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Abstract
The difference between the time series trend for temperature expected from the increasing level of atmospheric CO2 and that for the
(more slowly rising) observed temperature has been termed the global surface temperature slowdown. In this paper, we characterise the
single time series made from the subtraction of these two time series as the ‘global surface temperature gap’. We also develop an
analogous atmospheric CO2 gap series from the difference between the level of CO2 and first-differenceCO2 (that is, the change in CO2

from one period to the next). This paper provides three further pieces of evidence concerning the global surface temperature slowdown.
First, we find that the present size of both the global surface temperature gap and the CO2 gap is unprecedented over a period starting at
least as far back as the 1860s. Second, ARDL and Granger causality analyses involving the global surface temperature gap against the
major candidate physical drivers of the ocean heat sink and biosphere evapotranspiration are conducted. In each case where ocean heat
data was available, it was significant in the models: however, evapotranspiration, or its argued surrogate precipitation, also remained
significant in the models alongside ocean heat. In terms of relative scale, the standardised regression coefficient for evapotranspiration
was repeatedly of the same order of magnitude as—typically as much as half that for—ocean heat. The foregoing is evidence that,
alongside the ocean heat sink, evapotranspiration is also likely to be making a substantial contribution to the global atmospheric
temperature outcome. Third, there is evidence that both the ocean heat sink and the evapotranspiration process might be able to
continue into the future to keep the temperature lower than the level-of-CO2modelswould suggest. It is shown that thismeans there can
be benefit in using the first-difference CO2 to temperature relationship shown in Leggett and Ball (Atmos Chem Phys 15(20):11571–
11592, 2015) to forecast future global surface temperature.

1 Introduction

A central issue in climate science has been that over the past two
decades the observed global surface temperature trend has been
lower than that expected from the majority of climate
simulations.

This difference has been given various names including the
pause (for example, Trenberth and Fasullo (2013), the hiatus
(for example, Meehl et al. 2011, the Intergovernmental Panel
on Climate Change Fifth Assessment Report (hereafter AR5)
(IPCC 2013), the inconsistency between observed and simu-
lated global warming (Fyfe et al. 2013) and the climate model/

temperature mismatch (Leggett and Ball 2015 (hereafter L&B
2015)).

Along with Yan et al. (2016), who consider the term hiatus
a misnomer, we do not use the terms ‘pause’ or ‘hiatus’ be-
cause of their implication that the future is known. In this
paper, we will formally use the term ‘global surface tempera-
ture simulation/observation inconsistency’. For brevity in the
paper, we will use the term ‘the temperature gap’.

1.1 Expressing the temperature gap

L&B (2015) provided evidence that temperature does not fol-
low the level of atmospheric carbon dioxide (CO2) but first-
difference CO2 (that is, the change in CO2 over time). This can
be restated as Btemperature expected from simulation minus
observed temperature gives a gap (a Btemperature gap^); and
the time series of the level of CO2 minus the time series for
first-difference CO2 gives a second series analogous to the
temperature gap series (a BCO2 gap^)^.
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A key point is that to compare either of these gaps with other
series as an outcome—dependent—variable it will greatly enable
interpretation if we have a single series for the gap. Single series
for each of the temperature and CO2 gaps are therefore used in
this study (For full details of derivation, see Section 4.2.1).

Each of these two gap series is a compound series derived
from two underlying series. Examples of the use of climate
time series derived in this way include a series of the Bmean
difference between ensemble members and a control
simulation^ (Notaro and Liu 2008); Bthe ensemble mean dif-
ferences, INT minus CLI, to represent the signal of the influ-
ences of vegetation variability…^ (Zhu and Zeng 2016); and
evaluating the effect of rising atmospheric CO2 based on Bthe
differences between simulations^ (Zeng et al. 2017).

1.2 The scope of this paper

L&B (2015) analysed this gap situation from the start of CO2

recordings at Mauna Loa in 1959.
Since L&B (2015), other studies beyond those reviewed in

that paper have provided explanations for the temperature gap.
These studies used variables other than first-difference CO2.
Such variables have involved, for example, the Atlantic Multi-
decadal Oscillation (AMO) (e.g. Pasini et al. (2016)). That noted,
we have been able to find no further studies investigating the
correlation between first-difference CO2 and temperature.

This paper therefore deals with three questions relating to the
correlation between first-difference CO2 and temperature. First,
what do the temperature and CO2 gaps look like over a longer
previous term; and over this longer period do temperature gaps
appear frequently or is the current gap unusual? Second, are there
potentially causal correlates between other, physical, climate fac-
tors and the temperature gap? These questions are explored both
for the long termwith annual data and, seeking corroboration, for
series available only more recently, with monthly data. Third, if
causal physical correlates between other climate factors and the
temperature gap are found, do these have a capacity to further
enlarge the temperature gap—that is, in the decades ahead to
continue to keep the observed temperature trend below the tra-
jectory of the future simulation trend based on level of CO2?

The scope of this paper is therefore to further characterise and
explore the specific topic of the relationship of first-difference
CO2 with temperature rather than to describe and compare the
full range of published proposed causes of the temperature gap.

1.3 Candidate physical causal factors
for the temperature gap in detail

As the gap is a temperature and therefore heat gap, the physical
climate factors which might cause the gap are those which affect
the global heat budget. Concerning the climate system compo-
nents considered as actually or potentially affecting the global
heat budget AR5 (p. 1451) states: Bthe climate system consists of

five major components: the atmosphere, the hydrosphere, the
cryosphere, the lithosphere and the biosphere.^ Of these, AR5
(p. 264) states that where energy budgets are concerned, the
hydrosphere dominates: BOcean warming dominates the total
energy change inventory, accounting for roughly 93% on aver-
age from 1971 to 2010 (high confidence). Melting ice (including
Arctic sea ice, ice sheets and glaciers) accounts for 3% of the
total, and warming of the continents 3%. Warming of the atmo-
sphere makes up the remaining 1%.^

It is noteworthy that the biosphere is not mentioned in this
heat budget.

This view is still prominent today. In a review, Yan et al.
(2016) argue that the slowing of the rate of global mean sur-
face warming from 1998 to 2013 represents a redistribution of
energy within the Earth system. They then go on to write
BImproved understanding of ocean distribution and redistri-
bution of heat will help us better monitor Earth’s energy
budget.^ [Present authors’ emphasis]

Similarly few instances are found in AR5 on the question
of the role of vegetation as substantially affecting the heat
budget. For example, AR5 states on page 707: BOverall, veg-
etation changes may have caused modest cooling at high lat-
itudes and warming at low latitudes, but the uncertainties are
large and confidence is very low.^

More widely, however, literature exists to suggest that
global vegetation can have large effects on the global heat
budget, particularly through evapotranspiration. This litera-
ture resulted initially from global climate modelling (GCM)
and includes the following.

Kleidon et al. (2000) quantified the maximum possible
influence of vegetation on the global climate by conducting
two extreme climate model simulations: in a first simulation a
‘desert world’, and at the other extreme, a second simulation
of a ‘green planet’. Land surface evapotranspiration more than
triples in the presence of the ‘green planet’, and (resulting
from the increase in latent heat flux) mean near-surface tem-
peratures are lower by as much as 8 K.

Bounoua et al. (2000) reported that important effects of
increased vegetation on climate are a cooling of about 1.8 K
in the northern latitudes during the growing season and a
slight warming during the winter, which is primarily due to
the masking of high albedo of snow by a denser canopy, and a
year-round cooling of 0.8 K in the Tropics.

Bounoua et al. (2010), conducting climate simulations with
twice the current level of CO2, found that increased evapo-
transpiration reduced land surface warming by 0.6 °C.

