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Abstract
In recent decades, extreme precipitation events have been a research hotspot worldwide. Based on 12 extreme precipitation
indices, the spatiotemporal variation and statistical characteristic of precipitation extremes in the middle reaches of the Yellow
River Basin (MRYRB) during 1960–2013 were investigated. The results showed that the values of most extreme precipitation
indices (except consecutive dry days (CDD)) increased from the northwest to the southeast of the MRYRB, reflecting that the
southeast was the wettest region in the study area. Temporally, the precipitation extremes presented a drying trend with less
frequent precipitation events. Generalized extreme value (GEV) distribution was selected to fit the time series of all indices, and
the quantiles values under the 50-year return period showed a similar spatial extent with the corresponding precipitation extreme
indices during 1960–2013, indicating a higher risk of extreme precipitation in the southeast of the MRYRB. Furthermore, the
changes in probability distribution functions of indices for the period of 1960–1986 and 1987–2013 revealed a drying tendency in
our study area. Both El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) were proved to have a strong
influence on precipitation extremes in the MRYRB. The results of this study are useful to master the change rule of local
precipitation extremes, which will help to prevent natural hazards caused.
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1 Introduction

According to the f i f th assessment report of the
Intergovernmental Panel on Climate Change (IPCC), the
global mean surface temperature has increased since the late
nineteenth century, with a total increase of about 0.85 °C dur-
ing 1880–2012 (IPCC, 2013). The global warming can prob-
ably strengthen the atmospheric moisture levels, thunderstorm
activity, and/or large-scale storm activity, which may result in

an increase in the magnitude and frequency of extreme pre-
cipitation events (Trenberth, 1998; Sen Roy and Balling,
2004). Studies about extreme precipitation have been carried
out in various regions around the world (Alexander et al.,
2006), such as southern Brazil (Sansigolo and Kayano,
2010), Japan (Duan et al., 2015), Australia (Fiddes et al.,
2014), Thailand (Limsakul and Singhruck, 2016), and Korea
(Min et al., 2015). These studies have concluded that the
changes in extreme precipitation exhibit large regional vari-
ability. For example, significant decreasing trends in extreme
precipitation events were observed in some areas of western
central Africa (Aguilar et al., 2009), whereas extreme precip-
itation events were found to become more intense in Thailand
(Limsakul and Singhruck, 2016). In China, changes in ex-
treme precipitation also attracted many interests (Zhai et al.,
2005; You et al., 2011; Xia et al., 2012). Previous studies
indicated large variability of the changes in extreme precipi-
tation in space and time in this country (You et al., 2011; Song
et al., 2015; Sun et al., 2016). Decreasing trends can be ob-
served in southwestern China, whereas increasing trends were

* Jun Xia
xiajun666@whu.edu.cn

1 State Key Laboratory of Water Resources and Hydropower
Engineering Science, Wuhan University, No. 8 Donghu South Road,
Wuhan 430072, People’s Republic of China

2 Key Laboratory ofWater Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, People’s Republic of
China

Theoretical and Applied Climatology (2019) 135:391–408
https://doi.org/10.1007/s00704-018-2371-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-018-2371-2&domain=pdf
http://orcid.org/0000-0003-3991-5913
mailto:xiajun666@whu.edu.cn


observed in Xinjiang, eastern Tibetan Plateau, northeastern
China, and southeastern China (Zhai et al., 2005; You et al.,
2011). Moreover, the changes in frequency and intensity of
extreme precipitation can usually lead to extreme hydrological
events, which can exert significant negative impacts on the
social and natural environment (Alexander et al., 2006; Choi
et al., 2009; dos Santos et al., 2011). For example, the extreme
flooding disaster occurred in the Nenjiang River and the
Songhua River in northeastern China and the Yangtze River
in southern China in 1998 was induced by extreme precipita-
tion events and resulted in more than 3000 casualties and 3.6
billion dollar economic losses (Zong and Chen, 2000). Hence,
the research on changes in extreme precipitation is of great
significance to provide a scientific basis to reduce the risk of
extreme events.

Statistical models are widely regarded as efficient and use-
ful tools to better understand the changes in extreme events.
Various statistical distributions were used to model extreme
hydrometeorological series, such as extreme value distribu-
tions (Xia et al., 2012; Najafi and Moazami, 2016), extended
Burr XII distribution (Shao et al., 2004), and Pearson III dis-
tribution (Griffis and Stedinger, 2007). The efficiency of these
distributions in modeling the precipitation extremes in China
has also been assessed by many previous studies (Su et al.,
2009; Yang et al., 2010; Fischer et al., 2012). For example,
Fischer et al. (2012) compared the efficiency of the three-
parameter gamma (gamma 3), generalized extreme value
(GEV), generalized Pareto (GP), and Wakeby distributions
in modeling the precipitation extremes in the Zhujiang River
Basin and revealed that GEV was the most reliable and robust
distribution in their study area. Xia et al. (2012) and Du et al.
(2014) used GEV and GP distribution, respectively, to de-
scribe the extreme precipitation events in the Huaihe River
Basin. The probability distributions can comprehensively de-
scribe the statistical characteristic of precipitation extremes
and detect the changes of precipitation extremes by their
changes (Alexander et al., 2006; Fischer et al., 2012).
Furthermore, a deep understanding of the statistical character-
istic of precipitation extremes can reflect the changes of risks
of extreme events and is useful for the planning of adaption
(Fischer et al., 2012).

