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Abstract
Understanding the causes of rainfall anomalies in the West African Sahel to effectively predict drought events remains a
challenge. The physical mechanisms that influence precipitation in this region are complex, uncertain, and imprecise in nature.
Fuzzy logic techniques are renowned to be highly efficient in modeling such dynamics. This paper attempts to forecast mete-
orological drought in Western Niger using fuzzy rule-based modeling techniques. The 3-month scale standardized precipitation
index (SPI-3) of four rainfall stationswas used as predictand.Monthly data of southern oscillation index (SOI), South Atlantic sea
surface temperature (SST), relative humidity (RH), and Atlantic sea level pressure (SLP), sourced from the National Oceanic and
Atmosphere Administration (NOAA), were used as predictors. Fuzzy rules and membership functions were generated using
fuzzy c-means clustering approach, expert decision, and literature review. For a minimum lead time of 1 month, the model has a
coefficient of determination R2 between 0.80 and 0.88, mean square error (MSE) below 0.17, and Nash-Sutcliffe efficiency
(NSE) ranging between 0.79 and 0.87. The empirical frequency distributions of the predicted and the observed drought classes
are equal at the 99% of confidence level based on two-sample t test. Results also revealed the discrepancy in the influence of SOI
and SLP on drought occurrence at the four stations while the effect of SSTand RH are space independent, being both significantly
correlated (at α < 0.05 level) to the SPI-3. Moreover, the implemented fuzzy model compared to decision tree-based forecast
model shows better forecast skills.

1 Introduction

The Sahel region is an eco-climate zone located on the southern
edge of the Sahara Desert. It is a semi-arid area where precipita-
tions are characterized by strong seasonal and interannual vari-
abilities with a short rainy season (4 months) and a long dry
season. The average rainfall amount is about 200 to 800 mm
from north to south (Djibo et al., 2015). In an inter-seasonal
timescale, the precipitations over the West African Sahel are
controlled by three main processes: a flow of moist air from
the south associated with the West African Monsoon (WAM)
onset, the seasonal movement of the ITCZ (inter-tropical conver-
gence zone), and a dry (and aerosol rich) advection from the
Sahara (Buontempo, 2010).

In the last three decades of the twentieth century, the Sahel
region has experienced a significant drought which corre-
sponds to a discontinuity in the rainfall series. Dai et al.
(2004) classified the decay in the precipitation series and the
consequent droughts among themost unquestionable andmajor
contemporary changes in climate that have been observed by
the scientific community. Drought investigation over the region
has therefore become an important component of scientific re-
search; consequently, temporal rainfall variability has been re-
lated to the teleconnection with the oceanic basins (Dieppois
et al., 2015; Folland et al., 1986; Giannini et al., 2008).

Several drought forecasting models have been developed for
the Sahel region using large climate variables as predictors. The
methods commonly employed in the prediction models com-
prises dynamical models (Folland et al., 1991) and statistical
methods (Badr and Zaitchik, 2014; Djibo et al., 2015; Lodoun
et al., 2014). Hence, skilful predictability was achieved by con-
sidering rainfall amount as a single mean value over the whole
region. However, the connections between the oceanic-
atmospheric dynamics and the Sahelian rainfall vary strongly in
space and time, and even the sign of the effect can switch from
season to season and between sub-regions of the same country. In
addition, the climate change feedback adds to the daunting task
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of drought forecast, and the complexity and uncertainty that
characterize the predictors make the forecast results hard to trans-
form into traditional mathematical models and therefore are in-
comprehensible in linguistic form.