From Table 1 of Zhu and Zeng (2015), an almost doubling of
evapotranspiration was modelled, and this was associated with a
2.74 K decrease in temperature.

Using an empirical approach, Zeng et al. (2017) have
shown that of the overall sum of biophysical feedbacks related
to the greening of the Earth, the net effect—some 79%—was
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cooling. Of this 79%, evapotranspiration contributed the larg-
est amount, some 41 percentage points.

Zeng et al. (2017) show that there is a net cooling from
global vegetation. This net cooling effect is the sum of cooling
from increased evapotranspiration (70%), changed atmo-
spheric circulation (44%), decreased shortwave transmissivity
(21%), and warming from increased longwave air emissivity
(− 29%) and decreased albedo (− 6%).

Shen et al. (2015), using a statistical model, showed that
Bevaporative cooling over the Tibetan Plateau induced by veg-
etation growth may attenuate daytime warming by enhancing
evapotranspiration (ET), a cooling process.^

How much of the evapotranspiration is from transpira-
tion—that is, from plants? The percentage of total terrestrial
evaporation which is evapotranspiration found from isotope
observational methods is as follows: from run-off-based stable
isotope techniques, 80 to 90% (Jasechko et al. 2013); and
hybrid stable isotope techniques, 64 ± 13% (Good et al.
2015). It can be seen that from both estimates, the transpira-
tion proportion is large.

In looking into the mechanism, Ban-Weiss et al. (2011) ob-
serve that evapotranspiration removes sensible heat by turning it
into latent heat. Increased latent heat flux to the atmosphere has a
local cooling influence known as ‘evaporative cooling’.
However, as Ban-Weiss et al. point out, this energy will be re-
leased back to the atmosphere wherever the water condenses.
That said, the above studies provide evidence that a longer lasting
global cooling effect does occur by some mechanism. Using
idealised climate model simulations, Ban-Weiss et al. suggest
that a decrease in global mean surface air temperature of about
0.54 K can occur via this effect, largely as a consequence of
planetary albedo increases associated with an increase in low
elevation cloudiness caused by the increased evaporation.

This result leads us to the situation where a mechanism
involving large but transitory heat sink behaviour may lead
to a large long-term effect on the heat budget not as a heat sink
but via reflection of fresh incoming energy away from the
Earth’s surface.

In any event, the foregoing leads us, in what follows, to
seek terrestrial vegetation evapotranspiration relationships, in
addition to ocean heat relationships, with the temperature gap.

We now seek to determine the full list of candidate indicators
for evapotranspiration and the ocean heat sink. Published evapo-
transpiration datasets from satellite sensing are available.
However, they are short in duration, extending only from the
1980s (McCabe et al. 2016; Zhang et al. 2015). An alternate
approach which provides markedly longer time series is as fol-
lows. Walter et al. (2004) state: BEvaporation or evapotranspira-
tion (ET) trends can be identified by using published data and
assuming that the balance among precipitation, streamflow, and
ET dominates the terrestrial hydrological budget on annual and
longer time scales.^

Hence, one indicator of global evapotranspiration is global
precipitation minus global runoff and this data series is used in
this paper. The normalised difference vegetation index
(NDVI) can act as an indicator and is also used in this paper.

For the ocean heat sink, ocean heat content series are avail-
able from the National Oceanic and Atmospheric
Administration (NOAA) and the Japan Meteorological
Organisation (JMO) and are used.

A further major influence on climate is volcanic aerosols.
Yan et al. (2016) state that intermittent events, such as the
eruptions of major volcanoes like El Chichón (which began
erupting in1982) and Pinatubo (which began erupting in
1991), can temporarily counteract long-term warming. The
effect of volcanic aerosols on the temperature gap is therefore
also explored in this paper.

We note that all of the above research has looked at the
effect on climate of only one or other of evapotranspiation and
the ocean heat sink. In this paper, we look for the effects on the
temperature gap of both factors together.

1.4 Structure of this paper

The structure of the rest of the paper is as follows. Section 2
provides a scan of the quantitative research methods available
and chooses time series regression as the most suitable. In
some instances, this is in the form of ordinary least squares
(OLS) analysis but usually the autoregressive distributed lag
(ARDL) and vector autoregression (VAR) methods from
econometrics are used.

Section 3 explores the methods and data used to undertake
our analysis. Using these methods, in Section 4 (Results), we
first consider how far back in time the temperature gap and its
associated CO2 gap extend. Having determined this, we ex-
plore the potential drivers of the outcome variable, the tem-
perature gap. We first explore the CO2 gap as a driver of the
temperature gap. This pair of series goes back to the 1860s,
providing a considerable period of data for analysis.

The CO2 gap being a non-physical construct, we then turn
to assessing physical candidate drivers of the temperature gap.
These drivers are evapotranspiration, the oceanic heat sink
and volcanic aerosol emissions.We start by seeking long driv-
er series commensurate with the CO2 gap. Volcanic aerosols
have a lengthy data series. But evapotranspiration and ocean
heat series are shorter, commencing only in 1949 and 1950,
respectively. However, we show that evapotranspiration cor-
relates well with precipitation for which we have a series from
1901. So first we explore correlations of precipitation and
volcanic aerosols with the temperature gap over the longer
data series. We next explore correlation from 1950 for precip-
itation, ocean heat and volcanic aerosols. We then explore
correlations for evapotranspiration ocean heat and volcanic
aerosols.
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In Section 5, we explore how long the described conditions
might last into the future. Section 6 provides a discussion and
conclusion.

2 Methodological issues and objectives
of the study

In this section, we seek to determine the best data analysis
process with which to study the interactions of the preceding
climate time series as potential causes and effects of each other.

2.1 Choice of overarching data analysis process
for the study

We start by assessing the full continuum of data analysis
models from which to choose.

Karplus (1977, 1992) has provided a framework for the
characterisation and classification of models of systems.
Enting (1987, 2010) has used this framework to assess model
types used in climate studies.

In connection with his framework, Karplus (1992) ob-
serves that valid models of systems are the key to the success-
ful prediction of the response (outputs) of systems to specified
excitations (inputs). Karplus goes on to observe that there are
numerous techniques, but all can be regarded as employing
combinations of deduction and induction in varying
proportions.

Karplus (1977) termed this deduction-induction range as a
modelling spectrum. The position that each model took in the
spectrum represented the degree of deduction as opposed to
induction that was involved in the modelling process. The
spectrum was described at the induction end as involving
black-box models (characterised as being highly empirical,
and only representing relations between inputs and outputs).
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The ‘curve-fitting’ model of a ‘black-box’ system is deter-
mined inductively from observations of the behaviour of the
system. Curve-fitting, black-box models are typically used in
fields such as economics.

At the deduction end of the spectrum are white-box models
(characterised as having relations between inputs and outputs
defined through processes involving internal states of the sys-
tem expressed in mechanistic terms). White-box models
(Enting (2010) considers that ‘glass-box models’ would have
been a better term) are generally deterministic. White-box
models are frequently used in the physical sciences. The be-
haviour of a ‘white-box’ system can be deduced directly from
knowledge of the system structure and the basic physical laws
that apply to it.

Climate studies have been assessed from the perspective of
the Karplus spectrum by Enting (2010), who finds that both
black-box and white-box models are used. Enting describes
these as follows: black box—statistical fits which include
regression-type analyses of CO2 trends and cycles, correlation

studies relating CO2 and ENSO and empirical fits of transfer
relations connecting concentrations to emissions. These apply
at the globally aggregated level; white box—Earth system
models, built around global climate models (GCMs) for atmo-
sphere and ocean.

In line with Karplus (1977, 1992), Enting (1987) argues
that the spectrum concept gives a useful framework for com-
paring different types of modelling and forces an explicit rec-
ognition that possible uses of a model will depend on the type
of model, i.e. its position within the spectrum.