The present study selected the middle reaches of the
Yellow River Basin (MRYRB), which is located in the north
of China, as the study area to investigate the spatiotemporal
variation and statistical characteristic of extreme precipitation.
The daily precipitation observation data at 44 meteorological
stations during 1960–2013 was used. To the best of our
knowledge, previous studies about in this area were mainly
focused on trends of extreme precipitation (Liang et al., 2015;
Sun et al., 2016). Given that extreme precipitation can usually
result in serious socioeconomic losses and casualties, a com-
prehensive and further analysis of changes in the extreme
precipitation covering spatiotemporal variation and statistical

characteristic is quite needed. Furthermore, the relationships
between precipitation extremes and large-scale atmospheric
circulation in the MRYRB were also explored.

The major objectives of this study are as follows: (1) to
identify the extreme precipitation events using various indices
at all stations and analyze the changes of these indices in space
and time; (2) to investigate the statistical characteristic of ex-
treme precipitation in the MRYRB using several probability
distributions; (3) to assess the potential changes of risk of
extreme precipitation in various time period and analyze
whether the precipitation is getting more extreme in the con-
sidered area; and (4) to explore whether there are significant
relationships between precipitation extremes and large-scale
atmospheric circulation patterns.

The structure of this study is as follows: Sect. 2 presents the
used data and methods including the definition of extreme
precipitation indices; Sect. 3 shows the results and discus-
sions, followed by the conclusion in Sect. 4.

2 Data and method

2.1 Study area

The MRYRB is located in northern China (103° 58′–113° 40′
E, 33° 39′–40° 34′ N) (Fig. 1), covering an area of about
345,600 km2. This region belongs to the arid and semi-arid
climate zone in China. The long-term mean annual precipita-
tion exhibits large spatial variability, ranging from less than
350 mm in the northwest to more than 800 mm in the south-
east of the MRYRB. Precipitation during the flooding season
(June to September) accounts for about 70% of the total an-
nual precipitation. The mainstream of the MRYRB flows
through the Loess Plateau, which is famous for serious soil
erosion problem. The average annual erosion rate is about
2480 t km−2 for the whole Yellow River Basin, which is the
highest over the world for any large rivers (Shi and Shao,
2000). The native vegetation has mostly been cleared for crop
production, causing severe soil erosion, land degradation, and
soil fertility loss (Jia et al., 2017).

2.2 Data

In this study, the daily precipitation data at 44 meteorological
stations during 1960–2013 were used to analyze the spatio-
temporal variability and statistical characteristic of extreme
precipitation in the MRYRB. These data were provided by
China Meteorological Administration (CMA) with high qual-
ity. Daily precipitation datasets may have different degrees of
heterogeneity due to changes in relocations, measuring tech-
niques, and environment, which often leads to significant bias
in the extreme precipitation trend detection. Therefore, the
homogeneity of the datasets should be carefully examined
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before the use of datasets. In this study, the RH test-dlyprcp
software, which was developed by Wang and Feng (2013)
(available at http://etccdi.pacificclimate.org/software.shtml)
specifically for daily precipitation data time series
homogeneity test, was employed to check the homogeneity
of daily precipitation series in all stations. The results showed
that all the daily precipitation series at 44 meteorological
stations passed the homogeneity test at the significance level
of 0.05, which confirmed their reliability in the extreme
precipitation analysis. The regional averages were calculated
as arithmetic means of the values at all selected stations in the
study area.

To examine the relationships between the precipitation ex-
tremes and the large-scale atmospheric circulation patterns,
the correlations between the extreme precipitation indices
and El Niño–Southern Oscillation (ENSO)/Pacific Decadal
Oscillation (PDO) indices were investigated. In this study,
the Nino 3.4 index, which is defined as the monthly sea sur-
face temperature averaged over the east central tropical Pacific
(5° N–5° S, 170°–120° W), was used to represent the state of
ENSO. The monthly PDO index is defined as the leading
principal component of North Pacific monthly sea surface
temperature variability, which has been proved to be closely
related to the variability of extreme precipitation (Limsakul
and Singhruck, 2016; Liu et al., 2017). These data were
downloaded from the National Oceanic and Atmospheric
Administration (NOAA) Earth System Research Laboratory

(available online at http://www.esrl.noaa.gov/psd/data/
climateindices/list/).

2.3 Method

2.3.1 The definition of extreme precipitation indices

Generally, extreme precipitation events often refer to these
precipitation events that occur infrequently but with severe
impacts. The Expert Team on Climate Change Detection and
Indices (ETCCDI) has defined 27 types of extreme indices,
including 11 types of indices about extreme precipitation and
16 types of indices about temperature. The standard indices
established by ETCCDI have been widely used to assess cli-
mate changes of extreme precipitation in different regions of
the world (Alexander et al., 2006; You et al., 2011; Sun et al.,
2016). We selected nine of extreme precipitation indices from
the ETCCDI to reflect the changes in extreme precipitation
intensity, frequency, and duration in the MRYRB. As the
study area is frequently attacked by serious drought hazards,
which are mostly related to light precipitation (Wu and Qian,
2016), the number of precipitation days (R0.1 mm), which
relates to precipitation amount no less than 0.1 mm, was con-
sidered. On the other hand, as the erosive rainfall has an evi-
dent impact on runoff and soil erosion in the study area, the
erosive rainfall should be specifically considered when ana-
lyzing the precipitation extremes in the MRYRB. Here, the

Fig. 1 Spatial distribution of
meteorological stations and mean
annual precipitation in the
MRYRB
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threshold of 12 mm/day, which was suggested by Xie et al.
(2000) as the standard for describing erosive rainfall on the
Loess Plateau, was used. Moreover, the number of heavy pre-
cipitation days, which refers to a day with precipitation
amount exceeding 25 mm/day defined by the National
Climate Center of China, was also considered. To sum up,
the foregoing mentioned 12 indices of precipitation extremes
can be generally divided into two groups: (1) the indices that
describe the precipitation intensity, including SDII,
PRCPTOT, R95, R99, RX1day, and RX5day and (2) the in-
dices that reflect the number of precipitation days, including
CDD, CWD, R0.1mm, R10mm, R12mm, and R25mm.
Detailed descriptions about these indices were provided in
Table 1.