Recently, artificial intelligence such as ANN (artificial neu-
ral network), fuzzy logic, data mining, wavelet transform, and
hybrid models have become popular in drought forecasting and
hydrologic parameters modeling. Fuzzy logic (FL) theories
were conceived and initiated by Zadeh (1965). Fuzzy theory
appears to be extremely effective at handling dynamic, non-
linear, and noisy data, especially when the underlying physical
relationships are not fully understood (Nayak and Sudheer,
2008). Similarly, FL models have the facility to include expert
understanding of climate processes in linguistic form during the
inference process. FL technique has the potential to produce
models that are robust, less complex, and more comprehensible
in human language. Fuzzy algorithm relies on a systematic use
of linguistic expressions to characterize the values of variables
and relations between them. It has been successfully used to
predict weather events, to forecast drought and rainfall amount,
and to model rainfall-runoff processes. Pongracz et al. (1999)
applied fuzzy rule-based modeling technique to the prediction
of regional drought. Bardossy et al. (2005) utilized a fuzzy rule-
based methodology to downscale local hydrological variables
from large-scale atmospheric circulation. Ozger et al. (2012)
applied a hybrid wavelet-fuzzy logic to forecast long lead
drought in Texas. Ozger et al. (2011) predicted the Palmer
drought severity index using wavelet-FL model with large-
scale climate indices as predictors. Nayak et al. (2014) imple-
mented a fuzzy model identification based on cluster estimation
for reservoir inflow forecasting in the Narmada basin, India.

In this paper, we attempt to forecast drought characterized by
3-month scale standardized precipitation index (SPI-3) of four
rainfall stations of western Niger using FL modeling techniques.
Monthly Southern Oscillation Index (SOI) data obtained from
the National Oceanic and Atmospheric Administration Earth
System Research Laboratory (NOAA ESRL), and monthly re-
analysis data (Kalnay et al., 1996) of South Atlantic sea surface
temperature (SST), relative humidity (RH), and sea level pressure
(SLP)were used as drought driving forces. A detailed description
of the study area as well as the different variables is achieved. FL
and the fuzzy c-means clustering methods were described.
Finally, the implemented FL forecast model is compared to de-
cision tree-based forecast modeling.

Previous studies have used fuzzy logic to forecast drought
by applying empirical methods or by automatically generating
the fuzzy rules and membership functions. In this work, in
addition to the fuzzy c-means clustering, expert decision and
literature reviewwere applied to determine the fuzzy rules and
membership functions.

An efficient drought forecast model for Niger can help policy
makers, water resource managers, and stakeholders to take the
appropriate and sustainable actions for drought preparedness and

mitigation. This paper, presents the perspectives for the imple-
mentation of a drought early warning system for the country.

2 Materials and methods

2.1 Study area

The four rainfall stations, considered in this work, are located
in two administrative regions of Western Niger, namely
Tillabery and Tahoua (Fig. 1). Both regions are situated be-
tween latitudes 12°–18° north and longitudes 0°–16.5° east.

Tillabery region covers 7% of the country’s total area, in
which lives 17.7% of the country’s population (INS-Niger,
2016). The main economic activities are agriculture, livestock
raising, and fishery production. It is one of the two regions
crossed by the River Niger, which is the only permanent wa-
tercourse of the country. The hydrographic network is charac-
terized by an important network of watershed and several
seasonal watercourses known as Gorouol, Sirba, Mékrou,
Tapoa, and many others. Precipitations are typically Sahelian
and are determined by the movement of the ITCZ. In this
region, the passage of the ITCZ occurs in June (the beginning
of the rainy season) and returns in late September, correspond-
ing to the end of the wet season. The mean annual rainfall is
about 400 mm whereas daily mean temperature varies be-
tween 17 and 42 °C according to the season (DMN, 2015).

Tahoua, in contrast, is not crossed by the River Niger, thus
has no permanent watercourse. Pastoralism and agriculture
constitute the main economic activities. The region covers
8% of the country’s total area and has 18.5% of the country
population (INS-Niger, 2016). The population in its majority
is settled in sparse valleys, where small irrigated agriculture is
practiced. The region is well known for its violet onion pro-
duction. The climate is Sahelo-Saharian and seasonal rainfall
is about 360 mm. Daily mean temperature fluctuates from 15
to 41 °C depending on the season (DMN, 2015).

In both administrative regions, desertification is a constant
treat. For this reason, one of the government and local popu-
lation’s main priorities is to mitigate this phenomenon by
implementing land recuperation and reforestation techniques.