Within individual climate papers in the literature, a range of
terminology is used for model types. Rahman and Lateh
(2015) divide the range of methods into two broad groups:
simulation techniques and statistical models. In their survey
of methods, Adams et al. (2013) state that the two endpoints
on a theoretical continuum of mechanisms are process-based
and empirical model types. This terminology is also used by
Li (2017). Moore et al. (2013) defined two model categories:
physically plausible models of reduced complexity that

270

290

310

330

350

370

390

410

430

1862 1882 1902 1922 1942 1962 1982 2002

L
e
v
e
l
 
o

f
 
C

O
2
 
(
p

p
m

)

Fig. 3 Level of CO2 data used.
Black curve: unsmoothed (raw)
annual ice core level-of-CO2 data
1850–2000 in parts per million.
The curve shows the result of lin-
ear interpolation from adjacent
data points over the blanks shown
in Fig. 2. Red curve: atmospheric
CO2 (ppm) 1959–2016 from
Mauna Loa Observatory

-6

-4

-2

0

2

4

6

8

1861 1881 1901 1921 1941 1961 1981 2001

Fi
rs

t-
di

ffe
re

nc
e 

CO
2 

(p
pm

)

Fig. 4 Black curve: first-
difference annual ice core level-
of-CO2 data 1850–2000 in parts
per million. Red curve: first-
difference atmospheric CO2

(ppm) 1959–2016 from Mauna
Loa Observatory

Evidence that global evapotranspiration makes a substantial contribution to the global atmospheric... 653



exploit statistical relationships between climate and climate
forcing, and more complex physics-based models of the sep-
arate elements of the climate budget.

Pasini et al. (2016) use the term ‘GCM simulation’ for
white box and ‘data-driven method’ for black box.

With regard to correct model specification, Grassi et al.
(2013) note that process-based climate models (and too-
simple empirical models) are often lacking due to the fact that
climate series display complex statistical properties, and that
modelling of these must be correctly specified to provide valid
statistical inference.

Further on the strengths of black-box models, Pasini et al.
(2016), referring to Pasini et al. (2012) and Triacca et al.
(2014), note that black-box models can point to aspects not
always clearly addressed by white-box modelling.

Pasini and Mazzocchi (2015) and Mazzocchi and
Pasini (2017) argue that many attribution results coming
from non-GCM studies align with those from GCM stud-
ies, implying the robustness of each. These include

identifying anthropogenic forcings as the main drivers of
temperature change.

Such non-GCM methods include neural network investi-
gations which find substantiations of the importance of green-
house gases in driving the recent global warming (see, for
instance, Pasini et al. 2006, 2017; Verdes 2007; Schonwiese
et al. 2010). Granger causality analyses have also established
the major role of anthropogenic forcings, even in comparison
with natural forcings and drivers of natural variability (see
Attanasio et al. (2012) and Pasini et al. (2012); Stern and
Kaufmann (2014) for specific results; and Attanasio et al.
(2013) for a brief review of attribution studies via Granger
causality analyses).

That said, a key issue with GCMs is that, as mentioned at
the outset of this paper, the observed global surface tempera-
ture trend has been lower than that expected from the majority
of climate simulations.

The key approach to check for model adequacy is termed
‘validation’ (Montgomery et al. 2008). A common method of
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validation is to check the ability of the simulation to correctly
predict outputs caused by inputs other than those used in con-
structing the model. This is done by ‘saving’ some system
observations in order to use them later for validation. In sta-
tistics, this is termed the ‘split-sample’, ‘cross-validation’ or
‘train-test’ approach (Montgomery et al. 2008).

Using the split-sample approach, Newman (2013)
finds that an empirical time series model shows global
surface temperature prediction skill better than that of
the major process-based climate models (phase 5 of the
Coupled Model Intercomparison Project (CMIP5)). To
Newman, these results suggested that current coupled
model decadal forecasts may not yet have much predic-
tion skill beyond that captured by multivariate, predict-
ably linear dynamics.

In the AR5 (IPCC 2013) chapter titled Evaluation of
Climate Models, Flato et al. (2013) state (p. 826) B…many
(GCM) studies have failed to find strong relationships be-
tween observables and projections^; and (p. 772): BAlmost
all CMIP5 historical simulations do not reproduce the ob-
served recent warming hiatus.^

One of the reasons for these problems when process models
are used to model climate may be that, as Enting (2010) points
out, process models are vulnerable to neglect of processes—the
‘Kelvin error’. Enting writes: BThe term ‘Kelvin error’ refers to
the risk of missing a process from the modelling, taking its
name from Lord Kelvin’s underestimates of the ages of the
earth and sun due to neglect of nuclear processes.^

By contrast, a black-box model, while its component pro-
cesses are not specified at all, by definition contains all the
component processes of the reality under study.

As we consider this point is the deepest to come out of this
review, we will use the terms white box and black box for the
two extremes of the modelling continuum and take the posi-
tion that black-box modelling is the superior choice of model
for the assessment of the global-temperature simulation/
observation inconsistency.

Our previous study (Leggett and Ball, 2015) utilised such a
black-box approach, explaining the temperature simulation/
observation inconsistency in terms of a highly statistically
significant relationship between first-difference atmospheric
CO2 and global surface temperature. Pasini et al. (2016) also
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used a black-box model—involving the level of CO2 and an
index related to natural variability patterns, the Atlantic
Multidecadal Oscillation (AMO)—which was also able to
correlate with the inconsistency.

This paper therefore will use a black-box method to assess
the roles of level and first-difference CO2 in relation to
temperature.

2.2 Choice of the type of black-box model

Finding the best method within the realm of black-box model-
ling involves several considerations—the full range of black-
box models from which to choose; and given that different
models may have different strengths and weaknesses, consid-
eration of the trade-offs required so that an optimised model-
ling procedure can be chosen.

Within the realm of black-box modelling, there are two
main types of methods—univariate and multivariate (Greene
2012).

Multivariate modelling involves the utilisation of correla-
tion between the outcome variable and at least one causal
variable. Given the evidence for causality between atmospher-
ic CO2 and global surface temperature demonstrated using
multivariate modelling (in its bivariate form) (Leggett and
Ball 2015), the multivariate modelling approach is used in this
study.

Within the realm of multivariate modelling, the base model
is prepared by regression analysis—often termed ‘ordinary
least squares analysis’ (Greene 2012).

There are two broad sub-categories: ordinary least
squares (OLS) regression and regression corrected for a
range of statistical issues that arise when the variables
involved are time series. Time series models (Greene
2012) differ from ordinary regression models in that the
results are in a sequence. Hence, the dependent variable
cannot only be influenced by the independent variables,
but also by prior values of the dependent variable itself.

Table 1 Annual data from 1860 to 2014: results of ADF tests for trend
stationarity allowing for both drift and trend for CO2 gap, temperature gap
and reverse volcanic aerosols

ADF test
statistic

P value ADF test
interpretation

a. level of series

CO2 gap − 1.0845 0.9302 Non-stationary

Temperature gap 2.58709 0.2863 Non-stationary

Reverse volcanic aerosols − 5.08623 0.0001 Trend stationary

b. first difference of series

CO2 gap − 8.94112 1.01E-15 Stationary

Temperature gap − 8.65338 1.11E-14 Stationary
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This is termed autocorrelation between measured values.
This serial nature of the measurements must be addressed
by careful examination of the lag structure of the model.
This type of OLS regression is termed ‘time series analy-
sis’ (Greene 2012).

Given that our data are time series, the choice between OLS
and time series analysis is straightforward—time series anal-
ysis is selected.