2.3.2 Mann-Kendall test

Non-parametric Mann-Kendall (MK) test is a simple and ro-
bust trend detection method (Mann, 1945; Kendall, 1975). It
is recommended by the World Meteorological Organization
(WMO) as a standard procedure for examining trends in in-
dependent hydrometeorological series and has been widely
used (Gocic and Trajkovic, 2013; She et al., 2016; Yang
et al., 2017). In this study, we used the MK test to examine
the temporal trends in extreme precipitation indices in the
MRYRB.

The MK statistical test is given as follow:

Z ¼

S−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp S > 0

0 S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp S < 0

8>>>><
>>>>:

ð1Þ

where statistic S can be calculated as:

S ¼ ∑
n−1

i¼1
∑
n

j¼iþ1
sgn x j−xi

� � ð2Þ

where xi and xj are the observations at the ith and jth moments,
respectively; n is the length of the series. When xi − xj is more
than, equal to or less than 0, sgn(xi − xj) equals to 1, 0, or − 1,
respectively.

The statistic Z can be used as a measure of a trend. Z > 0
and Z < 0 indicate an increasing and decreasing trend, respec-
tively. A larger |Z| value refers to a more significant trend. In
this study, the significance level of 0.05 is considered, which
means that Z > 1.96 and Z < − 1.96 will indicate a significant
increasing and decreasing trend, respectively.

However, many previous studies have stated that the pos-
sible existence of autocorrelation in the time series can lead to
inaccurate estimation of the trends (Yue and Wang, 2002).
Therefore, we should remove the autocorrelation, if it exists,
before the application of MK test. In this study, the method

given in Yue and Wang (2002) was performed to remove the
possible autocorrelation in the extreme precipitation series in
the MRYRB.

Moreover, the Sen’s slope (Sen, 1968) was also used to
determine the magnitude of the trend, as it can eliminate the
impact of missing data or anomalies on the trend test. The
slope is estimated by

β ¼ Median
x j−xi
� �
j−ið Þ

� �
;∀ j > i ð3Þ

where β is the estimate of the slope of the trend; xi and xj are
the observations at the ith and jth moments, respectively.

2.3.3 Statistical distribution models

In this study, the statistical characteristic of extreme precipita-
tion was analyzed using the extreme value distributions.Many
extreme distributions have been used to simulate the changes
in extreme hydrometeorological time series (She et al., 2015;
She et al., 2016). Here, the GEV distribution and GP distribu-
tion were considered due to their good performance in model-
ing the extremes (Xia et al., 2012; Fischer et al., 2012; Bhunya
et al., 2013). Additionally, given that the gamma distribution
has been proved to be the appropriate model for the simulation
of precipitation time series in China (Liang et al., 2012; Jiang
et al., 2014), this distribution was also used. Therefore, we
selected three models to fit the extreme precipitation time
series and further analyze the statistical characteristic in the
precipitation extremes in our study area. Here, we only gave
the description of the three distributions in brevity, which can
be seen in Table 2, and the details can be referred to Xia et al.
(2012). The parameters of these distributions were estimated
using the L-moments method (Hosking, 1990; Hosking and
Wallis, 1997). The most prominent feature of L-moments is
that it is not so sensitive to the maximum and minimum values
compared to ordinary moments, which makes the estimates of
parameters by L-moments method are more robust (Cai &
Jiang 2007). Besides, the Kolmogorov-Smirnov (KS) test
was employed to choose the optimal models. The readers
can find the details of the L-moment method in Hosking and
Wallis (1997) and the KS test in Young (1977).

2.3.4 Cross wavelet analysis

Wavelet transforms have become a useful tool for investigat-
ing local variation in time series and have been widely used in
hydrological and climatic time series analysis (She et al.,
2016; Yang et al., 2017; Liu et al., 2017). The cross wavelet
analysis, introduced by Torrence and Compo (1998), was
adopted to understand how the changes of ENSO and PDO
can affect the extreme precipitation changes in the MRYRB.
The details of cross wavelet analysis are given below.
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For two time series xn and yn, the cross wavelet spectrum is
defined as

WXY ¼ WXWY* ð4Þ
where WX and WY represent the wavelet transforms and *
denotes the complex conjugation. The cross wavelet power
is further defined as |WXY|. The complex argument arg(Wxy)
can be interpreted as the local relative phase between xn and yn
in time frequency space.

The theoretical distribution of the cross wavelet power of
two time series with background power spectra PX

k and PY
k is

given in Torrence and Compo (1998) as

D
WX

n sð ÞWY*
n sð Þ�� ��

σXσY
< p

� 	
¼ Zv pð Þ

v

ffiffiffiffiffiffiffiffiffiffiffiffi
PX
k P

Y
k

q
ð5Þ

where Zv(p) is the confidence level associated with the prob-
ability p for a probability density function defined by the
square root of the product of two χ2 distributions. In this
study, the 5% significance level is calculated using
Z2(95%) = 3.999. The more details of the cross wavelet

transforms can be found in Grinsted et al. (2004), and the
relevant codes can be downloaded from http://www.pol.ac.
uk/home/research/waveletcoherence/ .

