS, Sen’s slope estimator, and Taylor diagram) over Iran.

The annual and seasonal analysis of the results
showed that the GCMs are able to simulate annual
and seasonal temperature better than precipitation over
Iran. This can reveal the necessity of bias correction
prior to using GCM outputs, in particular for the pre-
cipitation values. The results can help to understand the
deficiencies of the GCMs in simulating temperature and

Table 3 Rank of the GCMs for annual and seasonal precipitation based on the mean bias, RMSE, NSE, r, KS, and the Sen’s slope of the trend

GCM Measure of the performance

Mean bias RMSE NSE r KS Sen’s slope

Annual Seasonal Annual Seasonal Annual Seasonal Annual Seasonal Annual Seasonal Annual Seasonal

ACCESS1.0 37 36 36 37 36 37 16 27 35 37 4 1

ACCESS1.3 13 33 14 34 14 34 6 25 10 27 20 27

CanCM4 23 16 19 14 19 14 32 26 24 16 29 32

CanESM2 26 19 22 19 22 19 30 34 28 22 18 5

CMCC-CESM 30 26 30 27 30 27 35 36 34 35 13 7

CMCC-CM 10 9 2 1 2 1 5 10 19 17 17 13

CMCC-CMS 7 5 1 7 1 7 19 23 4 3 36 14

CNRM-CM5 25 17 28 24 28 24 20 19 18 12 9 25

CNRM-CM5–2 22 15 26 18 26 18 13 7 15 11 31 34

FGOALS-s2 28 22 27 30 27 30 37 37 31 21 28 15

GFDL-CM2.1 1 7 15 20 15 20 31 31 6 6 37 11

GFDL-CM3 15 24 23 23 23 23 21 18 12 14 25 35

GFDL-ESM2G 4 6 7 4 7 4 22 12 3 4 32 17

GFDL-ESM2M 5 18 17 21 17 21 26 22 14 15 16 22

GISS-E2-H 32 31 29 31 29 31 3 3 23 26 33 8

GISS-E2-H-CC 31 29 31 25 31 25 4 8 27 24 12 31

GISS-E2-R 35 35 35 36 35 36 18 20 30 30 10 3

GISS-E2-R-CC 34 37 34 33 34 33 9 16 29 34 21 26

HadCM3 12 1 5 5 5 5 11 17 11 1 6 4

HadGEM2-AO 24 11 20 16 20 16 14 11 17 5 15 29

HadGEM2-CC 21 8 16 12 16 12 15 5 16 2 24 10

HadGEM2-ES 16 3 13 8 13 8 17 6 8 9 8 19

INM-CM4 18 20 12 6 12 6 27 24 21 29 11 9

IPSL-CM5A-LR 27 21 18 10 18 10 10 13 32 23 7 12

IPSL-CM5A-MR 29 25 25 17 25 17 7 14 37 32 5 18

IPSL-CM5B-LR 17 13 32 28 32 28 8 4 9 13 27 36

MIROC4h 20 27 24 22 24 22 34 35 25 31 2 24

MIROC5 19 28 21 26 21 26 33 33 22 28 22 20

MIROC-ESM 36 34 33 29 33 29 25 21 36 36 19 2

MIROC-ESM-CHEM 33 30 37 32 37 32 36 32 33 25 30 33

MPI-ESM-LR 14 23 10 15 10 15 12 15 26 20 3 28

MPI-ESM-MR 8 12 11 9 11 9 23 9 13 19 34 16

MPI-ESM-P 11 32 9 35 9 35 24 29 20 33 35 37

MRI-CGCM3 2 14 4 2 4 2 1 1 7 18 1 6

MRI-ESM1 3 10 3 3 3 3 2 2 5 10 26 23

NorESM1-M 6 4 8 11 8 11 29 28 1 8 23 21

NorESM1-ME 9 2 6 13 6 13 28 30 2 7 14 30
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precipitation in order to find a proper bias correction
method. The findings can be useful for the climate
and process modeling groups who develop and modify
the models.

In addition, results indicated that for temperature sim-
ulations, the CMCC-CMS has the best performance
among all GCMs, while the ACCESS1.3 and INM-
CM4 show a poor performance constantly. For precipi-
tation, the MRI-CGCM3 is a top-ranking model based
on the most performance measures, while MIROC5 and

ACCESS1.0 exhibit poor performance. Note that the
CMCC-CMS, found as the best performing GCM for
temperature, has the fourth rank in the mean bias,
RMSE, and NSE, and the first rank in the KS for pre-
cipitation; therefore, we can consider this model as the
best GCM in simulating both precipitation and temper-
ature over Iran. Many authors believe that single models
are unreliable (Weigel et al. 2008) and multi-model en-
sembles are superior to individual GCMs (Miao et al.
2014) since the ensemble can consider different

Fig. 7 The ECDFs of the CRU
observations (thick blue lines on
the left plots), the ECDFs of the
GCMs simulations (thin gray
lines on the left plots), the
boxplots of the CRU observations
(shaded boxes on the right plots),
and the boxplots of the GCMs
simulations (blank boxes on the
right plots) for annual (first row),
winter (second row), spring (third
row), summer (fourth row), and
fall precipitation (fifth row)
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information with possible uncertainties (Pincus et al.
2008). Hence, we suggest that researchers and users
apply ensemble methods on the best performing GCMs
based on our results.

The results can assist climatologists, hydrologists, and water
resources managers to choose suitable GCMs for their related
applications. Although this study ranked the GCMs for Iran, the
results can be useful for other locations that have the same physical
features (e.g., topography and climate) as Iran.
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