2.3 Choice of the type of time series model

The major issue in the realm of the analysis of the particular
time series we are studying concerns what is termed the ‘order
of integration’ of each of the series used.

Greene (2012) states: BThe series yt is said to be integrated
of order one, denoted I(1), because taking a first difference
produces a stationary process. A non-stationary series is inte-
grated of order d, denoted I(d), if it becomes stationary after
being first differenced d times. An I(1) series in its raw
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Fig. 9 Z-scores, 1862 to 2016.
Observed temperature gap (red
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ARDL-modelled from indepen-
dent variables of CO2 gap and
reverse volcanic aerosols (black
curve)

Table 3 Pairwise Granger causality analysis involving variables of
temperature gap and CO2 gap. Annual data from 1862 to 2016

Null hypothesis: Obs Chi-sq df Prob.

CO2 gap does not Granger
cause temperature gap

350 9.883641 5 0.0786*

Temperature gap does not
Granger cause CO2 gap

4.132023 5 0.5306

*10% significance level
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(undifferenced) form will typically be constantly growing, or
wandering about with no tendency to revert to a fixed mean.^

It is not straightforward to deal with mixtures of series with
different orders of integration. This was dealt within L&B
(2015) within the vector autoregressive framework by the
Toda and Yamamoto (1995) method. In returning to this ques-
tion more comprehensively in this paper, we note that Greene
(2012) (p. 999) and also, for example, Janjua et al. (2014) and
Ahmad and Du (2017) show that the ARDL method (Pesaran
et al. 2001) is the most comprehensive current way to address
this question.

This is because this method can be used whether variables
are purely of order of integration I(0), purely I(1) or a mixture
of both I(0) and I(1).

For ARDL, the stationarity or otherwise of each series must
still be assessed. This is to ensure that there are no I(2) or higher
series present. ARDL does not work for such series (Pesaran
et al. 2001). To assess stationarity, a range of tests exists. In this
study, the augmented Dickey-Fuller (ADF) test is used.

The ARDL method gives reliable results whether variables
are purely of order of integration I(0), purely I(1) or a mixture
of both I(0) and I(1) because it uses special significance tests
(called ‘bounds tests’) (Pesaran et al. 2001). These test the
significance of results against both an I(0) realm and an I(1)
realm. If the result passes the test for each realm, a defensible
model is obtained.

If the outcome of the bounds testing is positive, one next
estimates a long-run ‘levels model’. These results are then
used to measure short-run dynamic effects.

With this achieved, a model must be established in which
any autocorrelation in the relationship, if present, is fully
accounted for by use of an optimal lag structure. In this study,
this is done within the ARDL process by use of an information
criterion. Of the several types of information criteria available,
following Greene (2012), we use the Schwarz criterion, which
with its heavier penalty for degrees of freedom lost, B…leans
toward a simpler model. All else given, simplicity does have
some appeal.^
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2.4 Granger causality

Concerning the issue of causality in L&B (2015) we wrote:

One method using correlational data, however, ap-
proaches more closely the quality of information de-
rived from random placement into experimental and
control categories. The concept is that of Granger cau-
sality (Granger 1969). According to Stern and
Kaufmann (2014), a time-series variable Bx^ (e.g. atmo-
spheric CO2) is said to BGranger-cause^ variable By^
(e.g. surface temperature) if past values of x help to
predict the current level of y, better than just the past
values of y do, given all other relevant information.

Amblard and Michel (2013) point out that there is great
closeness between Granger causality and information theory.
We note the centrality to information theory of the case where
information is being transmitted against a background con-
taining a noise—a stochastic—element. With the noise idea
uppermost, therefore, if some of the signature (‘signal’) of
series a is seen at a later point in the makeup of the signal of
series b (and the opposite is not true), this becomes the focus.
Other differences between the series need not primarily con-
cern us.

With this in mind, we seek observational climate series
which precisely measure the variable we are interested in,
and are extensive. It will be seen that this frequently requires
using series which are ‘noisy’. We nonetheless use these and
apply the ARDL and Granger causality analyses to determine
whether useful information is obtained from their interactions.

As in L&B (2015), Granger causality analysis is imple-
mented in the study by using a standard VAR model. As
discussed, the Schwarz information criterion (SIC) is used to
select an optimal maximum lag length (k) for the variables in
the VAR. This lag length is then lengthened, if necessary, to
ensure that firstly the estimated model was dynamically stable
(i.e. all of the inverted roots of the characteristic equation lie
inside the unit circle), and secondly, the errors of the equations
are serially independent.

Granger causality results in this study are only reported if
the VAR models meet the criteria in the preceding paragraph.

This study requires testing for Granger causality between
the levels of some of the data series. In this case, the Granger

Table 4 Annual data from 1949 to 2012: level of series

ADF test
statistic

P value ADF test
interpretation

Precipitation − 5.4359 2.11E-05 Stationary

Evapotranspiration − 6.18452 1.42E-06 Stationary
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causality testing procedure must be modified to allow for the
differences in the orders of integration of the data series. Here,
for each VAR model, the maximum lag length (k) is deter-
mined, but then one additional lagged value of each of the
two variables is included in each equation of the VAR.
However, the Wald test for Granger non-causality is applied
only to the coefficients of the original k lags of CO2. Toda and
Yamamoto (1995) show that this modified Wald test statistic
will still have an asymptotic distribution that is chi-square,
even though the level of CO2 is non-stationary, and the
Granger causality test will be reliable.

We note that for reasons of avoiding duplication of results,
from ARDL we focus on the long-run model results; short-
term dynamics, which are at the heart of VAR Granger cau-
sality analysis, are dealt with there.

3 Methods and data

3.1 Specifics of implementation of ARDL modelling
in this study

This method, in its output, selects the best lags for all variables
and determines whether a significant model is possible.

Pesaran et al. (2001) point out that ARDLmodelling is B…
also based on the assumption that the disturbances … are
serially uncorrelated. It is therefore important that the lag order
p of the underlying VAR is selected appropriately. There is a
delicate balance between choosing p sufficiently large to mit-
igate the residual serial correlation problem and, at the same
time, sufficiently small so that the conditional ECM is not
unduly over-parameterized, particularly (when) limited time
series data… are available.^

We therefore provide the ARDL method with an adequate-
ly large pool of runs from which to seek the best specified
model—that is, one with the lowest Schwarz information cri-
terion. Only models which pass all the tests for model speci-
fication listed in Section 3 above are used. Hence, each ARDL
table is set up with a common structure as follows.

Each table has an ‘a’ and a ‘b’ section. The specific way in
which each model passes the model specification tests is
shown in the ‘a’ section of the table. The ‘a’ section is provid-
ed to illustrate that an adequately well-specified model has
been achieved.

As outlined above, the ARDL logic is that significance is
tested through the long-run relationship. If long-run signifi-
cance is shown, the short-run relationship will also be signif-
icant. Hence, for the reason of showing the significance result,
the long-run section precedes the short-run section in the ‘a’
section of each table.

The specific information sought from each well-specified
ARDL model is then given in the ‘b’ section of each table.
This relates to each of the potential driving variables, itsTa
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Fig. 13 Same as Fig. 12 but
showing linear regression line for
global precipitation
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Fig. 14 Same as Fig. 13 but with
addition of ocean heat to 700 m
(purple curve), evapotranspiration
(Zhang et al. 2015) (green curve)
and NDVI (green curve)
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addition of reverse volcanic
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curve)
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degree of statistical significance and the relative percentage of
the total driving task that it achieves.

3.2 Data, data sources and data terminology used

For global surface temperature, we used the Hadley Centre–
Climate Research Unit combined Landsat and SST surface
temperature series (HadCRUT) version 4.5.0.0 (Morice et al.
2012). In the tables, figures and text in the paper, this series is
termed ‘global surface temperature’.