3 Results and discussions

3.1 Temporal trends of extreme precipitation

3.1.1 Indices of precipitation intensity

We first analyzed the spatial variation and temporal changes of
the indices representing the extreme precipitation intensity
(Fig. 2). The Kriging method was employed to interpolate
the values into the whole study area by means of the software
of ArcGIS. The temporal trends were detected by the MK test
with a significance level of 0.05. Besides, we also gave the
variation of the regional time series of these six extreme pre-
cipitation indices in Fig. 3.

As shown in Fig. 2a, the PRCPTOT values ranged from
334.1 to 809.4 mm across the whole study area. The highest

Table 1 Definitions of the 12 precipitation extreme indices used in this study

Index Descriptive name Definition Units

CDD Consecutive dry days Maximum number of consecutive dry days days

CWD Consecutive wet days Maximum number of consecutive wet days days

PRCPTOT Wet-day precipitation Annual total precipitation based wet days mm

R0.1 mm Number of precipitation days Annual count of days when RR ≥ 0.1 mm days

R10mm Number of moderate precipitation days Annual count of days when RR ≥ 10 mm days

R12mm Number of erosion precipitation days Annual count of days when RR ≥ 12 mm days

R25mm Number of heavy precipitation days Annual count of days when RR ≥ 25 mm days

R95 Very wet day Annual total precipitation when RR> 95th percentile mm

R99 Extreme very-wet day Annual total precipitation when RR> 99th percentile mm

RX1day Maximum 1-day precipitation Annual maximum 1-day precipitation mm

RX5day Maximum 5-day precipitation Annual maximum 5-day precipitation mm

SDII Simple daily intensity index Average precipitation on wet days mm/day

A dry (or wet) day is defined as the daily precipitation is lower (or no less) than 1 mm/day

BRR^ refers to daily precipitation amount

Table 2 The cumulative distribution function and L-moments estimates of parameters

Distribution Probability density function Cumulative distribution function Indicator amount under return
period T year

GEV f xð Þ ¼ 1
α 1þ k 1

α

� �
 �−1
αexp − 1þ k 1

α

� �
 �−1
α

n o
F xð Þ ¼ exp − 1þ k x−ξð Þð Þ½f =α�‐1=kg k≠0 X T ¼ ξ̂ þ α̂

k̂
1− −ln 1−1=Tð Þð Þð

k̂Þ
GP f xð Þ ¼ 1

α

� �
1−k 1

α

� �
 �1
α F xð Þ ¼ 1−e−y y ¼ −ln 1−k x−ξð Þ½f =α� =k k≠0

x−ξð Þ =α k ¼ 0
X T ¼ ξ̂ þ α̂

k̂
1− 1=Tð Þð k̂Þ

Gamma f xð Þ ¼ 1

βαΓ αð Þ x
α−1e−x=β X > 0

�
0

X ≤0
F xð Þ ¼ 1

βαΓ αð Þ ∫
x
0x

α−1e−x=βdx XT = F
−1(F(XT))

α, ξ, and k represent the scale, location, and shape parameter of GEV and GP distribution, respectively; and α̂, ξ̂, and k̂ are the estimates of α, ξ, and k, respectively
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value of annual PRCPTOT was distributed in the southeast
region while the lowest value appeared in the northwest re-
gion, which was consistent with the spatial distribution of
annual precipitation in this area (Zhang et al., 2014).
Additionally, the spatial patterns of SDII, RX1day, RX5day,
R95, and R99 also showed similarities with that of PRCPTOT,
that the values increased from the northwest to the southeast of
the MRYRB (Fig. 2b–f). The linear correlation coefficients
between the regional average time series of each index were
calculated to illustrate the relationship between these indices.
The PRCPTOT was well correlated (at the 0.01 significance
level) with the other five extreme precipitation indices
(Table 3). This can partially illustrate the consistency between
the spatial variation of the other five indices and PRCPTOT.

From the definition of the aforementioned six indices, the
higher the index value, the wetter of the climate condition
may occur. Therefore, we can infer that the southeast of the
MRYRBwas the wettest region as all of these six indices were
largest in this area, whereas the northwest region was a rela-
tively dry region. On the other hand, considering that the
higher the index value (except CDD), the higher risk of oc-
currence of extreme precipitation, the occurrence probability
of extreme precipitation events in the southeast was also
higher than that in the northwest region.

Decreasing trends in PRCPTOTcan be seen in the majority
of stations (38 of 44 stations, 84%) (Fig. 2a), with only three
of themwas significant. There were only five stations present-
ing insignificant increasing trends, which were mainly

Fig. 2 Spatial patterns of values
and trends in indices of
precipitation intensity in the
MRYRB during 1960–2013. The
significance level of 0.05 is
considered
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distributed in the north of the MRYRB. This can also be seen
in the regional average PRCPTOT time series that an insig-
nificant decline trend at a rate of − 7.65 mm/decade can be
detected (Fig. 3a). There were 27 and 17 stations that showed
increasing and decreasing trends of SDII, respectively
(Fig. 2b). Except two stations with significant increasing
trends, all of the trends in the other stations were insignificant.
Over the whole study area, we found that SDII insignificantly
increased at a rate of 0.04 mm/day/decade (Fig. 3b). The com-
bination of the decline in PRCPTOT and increase in SDII at
most stations may link to a decrease in the number of wet
days, and this will be further discussed in the following sec-
tion. There were more stations for RX1day showing increas-
ing trends, while much more stations displayed with decreas-
ing trends for RX5day (Fig. 2c and d). Moreover, there were
only three stations showing significant increasing trends, two
for RX1day and one for RX5day, respectively. Moreover, the
regional RX1day and RX5day presented insignificant increas-
ing and decreasing trends during 1960–2013, respectively

(Fig. 3c and d). The trends in R95 and R99 also did not show
any evident spatial patterns; however, the number of stations
giving decreasing trends was larger than that giving increasing
trends for R95 (Fig. 2e), whereas more stations showed in-
creasing trends for R99 (Fig. 2f). From the perspective of
regional average series, the R95 and R99 also exhibited no
significant trend (Fig. 3e and f).