2.2 Data description

2.2.1 Rainfall Data

The rainfall data used in this paper are monthly precipitation
series of four rainfall stations spanning the period 1950–2013
(Table 1). The rainfall stations are located in Western Niger
(Fig. 1), and the rainfall series were provided by the National
Meteorological Office of Niger. The missing values in the
rainfall series represent less than 10% of the total data, and
the ratio varies from 3 to 6% for the four stations.
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2.2.2 Large-scale climate indices

The sea surface temperature (SST) is the most important sur-
face condition affecting the climate. The global warming has
undoubtedly increased atmospheric moisture demand and has
altered atmospheric-oceanic circulation patterns, thus en-
hances drought in the Sahel region (Dai, 2011). Researchers
have found that El Niño-Southern Oscillation (ENSO) and
Tropical Atlantic SSTs had played a significant role in the
Sahelian prolonged drought of the 1970s and 1980s (Folland
et al., 1991; Folland et al., 1986; Giannini et al., 2008;
Giannini et al., 2003). The tropical Atlantic Ocean is considered
as the main source of moisture for West Africa; however, after
the twentieth century persistent drought, moisture transport
over the region has also been related to theMediterranean basin.
Warmer conditions in the Mediterranean Sea enhance Sahelian
rainfall (Gaetani et al., 2010), and an increase in the
Mediterranean evaporation leads to higher local humidity
across the Sahara, therefore providing a supplementary source
of moisture for the Sahel (Rowell, 2003). Additionally, for a
tropical region such as the Sahel, the assimilation of SLP

besides SST is effective in constraining precipitation
values. SLP distribution over the Sahara is linked to tem-
perature difference between the continents and the oceans;
therefore, a rise in the surface air temperature across the
Sahara in respect to the surrounding oceans reduces the
SLP over the Sahara, thus increasing precipitation in the
Sahel region (Haarsma et al., 2005).

Based on a literature survey, in this work, the Southern
Oscillation Index (a common index representing the ENSO
phenomenon), SST from South Atlantic Ocean, relative hu-
midity from Mediterranean basin, and SLP from Atlantic
Ocean were considered as drought predictors. The spatial
and temporal coverage as well as the details of each predictor
are summarized in Table 2.

2.3 Data analysis

2.3.1 The SPI

Drought as a complex climate phenomenon is difficult to
define. Although drought is commonly known as a significant

Fig. 1. Location of the rainfall stations

Table 1 Rainfall stations
Station name Station type Station code Longitude (°) Latitude (°) Altitude (m)

Say Climate station 6,105,400 2.347 13.096 182

Tahoua METAR/SYNOP 61,043, DRRT 5.250 14.900 386

Tillabery METAR/SYNOP 61,036, DRRL 1.450 14.200 209

Bouza Climate station 1,320,003,400 6050 14.417 300
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decrease in rainfall compared to the normal over an area, de-
termining how to objectively characterize it for users’ activity
planning and water resource management is a challenging
issue. One of the most commonly used index for meteorolog-
ical drought characterization is the standardized precipitation
index (SPI) developed by McKee et al. (1993). It is a useful
index that helps understand the onset and end of meteorolog-
ical drought, determining so, the duration and severity of dry
and wet spells. The SPI also has the flexibility to be computed
at a desired time scale (3, 6, 12, 24, or 48 months). Its com-
putation is simple because precipitation data is the only input
variable. The available long-term rainfall data is fitted to a
probability distribution. The cumulative probability distribu-
tion is then transformed to the standard normal distribution
which is the SPI value. Dry or wet conditions are thus classi-
fied according to the SPI value presented in Table 3 as pro-
posed by McKee et al. (1993). A large number of references
are available on the SPI computation; for more details, the
reader can refer to McKee et al. (1993), Guttman (1999),
and Hayes et al. (1999).