A data series projected from a business as usual global
climate model (GCM) for global surface temperature, the
CMIP5, RCP8.5 scenario model (Taylor et al. 2012) was used.

For atmospheric CO2 data from 1958 to the present, the US
Department of Commerce National Oceanic and Atmospheric
Administration Earth System Research Laboratory Global
Monitoring Division Mauna Loa, Hawaii, annual CO2 series
(Keeling et al., 2009) is used. For CO2 data prior to 1958, ice
core data is used (Rubino et al. 2013) (unsmoothed version of

ice core data series provided by Etheridge, personal commu-
nication, 2017). In the paper, this series is termed ‘atmospheric
CO2’.

Data for the evapotranspiration and ocean heat sink indicators
are as follows. Global evapotranspiration is indicated by three
data series (i) derived from global precipitation minus global
runoff, (ii) from remote sensing (satellite) and (iii) the NDVI.

Annual global precipitation and runoff data from 1949 to
2012 is from Figure 2.8a of Dai (2016), data series depicted
provided by Dai, personal communication (2017). A longer
annual global precipitation data series from 1901 to 2016
which is used is from the CRU TS4.01 dataset (Harris et al.,
2014). In the paper, these series are termed ‘precipitation’ and
the specific precipitation series used in a particular instance is
identified by its start and end dates.

The satellite data series for evapotranspiration is digitised
from Figure 1a of Zhang et al. (2015). This series is termed
‘evapotranspiration’ (Zhang et al. 2015) in the paper. NDVI
monthly data from 1980 to 2006 are from the Global
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Fig. 16 Z-scores: the temperature
gap (red curve) compared with
precipitation (black curve). Linear
regression trend lines for each
series are also shown

-3

-2

-1

0

1

2

3

4

1901 1911 1921 1931 1941 1951 1961 1971 1981 1991 2001 2011

R
e
l
a
t
i
v
e
 
l
e
v
e
l
 
(
Z

-
s
c
o

r
e
s
)
 
b

a
s
e
 
p

e
r
i
o

d
 
1
9
0
1
-
2
0
1
6

Fig. 17 The close match between
the observed temperature gap (red
curve) and the long-run ARDL
model of the gap using precipita-
tion, reverse volcanic aerosols
and three dummy variables (black
curve)
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Inventory Modeling and Mapping Studies (GIMMS) dataset
(Tucker et al. 2005); NDVI data from 2006 to 2013 were
provided by the Institute of Surveying, Remote Sensing and
Land Information, University of Natural Resources and Life
Sciences, Vienna. In the paper, the two series are merged for
use and the merged series is termed ‘NDVI’.

According to AR4 (IPCC 2007) (p. 387), two-thirds of
ocean-stored energy is absorbed between the surface and a
depth of 700 m. Data for ocean heat content from the surface
to 700 m is available (i) from the NOAA National
Oceanographic Data Center (NODC) (Levitus et al. 2012)
for the period 1955 to the present and (ii) from the Japan
Marine Agency (JMA) (Ishii and Kimoto 2009) for the period
1950 to the present. For annual data, the longer JMA series is
used. NOAA also provides quarterly data for world oceans
from 1955 to the present. An approximately monthly series
was prepared for use in this paper by expanding the quarterly
data series. This was done by using the value for each quarter
to stand for eachmonth in the quarter. The ocean heat to 700m
series as used in the paper is termed ‘ocean heat’.

Volcanic aerosol data is from the National Aeronautic
and Space Administration Goddard Institute for Space
Studies Stratospheric Aerosol Optical Thickness series
(Sato et al. 1993). As mentioned in Section 1.3, increasing
volcanic aerosols correlate with reduced temperature. In
radiative forcing terms, the forcing from volcanic aerosols

is − 27 times the optical thickness (Stern and Kaufmann
2014; Pasini et al. 2017). Hence, the volcanic aerosol
series used in the paper is reversed and is termed ‘reverse
volcanic aerosols’.

To make it easier to assess the relationship between the
key climate variables visually, the data were normalised
using statistical Z-scores or standardised deviation scores
(expressed as Brelative level^ in the figures). In a Z-scored
data series, each data point is part of an overall data series
that sums to a zero mean and variance of 1, enabling
comparison of data having different native units. Hence,
when several Z-scored time series are depicted in a graph,
all the time series will closely superimpose, enabling vi-
sual inspection to clearly discern the degree of similarity
or dissimilarity between them. Individual figure legends
contain details on the series lengths.

A regression using Z-scored variables provides
standardised regression coefficients. These coefficients report
how much change a one standard deviation change in the
independent variable produces in the dependent variable.
Although comparisons between these coefficients must be
interpreted with care, a standardised coefficient of 4 for vari-
able a, for example, indicates that independent variable a is
twice as influential upon the dependent variable as another
independent variable that has a standardised coefficient of 2
(Allen 1997).

In the time series analyses, the temperature gap and global
atmospheric surface temperature are the dependent variables.
Variability is explored using either interannual (yearly) or
monthly data. The period covered in the figures is sometimes
shorter than that used in the data preparation because of the
loss of some data points due to calculations of differences and
of moving averages.

Assessments were carried out using the time series statisti-
cal software packages Gnu Regression, Econometrics and
Time-series Library (GRETL, http://gretl.sourceforge.net)
and IHIS EViews (2017).

Table 7 Pairwise Granger causality analysis involving variables of
temperature gap and precipitation. Annual data from 1901 to 2016

Null hypothesis: Obs Chi-sq df Prob.

Precipitation does not Granger
cause temperature gap

109 40.95265 6 0.0000***

Temperature gap does
not Granger cause CO2 gap

4.132023 5 0.5306

***< 0.001% significance level
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Fig. 18 Z-scores. Ocean heat
series to 700 m. Sources: Japan
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3.3 Presentation

We note that to assist readability in text involving repeated
references, atmospheric CO2 is sometimes referred to simply
as ‘CO2’ and global surface temperature as ‘temperature’.

The time period covered and the frequency—annual or
monthly—of the time series used in each table or figure are
given in the title of the table or figure.

In the tables of results, statistical significance at the 10, 5
and 1% levels is indicated by the symbols *, ** and ***,
respectively.

4 Results

4.1 Current status of temperature
simulation/observation inconsistency

In L&B (2015), we illustrated the temperature simulation/
observation inconsistency using data up to May 2015. Here,
we assess the situation in the succeeding period to determine
the extent to which it is still an issue. Figure 1 shows the
situation including data up to May 2017. The figures show
(using monthly data) the IPCC CMIP5 business-as-usual sce-
nario RCP8.5, and temperature, labelled as H45.

The figure shows that the inconsistency continues past the
period covered in our 2015 paper. Hence, the matters raised in
L&B (2015) concerning the relative roles of level and rate of
change of atmospheric CO2 in correlations with global tem-
perature are still a salient issue.

4.2 The CO2 and temperature gaps in perspective
from 1860

We now place the findings for the period 1959 to 2014 of
L&B (2015) in a longer time perspective to address the

question of whether something relatively unprecedented is
happening with the present CO2 and temperature gaps.
Annual data from 1860 to 2016 is used.

4.2.1 Calculation of CO2 gap and temperature gap

The ingredients for the calculation of a single series for the
atmospheric CO2 gap are level of and first-difference CO2.

To take the CO2 data back before the start of the Mauna
Loa record in 1958, ice core CO2 data is used. Unsmoothed
(raw) annual ice core level-of-CO2 data is provided by
Etheridge (personal communication, 2017) and is depicted
in Fig. 2. There are a number of missing years: of the 152-
year span of the annual series, data was present for 100 in-
stances, or 65.8% of the total.