3.1.2 Indices for the number of precipitation days

We analyzed the spatial variation and temporal changes of the
indices for the number of precipitation days (Fig. 4) and also
gave the temporal variation of the regional time series of these
six extreme precipitation indices in Fig. 5.

As shown in Fig. 4a, the CDD values increased from the
southeast to the northwest of the MRYRB. The CWD values
ranged from 4.0 to 6.4 days/year across the whole study area
(Fig. 4b). The highest value of CWD was distributed in the
southwest region, while the lowest value appeared in the

Fig. 3 Regional average series for
indices of precipitation intensity
in the MRYRB during 1960–
2013. The red line represents the
slope of the datasets during 1960–
2013
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Fig. 4 Spatial patterns of values
and trends in indices for
the number of precipitation days
in the MRYRB during 1960–
2013. The significance level of
0.05 is considered

Table 3 Correlation coefficient of extreme precipitation indices in the MRYRB during 1960 – 2013

CDD CWD PRCPTOT R0.1 mm R10mm R12mm R25mm R95 R99 RX1day RX5day SDII

CDD 1

CWD − 0.03 1

PRCPTOT − 0.11 0.49** 1

R0.1 mm − 0.34* 0.49** 0.80** 1

R10mm 0.02 0.50** 0.97** 0.74** 1

R12mm 0.02 0.46** 0.96** 0.71** 0.99** 1

R25mm − 0.07 0.28* 0.89** 0.55** 0.83** 0.86** 1

R95 − 0.02 0.38** 0.94** 0.61** 0.89** 0.91** 0.95** 1

R99 − 0.06 0.24 0.75** 0.43** 0.64** 0.67** 0.86** 0.90** 1

RX1day − 0.03 0.14 0.52** 0.25 0.40** 0.42** 0.63** 0.70** 0.92** 1

RX5day 0.02 0.57** 0.61** 0.38** 0.54** 0.54** 0.60** 0.71** 0.78** 0.73** 1

SDII 0.30* 0.14 0.59** 0.05 0.61** 0.65** 0.78** 0.79** 0.77** 0.65** 0.60** 1

*Significant at 0.05 level

**Significant at 0.01 level
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northwest region. The distribution of R0.1mm was quite sim-
ilar with that of CWD (Fig. 4c), while the highest values of
R10mm, R12mm, and R25mm were located in the southeast
region (Fig. 4d–f). The similarities and differences in spatial
distributions among these indices can be illustrated from the
correlation coefficients in Table 3. The correlation coefficients
between indices for the number of precipitation days were
relatively small (Table 3). For example, the correlation coeffi-
cients between CDD and other extreme precipitation indices,
except R0.1mm (at the 0.05 significance level), did not pass
the 0.05 significance level. From the definition of CWD,
R0.1mm, R10mm, R12mm, and R25mm, higher values indi-
cated wetter conditions, whereas lower values suggested drier
conditions. Therefore, the spatial distributions of these indices
revealed that the southeast of the MRYRB was the relatively
wet region as R10mm, R12mm, and R25mmwere largest and
CDD was smallest in this area, whereas the northwest region
was the relatively dry region. On the other hand, the occur-
rence probability of extreme precipitation events in the

southeast was also higher than that in the northwest region.
These results were consistent with the results given in Sect.
3.1.1.

The proportion of stations with decreasing trends (43%)
was less than that with increasing trends (57%) for CDD
(Fig. 4a). Only 1 and 2 stations showed significant increasing
and decreasing trends, respectively. Moreover, the regional
average CDD time series presented an insignificant decline
trend at a rate of − 0.31 days/decade (Fig. 5a). The temporal
trends showed that 40 of 44 stations (91%) gave decreasing
trends for CWD (Fig. 4b), with only five of them were signif-
icant. This can also be seen in the insignificant decline trend of
regional average CWD time series (− 0.15 days/decade,
Fig. 5b). All stations exhibited negative trends of R0.1mm,
of which 35 stations (80%) were significant (Fig. 4c). Over the
whole study area, we observed that the R0.1mm significantly
decreased at a rate of − 3.04 days/decade (Fig. 5c). For
R10mm, more stations exhibited decreasing trends, with only
five of them being significant (Fig. 4d). Moreover, the

Fig. 5 Regional average series for
indices for the number of
precipitation days in the MRYRB
during 1960–2013. The red line
represents the slope of the
datasets during 1960–2013
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regional R10mm time series significantly decreased (−
0.32 days/decade) (Fig. 5d). The number of stations showing
decreasing trends (75%) was also more than that with increas-
ing trends (25%) for R12mm (Fig. 4e). However, the regional
R12mm time series gave an insignificant decline trend at a rate
of − 0.24 days/decade (Fig. 5e). As for R25mm, the number of
stations giving decreasing trends was the same as that giving
increasing trends (Fig. 4f). This can also be seen in the region-
al average R25mm time series that an insignificant decline
trend at a rate of − 0.02 days/decade can be detected in Fig. 5f.