In this paper, 3-month scale SPI was computed by
fitt ing the accumulated rainfall amount of July–
September (JAS) to a two-parameter Gamma distribution.
The parameters of the distribution were computed using
maximum likelihood method. The three-month scale stan-
dardized precipitation index (SPI-3) reflects short- and
medium-term moisture conditions and provides a seasonal
estimation of precipitation (WMO, 2012). Additionally,
80% of the annual rainfall over the Sahel region is record-
ed during July–September (Djibo et al., 2015). Moreover,

the two-parameter Gamma distribution is the commonly
applied distribution for rainfall data (Karavitis et al.,
2011). The cumulative probability of the two-parameter
Gamma distribution is

G xð Þ ¼ ∫x0xα−1e
−x
β dx

βαΓ αð Þ ð1Þ

where α is the shape parameter, β is the scale parameter,
and Γ is the gamma function. The gamma function is unde-
fined for x = 0 and a precipitation distribution may contain
zeros; therefore, the cumulative probability becomes

H xð Þ ¼ qþ 1−qð ÞG xð Þ; ð2Þ
where q is the probability of zero.

2.3.2 Fuzzy logic forecast approach

Mendel (1995) defined the fuzzy logic system (FLS) as a non-
linear representation of an explanatory variable vector into a
scalar response variable. The FLS generally consists of three
principal components: input/output membership functions
(with values ranging between 0 and 1), fuzzy rules (FR), and
an inference engine (Mamdani, 1974).

The implementation of a fuzzy logic forecast model based
on multiple inputs/single output generally follows these steps:
Input and output data are first partitioned into Learning and
Test set, then the variables of the learning set or universe of
discourse (crisp sets or conventional set) UP are partitioned
into fuzzy subsets Ap

n; each fuzzy substset is characterized by a
membership function μA, μA =Up→ (0, 1), and the member-
ship function defines the degree of belonging of any x ∈ UP to
a fuzzy subset Ap

n. A linguistic variable is assigned to each
fuzzy subset Ap

n. Subsequently, the IF and Then rules are used
to define the existing relationship between individual input
and output variables. The resulting fuzzy subsets of the output
variable are then transformed into a conventional (classical)
set throughout a defuzzification technique. In the last step, the
forecast model is estimated or validated by using the unseen
values of the test set.

To implement the forecast model, a matrix database D,
comprising the input and the output data, was created.

Table 2 Predictors description

Predictor Unit Level Data source Region Spatial coverage Times series length

SOI – – NOAA ESRL Equatorial Pacific
Ocean

– January 01, 1949–December 31, 2013

SST °C Surface NOAA NCEP-DOE
Reanalysis

South Atlantic Ocean 1°S–20°S; 30°W–10°E

RH % 1000 mb Mediterranean Basin 40°N–30°N; 20°E–35°E

SLP Pa 1000 mb Atlantic Ocean 15°N–45°S; 60°W–10°E

Table 3 Drought
classification based on
SPI

SPI interval Drought class

2.0 and more Extremely wet

1.5 to 1.99 Very wet

1.0 to 1.49 Moderately wet

− 0.99 to .99 Near normal

− 1.0 to − 1.49 Moderately dry

− 1.5 to − 1.99 Severely dry

− 2 and less Extremely dry
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Seventy percent (70%) of the data was used as training set
(1949–1995) and 30% as test set (1996–2013):

D ¼
1950

::

:
2013

X11950
::

:
X12013

X21950
::

:
X22013

X31950
::

:
X32013

X41950
::

:
X42013

Y 1950

::

:
Y 2013

0
BBBB@

1
CCCCA

The first column of the matrix D represents the year; X1,
X2, X3, and X4 are the climate indices used as predictors; and
Y is the SPI-3 index (the predictand).

The variables in the training set were then fuzzified using
fuzzy c-means clustering techniques, expert decision, and lit-
erature review. Fuzzy c-means (FCM) is a method of cluster-
ing which allows one piece of data to belong to two or more

clusters. It was first reported in the literature by Dunn (1973)
and was improved by Bezdek (1973). The FCM clustering
algorithm involves unsupervised learning based on the
Euclidean distance between a data vector and a cluster center.
It successfully clusters the samples and helps in identifying
inherent laws in various samples.