The time series modelling we are using requires continuous
evenly spaced series (Mudelsee 2010). The missing data
points are therefore interpolated. Linear interpolation from
the adjacent data points is used (Mudelsee 2010). The
resulting data series is shown in Fig. 3. Annual atmospheric
CO2 data is also shown at the same scale of parts per million
(ppm) (Keeling et al. 2009).

Figure 3 shows the relationship in parts per million be-
tween the raw ice core data and atmospheric data (Mauna
Loa). It can be seen that there is considerable similarity but
some divergence in trend over the shared period. The ice core
data is also considerably less smooth than the atmospheric
data.

A single CO2 series from 1861 to 2016 is prepared by using
ice core CO2 data in parts per million from 1861 to 1957 and
atmospheric CO2 data in parts per million thereafter from
1958 to 2016.

The issue of the differences between the ice core and the
atmospheric CO2 series becomes more marked when first-
difference series are considered (Fig. 4).

-2

-2

-1

-1

0

1

1

2

2

3

1950 1960 1970 1980 1990 2000 2010

R
e
l
a
t
i
v
e
 
l
e
v
e
l
 
(
Z

-
s
c
o

r
e
s
)
 
b

a
s
e
 
p

e
r
i
o

d
 
1
9
5
0
-
2
0
1
6

Fig. 19 Observed temperature
gap (red curve) and that from an
ARDL long-run model involving
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Here, before the period of overlap, the amplitude of the
variation in the ice core series is greater than for the atmo-
spheric series. Further, the amplitude of the ice core series is
lower later in its series, although still higher than the coinci-
dent atmospheric series.

We now assess whether or not the use of ‘smoothed’ series
would be a better approach. According to Cook and Peters
(1981) concerning time series from tree rings, B…smoothing
… is not a panacea for removing non-climatic variance in
forest ring-width series. A certain amount of climatic infor-
mation will always be lost due to the shape of the frequency
response curves and where the signal and noise spectra over-
lap in the lower frequencies. These are problems common to
any filtering operation.^

Given this point, we therefore wish to maximise the signal
in the relationships we are investigating even at the expense of
increased noise. This is consistent with the point made in
Section 2.4 about the way in which Granger causality analysis
can detect signals in noise. We therefore use the raw un-
smoothed ice core series before the start of the atmospheric
series in 1958 in this study.

4.2.2 The series used to derive the CO2 and temperature gaps

From the CO2 series above, merged series are produced, the
merge occurring at the start of the atmospheric series in 1959.
These CO2 series are shown in Fig. 5. Also shown are the
analogous temperature series: the data series projected from a
simulated business-as-usual global climate model (GCM) for
global surface temperature, the CMIP5, RCP8.5 scenario
(Taylor et al. 2012) and the observed global surface tempera-
ture (HadCRUT 4.50).

The figure shows the marked difference in character of the
first-difference CO2 series from the other series. Despite this,
however, it is seen that polynomial trendlines (indicated as
‘Poly.’ in the Key) show similarities in core trends between
the level of CO2 and RCP8.5 and between first-difference
CO2 and observed temperature.

4.3 The two gaps constructed and compared

We take two approaches to determining the best
standardisation to specify each gap. First, seeking the largest
climate shifts from 1900, we find (Swanson and Tsonis 2009)
shifts at 1912, 1942, 1976/1977 and 2001/2002. Of these, the
most recent major shift is 1976/1977.

A secondway is to seek the major point of departure for the
ratio of first-difference CO2 to CO2. This is shown in Fig. 6.

Despite being very noisy, the figure shows that the major
shift over the entire period occurs in the 1970s, a result in line
with the above-mentioned 1976/1977 climate shift.

Hence, the standardisation chosen to specify the two gaps is
to Z-score all four series shown in Fig. 5 using a base periodTa
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from the start of the data to 1975—that is, the period before the
1976/1977 climate shift. The so Z-scored first-difference CO2

series is then subtracted from the Z-scored level of CO2 series
to produce the CO2 gap, and the Z-scored observed temperature
series is subtracted from the Z-scored RCP8.5 simulation series
to produce the temperature gap. These series are then them-
selves re-Z-scored, this time across the entire period (1862 to
2016). The two gaps so produced are shown in Fig. 7.

Figure 7 shows the following. First, due to the nature of the
new gap series, the early large ice core CO2 variance is re-
duced. Second, it is notable that there is great similarity be-
tween the two gaps.

Figure 8 shows that, further, some of the differences which
do exist between the two gaps are matched by the volcanic
aerosol series.

4.3.1 ARDL analysis of the relationship
between the temperature gap and the CO2 gap

Let us now use ARDL analysis to assess the relationship be-
tween the CO2 and temperature gaps.

First, as required for the ARDL method, we check that
none of the series are I(2). ADF tests assessing this are pre-
sented in Table 1a and b.

Table 1a shows that Volc is stationary in levels; Table 1b
shows that the other two series are stationary when
differenced—so no series is I(2), and the ARDL method can
be used.

Table 2a and b show the Eviews ARDL estimation output
for temperature gap as the dependent variable and CO2 gap as
the independent variable. Table 2a shows that both bounds test
and residual diagnostics indicate that a well-specified model
has been achieved. Table 2a also shows that the overall model
is highly statistically significant. Table 2b shows that the CO2

gap has a highly statistically significant relationship with the
temperature gap. Further, Volc is significant in the model, al-
though with a smaller regression coefficient than the CO2 gap.

Figure 9 depicts the observed temperature gap and that
fitted from the long-run model.

Notably, Fig. 9 provides clear evidence that the rise in both
gaps seen since about 1960 is markedly greater in amplitude than
any of the cyclic processes seen over the entire prior period back
to the 1860s. As such, the present rise in both gaps is exceptional.

4.3.2 Granger causality analysis of the relationship
between the two gaps

Next, we turn to Granger causality. As at least some series are
not I(0), the Toda-Yamamoto variant to the VAR is employed
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Fig. 20 Observed temperature
gap (red curve) and that from an
ARDL long-run model involving
evapotranspiration, ocean heat
and reverse volcanic aerosols
(black curve)

Table 11 Pairwise Granger causality analysis involving variables of
temperature gap and evapotranspiration. Annual data from 1949 to 2016

Null hypothesis: Obs Chi-sq df Prob.

Evapotranspiration does
not Granger cause
temperature gap

60 10.73041 3 0.0133**

Temperature gap does
not Granger cause
evapotranspiration

5.26254 3 0.1536

**0.05% significance level

Table 12 Pairwise Granger causality analysis involving variables of
temperature gap and ocean heat. Annual data from 1950 to 2016

Null hypothesis: Obs Chi-sq df Prob.

Ocean heat does not Granger
cause temperature gap

66 6.391205 2 0.0409**

Temperature gap does not
Granger cause ocean heat

1.390955 2 0.4988

**10% significance level
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(see Section 3 above). Table 3 shows that causality from CO2

to temperature is almost significant in the model.
This significance is lower than for the equivalent analysis

shown in L&B (2015). This result is not surprising when it is
recalled that L&B (2015) used monthly data and showed the
driver first-difference CO2 leading temperature by only a few
months. Such a small lead cannot be expected to be strongly
reflected in annual data. There is no evidence for causality in
the other direction, from temperature gap to CO2 gap.

4.4 Relationship between temperature gap
and evapotranspiration and ocean heat sink

We now explore the involvement of candidate physical
causes. The CO2 gap being a non-physical construct, and the
temperature gap being the final outcome, in what follows we
investigate the relationship of the candidate physical causes
simply with the temperature gap.