The values of most indices (except CDD) increased from
the northwest to the southeast of the MRYRB, which was
consistent with the spatial variation of annual precipitation in
this area, revealing that the southeast region was the wettest
region, whereas the northwest region was relatively dry in the
MRYRB. These results were consistent with the previous
studies in the similar regions, such as Liu et al. (2008) and
Sun et al. (2016). In the MRYRB, we have not found any
evidence of disproportionately large increase in the precipita-
tion extremes, which have been revealed in the global
(Alexander et al., 2006) and many other regions (Wang
et al., 2013; Limsakul and Singhruck, 2016). The trend of
regional average PRCPTOT was insignificant negative at the
95% confidence level. Except the significant decreasing
trends exhibited in R0.1mm and R10mm, no significant
changes were observed in the annual regional average series
of other extreme precipitation indices. The trends in the
extreme precipitation indices indicated that the MRYRB was
becoming drying with less frequent precipitation events,
which was consistent with the results given by Liu et al.
(2008) and Zhang et al. (2014). Moreover, You et al. (2011)
revealed that the magnitude of negative changes at the stations
in the Yellow River Basin is larger than the other regions in
China. Zhang et al. (2014) revealed that there is an evident
decline in the precipitation in the Yellow River Basin, partic-
ularly in the MRYRB; such decline is mainly caused by the
decrease in precipitation amount and rainy days. Changes in
extreme precipitation events play an important role in the gen-
eration of floods. Significant increasing trends in extreme pre-
cipitation can be observed in many large river basins in China,
such as the Yangtze River Basin (Chen et al., 2013) and
Songhua River Basin (Song et al., 2015), which may result
in more severe flood disasters in these areas. However, in our
study area, no significant change can be observed in these
considered indices, which may suggest that the risk of flood
disaster in this area may also have few changes. Besides, the
significant decreasing trend of regional R0.1mm series may
accompany with aggravation of droughts in the whole region,
which can partly explain why the Yellow River always suf-
fered from severe drought and occurrence of flow-break dur-
ing recent decades (Cong et al. 2009). Moreover, the insignif-
icant decline of regional R12mm suggested probable mitiga-
tion of soil erosion. Simultaneously, many previous studies

have proved that the reduction of soil erosion and sediment
transported in the Yellow River is due to climate change (de-
crease of precipitation) and human activities (such as land-
scape engineering, terracing, and the construction of check
dams) (Xu, 2004; Wang et al., 2007; Wang et al., 2015).

3.2 The statistical characteristic of extreme
precipitation series

3.2.1 Selection of best fit distribution

In this study, the GEV, GP, and gamma distributions were used
to fit the extreme precipitation time series of all indices in the
MRYRB during 1960–2013. The optimal model was deter-
mined using the KS test at the confidence level of 0.95. The
results were summarized in Tables 4 and 5. On the station
scale, the GEV distribution can be accepted as the optimal
choice for most occasions. This was also proved by the results
at the regional scale. GEV distribution can best simulate the
regional time series of all indices except R12mm, of which
Gamma was proved to be the optimal distribution. However,
the KS statistics of the GEV and gamma distribution were
quite close, and both of them have passed the KS test at the
confidence level of 0.95. These results indicated the efficiency
of GEVinmodeling of extreme precipitation time series in our
study area. In fact, GEV distribution has been reported to be
the best fit model in many regions by the comparison with
other extreme value distributions, e.g., Fischer et al. (2012). It
is worth noting that, although the GP distribution was widely
used in many studies (Bhunya et al., 2013; She et al., 2015) to

Table 4 The Kolmogorov-Smirnov test values of extreme precipitation
indices series

Index Regionally averaged value Best distribution

GEV GPD GAMMA

CDD 0.060 0.125 0.085 GEV

CWD 0.072 0.079 0.084 GEV

PRCPTOT 0.074 0.152 0.094 GEV

R0.1 mm 0.076 0.277 0.111 GEV

R10mm 0.051 0.096 0.061 GEV

R12mm 0.062 0.174 0.060 Gamma

R25mm 0.050 0.131 0.062 GEV

R95 0.061 0.256 0.071 GEV

R99 0.055 0.235 0.072 GEV

RX1day 0.073 0.095 0.102 GEV

RX5day 0.061 0.089 0.068 GEV

SDII 0.052 0.271 0.062 GEV

The bold front in Table 4 represents that the distribution has not passed
the 0.95 confidence level
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simulate the extreme precipitation time series, it was found to
be the worst choice in our study. At station scale, the KS
statistic showed that many GP distributions cannot pass the
KS test, especially for fitting CWD, R0.1mm, and R25mm.
Furthermore, none of the indices showed that the GP distribu-
tion was the optimal distribution at the regional scale. To sum
up, considering the wide acceptance of the GEV distribution
at regional and station scale, we employed this distribution to
analyze the statistical characteristic of extreme precipitation in
the study area.

3.2.2 The return levels of various indices

According to the best fit distribution results given in Sect.
3.2.1, extreme precipitation indices in each individual station
under return period of 50 years were calculated (Fig. 6). As
shown in Fig. 6, the spatial distributions of extreme precipita-
tion indices under the return period of 50 years were similar to
the spatial patterns of corresponding extreme precipitation in-
dices during 1960–2013, which indicated the rationality to use
the GEV distribution to simulate extreme precipitation indices
in the MRYRB. The majority of the highest values of these
indices (except CDD, of which high value means dry) were
distributed in the southeastern region, while most of the lowest
values of indices were located in the northwest region. These
results confirmed the results in Sects. 3.1.1 and 3.1.2 that the
southeastern region was relatively wet, whereas the north-
western region was relatively dry in the MRYRB. The spatial
variation of the return level revealed that the risk of extreme
precipitation was highest in the southeast of the MRYRB.
Therefore, more engineering and non-engineering measures
are needed to reduce the losses of extreme precipitation in this
region.