As outlined above, the potential causes of a temperature
gap must affect the global heat budget. There are two accepted
such factors—evapotranspiration via the terrestrial vegetation
and the ocean.

4.4.1 Evapotranspiration

In Section 1, we cited evidence that evapotranspiration has the
capacity to affect the global heat budget. Is there a source for an
adequately long global evapotranspiration time series?
Published evapotranspiration datasets are available. However,
they are short in duration, not extending back before the 1980s
(McCabe et al. 2016; Zhang et al. 2015).

An alternate approach is as follows. Walter et al. (2004)
state: BEvaporation or evapotranspiration (ET) trends can be
identified … by using published data and assuming that the
balance among precipitation, streamflow, and ET dominates
the terrestrial hydrological budget on annual and longer time
scales.^
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Fig. 21 The monthly temperature
gap (red curve) in comparison
with NDVI (black curve). Also
given are third-order polynomials
for temperature gap (green curve)
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Hence, evapotranspiration can be derived by subtracting
streamflow runoff from precipitation. Figure 10 shows global
precipitation and global runoff from the longest global time
series available—1949 to 2012 (Dai 2016).

It is noteworthy that the figure shows that runoff is only
about a third of the size of precipitation, showing the marked
size of evapotranspiration. Figure 11 shows the evapotranspi-
ration series derived from this data.

Given that we have determined above that the CO2 and tem-
perature gaps are both rising, the fact that this putative gap driver
series—the evapotranspiration series—is decreasing, is on the
face of it inconsistent. This is explored further in the next section.

4.4.2 Evapotranspiration compared with precipitation

Recalling from Figs. 10 and 11 that, compared with runoff,
precipitation will be the dominant series in the resulting ET
series, Fig. 12 compares ETand precipitation, both series hav-
ing been Z-scored.

The figure shows that there is a very close apparent simi-
larity between the two series.

The degree of similarity is quantified as follows. First, to
determine which of OLS or ARDL analysis should be used,
we determine the order of integration of the series (Table 4).

The table shows both series are stationary over the period
assessed, so OLS analysis can be used. This is provided in
Table 5.

In particular, note the CUSUM test result which shows no
significant series breaks skewing the relationship.

The results from Table 5 provide evidence that precipita-
tion can be used as a surrogate for evapotranspiration. This
now gives us a data series back to 1901.

Figure 13 is the same as Fig. 12, but with a linear regression
line through precipitation. It can be seen that, despite much
variation, overall, over the period 1901 to 2015, precipitation
is rising.

It can now be seen that, if it were available, a longer-run
evapotranspiration series overall might well also be rising.

4.4.3 All candidate drivers of temperature gap compared

Figure 14 adds more candidate drivers of the temperature gap.
The drivers are ocean heat, a satellite measure of evapotrans-
piration and NDVI.

They all rise themselves over the periods shown and show
various degrees of similarity in signature.

When volcanic aerosols (series reversed) are added
(Fig. 15), correlations with part of the depression in the signa-
tures from 1960 to 1990 are seen.

4.4.4 The longest-series candidate
driver—the evapotranspiration surrogate,
precipitation—compared with the temperature gap

We now begin our formal assessments. We commence by
comparing the precipitation driver candidate with the temper-
ature gap.

We first note that the gap and precipitation each display not
only an overall net rising trend but also that the slope of the
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Fig. 23 The monthly temperature
gap (red curve) in comparison
with ocean heat to 700 m (NOAA
series) (black curve) gap. Third-
order polynomials are given for
temperature gap (green curve)
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Table 13 Monthly data from 1983 to 2012: results of ADF tests for
trend stationarity allowing for both drift and trend for temperature gap,
NDVI, oceanic heat and reverse volcanic aerosols

ADF test
statistic

P value ADF test
interpretation

Temperature gap − 6.53604 4.91E-08 Trend-stationary

LED14M NDVI − 6.87923 5.52E-09 Trend-stationary

Ocean heat − 3.88048 1.28E-02 Trend-stationary

Reverse volcanic aerosols − 3.72526 0.02066 Trend-stationary
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linear trend of each is very similar. Second, the gap series
shows descending sections like the precipitation series (and
it will be recalled ET (Fig. 5)) over the 1950–1990 period.

4.4.5 Data from 1901: temperature gap as a function
of precipitation and volcanic aerosols

First, we use the OLS relationship between precipitation and
the temperature gap to determine by rolling Chow testing the
series breaks that are present and, hence, any dummy variables
that are called for. Series breaks are found and the dummy
variables arising are seen in Table 6b. It is notable that the
dummy variables recommended by Chow testing are very
close to the three of the four largest climate shifts from 1900
shown by Swanson and Tsonis (2009) as being at 1912, 1942,
1976/1977 and 2001/2002 (Fig. 16).

We now run an ARDL model with these independent var-
iables and these dummy variables. Results are given in
Table 6a and b.

Table 6a shows that a well-specified model is obtained.
Precipitation is significant and substantive in the model
(Table 6b). Figure 17 shows the close match between the
above long-run ARDL model and the temperature gap.

We now turn to assessing the presence of Granger causality
between precipitation and the temperature gap. As at least
some series are not I(0), the Toda-Yamamoto extra step to
the VAR method is employed. Results are given in Table 7.

Notably, the table shows that, over the period from 1901 to
2016, precipitation is strongly Granger causal of the tempera-
ture gap. There is no evidence for causality in the other
direction.

We now turn to the period from 1950 to 2016, over which
we can include ocean heat data alongside that for precipitation
and volcanic aerosols.

For annual data, there are two main published ocean heat
series available, one from the National Oceanic and
Atmospheric Administration (NOAA) and the other from the
Japan Marine Agency (JMA) (see Section 3.2 above).
Figure 18 shows that these series agree closely over their
common years. For annual data, we will use the longer JMA
series.

4.4.6 Data from 1950: temperature gap as a function
of precipitation, ocean heat and volcanic aerosols

In this section, the relationship between the temperature gap
and precipitation, ocean heat and volcanic aerosols is assessed
by ARDL and Granger causality analysis. Table 8a and b
provide the results of the ARDL analysis.

Table 8a and b show that with ocean heat included, volca-
nic aerosol is now no longer significant in the model. Hence, a
further ARDL model is run without volcanic aerosol. These
results are given in Table 9a and b.Ta
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It is seen that both precipitation and ocean heat are signif-
icant in the model, with the strength of the precipitation vari-
able being about half that of the ocean heat variable.

Figure 19 depicts the above model in comparison with the
temperature gap.

4.4.7 Data from 1950: temperature gap in relation
to evapotranspiration, ocean heat and volcanic aerosols

We now substitute the true evapotranspiration series for the
precipitation series and conduct further ARDL and Granger
causality analysis. Table 10a and b provide the results of the
ARDL analysis.

Table 10b shows that evapotranspiration, like precipitation,
is significant in the ARDL model.

Referring to Table 9b for precipitation and Table 10b for
evapotranspiration, it is observed that both precipitation and
evapotranspiration have coefficients of very similar value, and
that this occurs against a coefficient for ocean heat which is of
very similar value in both ARDL assessments.

Figure 20 depicts the above model in comparison with the
temperature gap.

We now turn to Granger causality analysis of the relation-
ship between the temperature gap and, respectively,

evapotranspiration and ocean heat. As the temperature gap
series is I(1), the Toda-Yamamoto extra step to the VARmeth-
od is employed. The result of the analysis for evapotranspira-
tion is shown in Table 11.

The table shows that, despite its lack of an upward trend,
evapotranspiration is Granger causal of the temperature gap,
and that there is no evidence for causality in the opposite
direction.

The presence of Granger causality between ocean heat and
the temperature gap is next assessed. As it can be shown that
both series are I(1), the Toda-Yamamoto extra step to the VAR
method is employed. The result of the analysis is shown in
Table 12.

Table 12 shows that, as for evapotranspiration, ocean heat
is Granger causal of the temperature gap, and that there is no
evidence for causality in the opposite direction.

4.5 Monthly data from 1983: temperature gap
in relation to vegetation index, ocean heat
and volcanic aerosols

We now test to see whether the relationships seen above using
annual data can also be seen using monthly data, albeit over
the more recent period for which such data is available and
using NDVI as a substitute for evapotranspiration.

First, let us conduct a visual inspection of the several data
series. Figure 21 shows the monthly temperature gap in com-
parison with NDVI.

In Fig. 21, polynomial curves show that, over the shorter
time frame, an increasing temperature gap as shown in the
annual data results can be seen. As expected from the increas-
ing annual evapotranspiration series over the period from
1983 (see Fig. 14, monthly NDVI is also seen to increase.
The best curve fit for NDVI is observed when it leads the
temperature gap by 14 months.
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Fig. 24 Observed temperature
gap (red curve) and that from an
ARDL model involving NDVI,
ocean heat and reverse volcanic
aerosols (black curve)

Table 15 Pairwise Granger causality analysis involving variables of
temperature gap and NDVI. Monthly data from January 1983 to
September 2012

Null hypothesis: Obs Chi-sq df Prob.

NDVI does not Granger
cause temperature gap

350 8.400914 2 0.0150**

Temperature gap does
not Granger cause NDVI

3.357008 2 0.1867

**5% significance level
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Figure 22 adds in the volcanic aerosol series and shows
how some of the difference between NDVI and the tempera-
ture gap is matched by the volcanic aerosol series.

Figure 23 shows the temperature gap and the ocean heat
series. As expected, the figure shows ocean heat also
rising.

4.5.1 ARDL and Granger causality analysis

In this section, the relationship between the temperature gap
and NDVI, ocean heat and volcanic aerosols is assessed by
ARDL and Granger causality analysis.

Table 13 displays the results of the ADF analysis. The table
provides the stationarity characteristics of the series.

Table 13 also shows that all series are trend-stationary.
Hence, OLS could be used for the analysis. That said, for
consistency with the other analyses presented in the paper,
analysis is carried out using ARDL. Table 14a and b provide
the results of the ARDL analysis.

Table 14a shows that the model passes bounds tests and
shows no autocorrelation in near months and, hence, that a
well-specified ARDL model is obtained.

Table 14b shows that NDVI is statistically significant in the
model. Ocean heat and volcanic aerosols are significant at the
0.1 level. Both NDVI and ocean heat show regression coeffi-
cients of similar value.

Figure 24 shows the observed temperature gap and the
model derived from the ARDL analysis.

Tables 15 and 16 provide the results of pairwise Granger
causality analyses for the temperature gap with (i) NDVI and
(ii) ocean heat variables.

Tables 15 and 16 also show that, for monthly data over the
period studied, each of NDVI and ocean heat show Granger
causality of the observed temperature gap (ocean heat at the
lower 10% statistical significance level). Causality in the other
direction is not shown in either case.

The results in this section show that the processes observed
at the annual level are also seen at the monthly level.

5 Future prospects

What then of the future? We have provided evidence that evapo-
transpiration and the ocean heat sink are responsible for the ob-
served temperature gap so far. To what extent do these two fac-
tors have the capacity to maintain the gap into the future, espe-
cially under the scenario of a further increase in atmospheric
CO2?

For evapotranspiration, Dai (2016) in his Figure 16 summa-
rises research which shows that with rising atmospheric CO2,
substantially increased evapotranspiration is expected over the
remainder of the twenty-first century. For the ocean heat sink,
the IPCC AR4 (IPCC 2007) p. 389 states that the ocean’s heat
capacity is about 1000 times larger than that of the atmosphere.

These two prospects suggest that evapotranspiration and the
ocean heat sink might have the capacity to continue to maintain
the temperature gap into the future. However, there is evidence
that cyclic factors affect heat storage by the ocean. In a review
of evidence for potential mechanisms for the functioning of the
oceanic heat sink as it relates to the global surface temperature
slowdown, Yan et al. (2016) list such cyclic factors as the con-
current effects of changing amplitudes of the Pacific Decadal
Oscillation (PDO) or the AMO. Another potential mechanism
(suggested as a main cause for the global surface temperature
slowdown) involves the movement of heat to deeper layers of
the Atlantic and Southern Oceans, one possible explanation for
this increased heat storage being a salinity-driven mechanism.

Table 17 Summary of results of
ARDL and VAR Granger
causality analyses of relationships
between proposed driver
variables and temperature gap

Independent variable 1901–2016 1950–2016 1983–2012

ARDL
Granger
causality ARDL

Granger
causality ARDL

Granger
causality

Precipitation Yes Yes Yes Yes (b) (b)

Reverse volcanic aerosols Yes (b) Yes (b) Yes Yes

Ocean heat (a) (a) Yes Yes Yes Yes

Evapotranspiration (a) (a) Yes Yes Yes (a)

NDVI (a) (a) (a) (a) Yes Yes

(a) Not available; (b) not in scope of assessment

Table 16 Pairwise Granger causality analysis involving variables of
temperature gap and ocean heat

Null hypothesis: Obs Chi-sq df Prob.

Ocean heat does not Granger
cause temperature gap

350 12.90040 7 0.0746*

Temperature gap does not
Granger cause ocean heat

10.47154 7 0.1634

*10% significance level

672 L. M. W. Leggett, D. A. Ball



The study proposing this salinity-driven mechanism (Chen and
Tung 2014) also noted the presence of oscillatory cycles in this
effect.

Under one scenario, these cycles could create a situation in
which to a greater or lesser degree some of the heat seques-
tered in the deep ocean would be returned in the future to the
surface and to the atmosphere (Trenberth and Fasullo 2010),
being a driver of further warming. In this case, evapotranspi-
ration becomes crucial as the remaining driver which would
tend to keep the observed temperature lower than the level-of-
CO2 models would suggest.

6 Discussion

This paper has provided three further pieces of evidence
concerning the global surface temperature slowdown.

Expressing the slowdown as a temperature gap, and devel-
oping an analogous CO2 gap, the first piece of evidence is that
that the present size of the global surface temperature and CO2

gaps seen since about the 1960s is unprecedented over a peri-
od starting at least as far back as the 1860s.

Second, Table 17 summarises the findings for the ARDL
and Granger causality analyses involving the global sur-
face temperature gap against all physical candidate drivers
over all periods assessed and for both annual and monthly
data series.

Table 17 shows that in all cases where data was available,
evapotranspiration or its argued surrogate, precipitation,
showed ARDL correlation with and Granger causality of the
temperature gap. This was true initially in isolation when
ocean heat data was not available. In each later case where
ocean heat data was available, evapotranspiration or precipi-
tation was also significant (‘required’) in models alongside
ocean heat. In terms of relative scale, while the standardised
regression coefficient for evapotranspiration was repeatedly
about half that for ocean heat, the standardised regression
coefficients for both these variables were always larger than
that for the volcanic aerosol variable. In all the circumstances,
we consider that the foregoing shows that, alongside the ocean
heat sink, evapotranspiration is likely to be making a substan-
tial contribution to the global atmospheric temperature
outcome.

Third, there is evidence that evapotranspiration and the
ocean heat sink might be able to continue to maintain the
temperature gap into the future—in other words to continue
keeping the temperature lower than the level-of-CO2 models
would suggest.

This last point means there can be benefit in using the
straightforward first-difference CO2 to temperature rela-
tionship shown in L&B (2015) to forecast future global
surface temperature. This will be the subject of a future
paper.
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