3.2.3 Changes in the extreme precipitation in different
subperiods

To further examine the temporal changes in the precipitation
extremes, we divided the whole time series into two subseries
with the same length, i.e., the time period from 1960 to 1986
and from 1987 to 2013. Then, the GEV distribution, which
was determined as the optimal distribution in the previous
section, was chosen to fit the two subseries, and the changes
in the probability distribution functions (PDFs) were given in
Fig. 7. The black and red lines represent the annual PDFs in
1960–1986 and 1987–2013, respectively. The shaded area
denotes the 5 and 95% cumulative percentages’ values.

The PDFs of R25mm, R95, R99, and RX1day changed a
little in the two subperiods, which indicated that changes in
these indices were quite small during the past several decades.
The PDFs of CDD, CWD, PRCPTOT, R10mm, R12mm,
RX5day, and SDII moved to the left during the recent several
decades. For example, as for the CDD, the 95th percentile

during 1960–1986 corresponded to 77.6 days/year, while the
95th percentile during 1987–2013 corresponded to 63.3 days/
year (Fig. 7a). The 95th percentile in CWD during 1960–1986
corresponded to 9.0 days/year, while the 95th percentile in
CWD during 1987–2013 corresponded to 6.47 days/year
(Fig. 7b). The PDF of R0.1mm after 1987 roughly moved to
the left; however, the part exceeding the 95th percentile
moved to the right. The fifth percentile in R0.1mm during
1960–1986 corresponded to 80.8 days/year, while the fifth
percentile during 1987–2013 corresponded to 74.6 days/year;
the 95th percentile during 1960–1986 corresponded to
110.0 days/year, while the 95th percentile during 1987–2013
corresponded to 126.0 days/year (Fig. 7d). All in all, general
distribution changes in extreme precipitation indices showed a
tendency toward drier conditions, which was in accordance
with the result of trends analysis in the previous sections.

3.3 Relationship between extreme precipitation
indices and large-scale atmospheric circulation

Large-scale atmospheric circulation is an important factor
influencing global climate and shows strong correlations with
extreme precipitation events in many regions of the word (Sun
et al., 2015; Zhang et al., 2016; Jiang et al., 2017). Therefore,
analyzing the relationship between extreme precipitation indi-
ces and large-scale atmospheric circulation in the MRYRB is
significant. Both PDO and ENSO events have shown strong
relations with extreme precipitation events, as observed
worldwide (Krichak et al., 2014; Limsakul and Singhruck,

Table 5 The numbers of optimal distributions and unqualified
distributions

Index GEV GP Gamma

x1 x2 x1 x2 x1 x2

CDD 36 0 5 1 3 0

CWD 27 6 11 25 6 13

PRCPTOT 39 0 2 3 3 0

R0.1mm 42 0 0 18 2 0

R10mm 37 0 3 8 4 0

R12mm 35 0 2 9 7 0

R25mm 31 0 6 14 7 5

R95 41 0 1 1 2 0

R99 36 0 6 4 2 0

RX1day 38 0 5 0 1 0

RX5day 37 0 7 2 0 0

SDII 40 0 1 6 3 0

x1 represents the numbers of optimal distribution stations in the KS test,
while x2 represents the numbers of stations that have not passed the KS
test
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2016; Liu et al., 2017). Here, the cross wavelet analysis was
applied to study the connections between ENSO and PDO and
extreme precipitation indices (Figs. 8 and 9). For the sake of
convenience, we only selected RX1day, R25mm, and CWD
which represented the intensity, frequency, and duration of
precipitation extremes, respectively, to describe. More details
of the cross wavelet transforms between ENSO/PDO and oth-
er indices can be found in Figs. 8 and 9.

Figure 8 exhibited the cross wavelet transforms between
ENSO and precipitation extremes in the MRYRB. Figure 8j

illustrated that the ENSO events showed a statistically signif-
icant negative correlation with the RX1day variation with a 2–
4-year signal at the 95% confidence level from 1964 to 1970.
In addition, ENSO events had a statistically significant posi-
tive correlation with the RX1day with a 13–14-year signal at
the 95% confidence level from 1983 to 1994. The results
indicated that ENSO events played an important role in trig-
gering intensive precipitation in the MRYRB. Figure 8g indi-
cated that the ENSO had a statistically significant negative
correlation with R25mm variation in the MRYRB at the

Fig. 6 The quantiles of the indices under the 50-year return period using the GEV distribution
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95% confidence level, with a 2–4-year signal from 1964 to
1973 and a 3–6-year signal from 1983 to 1993. Moreover,
ENSO had a statistically significant positive correlation with
the R25mm with an 8–9-year signal at the 95% confidence
level from 1999 to 2002. This implied that the ENSO was
closely related to the frequency of extreme precipitation
events in this area. Figure 8b demonstrated that the ENSO
had a statistically significant negative correlation with CWD
variation at the 95% confidence level, with a 2–5-year signal
from 1980 to 1990, suggesting that the ENSO was closely
associated with long-lasting rainy days in the MRYRB.

The cross wavelet transforms between PDO and precipita-
tion extremes in the MRYRB were displayed in Fig. 9.
Obviously, the PDO exhibited a statistically negative correla-
tion with RX1day in the MRYRB with a 1–2-year signal from
1998 to 2000 and a positive correlation with a 7–10-year sig-
nal from 1996 to 2002 and a 2–4-year signal in 2007–2009 at
the 95% confidence level (Fig. 9j). Similarly, Fig. 9g showed
that the PDO exhibited a statistically significant negative cor-
relation with R25mm variation in the MRYRB with a 5–6-
year signal at the 95% confidence level from 1987 to 1991 and
a positive correlation with a 6–10-year signal from 1991 to

Fig. 7 Annual PDFs of regional average extreme precipitation indices in 1960–1986 (black line) and 1987–2013 (red line). The part for exceeding the
95th percentile and the part for falling under the fifth percentile are considered
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2003. Figure 9b illustrated that the PDO showed a statistically
significant negative correlation with the CWD variation in the
MRYRB with a 2–3-year signal at the 95% confidence level
from 1981 to 1984 and a 10-year signal from 1981 to 1992 at
the 95% confidence level. In addition, PDO had a statistically

significant positive correlation with the CWD with a 2-year
signal at the 95% confidence level from 1999 to 2000. These
findings indicated that the PDO also had a strong association
with changes in the intensity, frequency, and duration extreme
precipitation events in the MRYRB.

Fig. 8 The cross wavelet transforms between the ENSO and extreme
precipitation indices in the MRYRB. The thick black contour denotes
the relations which are significant at the 95% confidence level against
the red noise. The cone of influence (COI) where edge effects might

distort the picture is shown as lighter shades. The relative phase
relationship is indicated by the arrow direction (with anti-phase pointing
left, in-phase pointing right). The color bar on the right denotes the
wavelet energy
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Figures 8 and 9 showed that both ENSO and PDO had
statistically evident correlations with precipitation extremes
in the MRYRB, indicating that both ENSO and PDO had a
strong influence on precipitation extremes. This result is in
accordance with Liu et al. (2017). The study of Ouyang
et al. (2014) has revealed that precipitation in the major of
China decreases during El Niño/PDO warm phase periods
and increase during La Niña/PDO cool phase periods.

Moreover, the relationships between the extreme precipitation
indices and the ENSO and PDO implied that for the El Niño
(La Niña) years and the PDO warm (cool) regimes, the vari-
ability in the frequency and magnitude of heavy and more
intense precipitation events tended to be reduced (enhanced)
(Kenyon and Hegerl, 2010; Limsakul and Singhruck, 2016).
Our study further revealed that the relationship between
ENSO events and precipitation extremes was more

Fig. 9 Same as Fig. 8, but for PDO events
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significant, indicating that ENSO can have a larger influence
on the precipitation extremes in the MRYRB compared to
PDO. This might be due to the limitations of the relatively
short record length and uncertainty from the potential interac-
tion between PDO and ENSO (Kiem and Verdon-Kidd,
2009). PDO can indirectly affect precipitation variability via
modulation of ENSO impacts (Verdon et al., 2004; Kiem and
Verdon-Kidd, 2009). There is much evidence (Chan and
Zhou, 2005; Andreoli and Kayano, 2005) that PDO coupled
with ENSO affects precipitation constructively (strong and
well defined anomalies), when they are in phase, and destruc-
tively (weak and noisy anomalies), when they are out of
phase. Moreover, some researchers also used other large-
scale atmospheric circulation indices to explore the relation-
ship between extreme precipitation and large-scale atmospher-
ic circulation in this study area (Liang et al., 2015; Zhang
et al., 2014; Sun et al., 2016). For example, Liang et al.
(2015) indicated that the monthly Rx1day, Rx5day,
PRCPTOT, and SDII have significant positive relationships
with Northern Hemisphere Subtropical High (NHSH) but sig-
nificant negative relationships with Northern Hemisphere
Polar Vortex (NHPV) in the Yellow River Basin. Sun et al.
(2016) found that the Western Pacific Subtropical High
Intensity Index (WPSHII) is associated with the drying trend
through an increase in the CDD in the Loess Plateau. These
studies have verified that the large-scale atmospheric circula-
tion index has the potential to improve the prediction of ex-
treme precipitation in the study region.

4 Conclusion

In this study, based on the daily precipitation data of 44 me-
teorological stations in the MRYRB during 1960–2013, 12
extreme precipitation indices, which can reflect the magni-
tude, intensity, and duration of precipitation extremes, were
selected to analyze the spatiotemporal variation and statistical
characteristic of extreme precipitation in the MRYRB. The
main conclusions are given as follows:

(1) Spatially, the values of most indices (except CDD) in-
creased from the northwest to the southeast of the
MRYRB, suggesting that it was wetter in the southeast
region than the northwest region of the MRYRB. The
regional average R0.1mm and R10mm showed signifi-
cant decreasing trends with rates of − 3.04 and −
0.32 days/decade, respectively. For other indices, insig-
nificant decreasing or increasing trends can be observed.
These changes in extreme precipitation indices indicated
that the MRYRB presented a drying trend with less fre-
quent precipitation.

(2) The GEV distribution was found to be the optimal sta-
tistical distribution for the extreme precipitation indices

of the MRYRB. The spatial distributions of extreme pre-
cipitation indices under the return period of 50 years
were similar to the spatial patterns of corresponding pre-
cipitation extreme indices during 1960–2013. Moreover,
changes in PDFs of indices for the period of 1960–1986
and 1987–2013 indicated a drying trend in the recent
decades.

(3) Both ENSO and PDO had statistically correlations with
RX1day, R25mm, and CWD, which demonstrated that
the intensity, frequency, and duration of precipitation ex-
tremes in the MRYRB. That is to say, both ENSO and
PDO had a strong influence on precipitation extremes in
the MRYRB. This suggested that the large-scale atmo-
spheric circulation index had the potential to improve the
prediction of extreme precipitation in the study region.
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