The clustering algorithm of the FCM computes the optimal
memberships by minimizing the objective function in Eq. 3
(Suganya and Shanthi 2012):

Jm ¼ ∑
N

i¼1
∑
C

J¼1
Um

ij xi−C j
�� ��2 ; 1≤m≤∞ ð3Þ

where m is any real number greater than 1, Uij is the
degree of membership of xi in cluster j, xi is the ith of d-

Table 4 Linguistic variable of
input and output data Data Linguistic variables

SOI Strong El
Niño

Weak El
Niño

Neutral Weak La
Niña

Strong La
Niña

Extreme La
Niña

SST Very low Low Medium High Very high Extremely high

SLP Very low Low Medium High Very high Extremely high

RH Very low Low Medium High Very high Extremely high

SPI-3 Severely dry Dry Near
normal

Wet Very wet Extremely wet

Cluster 1 2 3 4 5 6

Fig. 2 Rainfall series fitted to the Gamma two-parameter distribution
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dimensional measured data, Cj is the center of cluster j,
and ‖xi − Cj‖ are Euclidean distances between the data
point and the cluster centers. Fuzzy partitioning is carried
out through an iterative optimization of the objective function
shown in Eq. 3, with the update of the degree of membership
Uij and the cluster centers Cj by

Uij ¼ 1

∑C
k

xi−C jk k
xi−Ckk k

� � 2
m−1

ð4Þ

C j ¼
∑N

i¼1U
m
ij *xi

∑N
i¼1U

m
ij

ð5Þ

This iteration will stop when maxij U kþ1ð Þ
ij −U kð Þ

ij

��� ���n o
< ε,

where ε is a termination criterion between 0 and 1, whereas k
is the iteration steps. This procedure converges to a local min-
imum or a saddle point of the cluster J. The number of clusters

determines the number of rules and membership functions in
the generated FIS.

To transform the fuzzified results, obtained from the fuzzy
rules into conventional set, centroid defuzzification method
was used. The centroid defuzzification method defines the
centroid coordinate of a fuzzy number Â in horizontal axis
as its defuzzified value.

2.3.3 Expert decision and literature review

Membership functions (MFs) and number of clusters were
obtained through the FCM clustering technique.

The interval domain of each cluster and MF were
adjusted using expert decision considering the nature of
the variable. For the SOI variable, the values that define
El Niño and La Niña phases were used beside the FCM
method as an additional criterion to determine the MF
domain of definition. A similar classification to the SOI
classes shown in Table 4 was previously used by Pongracz
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Fig. 4 Lag time between SPI-3 and predictors
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et al. (2001) in the prediction of monthly precipitation in
Hungary. The partition of the SST, SLP, and RH variables
into fuzzy subsets was adjusted using the mean, the max-
imum, and the minimum values as a supplementary crite-
rion to the FCM approach. As for the SPI-3 variable, the
drought classification developed by McKee et al. (1993)
was used to interpret the clusters of the output variable
generated by the FCM. Hence, a linguistic variable was
assigned to each cluster, and the combination of the linguistic
variables of the input and output data was analyzed by means
of the IF and Then rules.

The model was developed in MATLAB_R2015a. The
linguistic variables representing each cluster are shown in
Table 4.

3 Results and discussions

3.1 Three-month scale standardized precipitation
index

The three-month scale standardized precipitation index (SPI-
3) was used as drought quantifying parameter in a fuzzy logic-
based forecast of meteorological drought in Western Niger.
The SPI-3 was computed using two-parameter Gamma distri-
bution. The goodness of fit of the rainfall series to the Gamma
two-parameter distribution can be seen in Fig. 2.

The SPI-3 series are presented in Fig. 3 in the form of bar
chart. In this figure, drought onset and intensities during the
Sahelian prolonged drying are clearly displayed. The drought
precisely started in 1966 at Say and in 1968 at the other three
stations. As we can observe, no recovery in drought intensities
was observed. Yet, lower values of SPI-3 were observed after
the 1990s that corresponds to the recovery period mentioned
in the introduction. These results agrees with L’Hote et al.
(2002) who analyzed a Sahelian rainfall index from 1896 to
2000 and found that the drought persists after the year 2000.
The findings of L’Hote et al. (2002) were further confirmed by
Ali and Lebel (2009). The drought index used in this paper is

only based on precipitation data; therefore, to make a well-
founded inference on the persistence of the Sahelian
prolonged drought, other parameters such as evapotranspira-
tion and soil moisture need to be considered.

3.2 Relationship between the SPI-3 and the climate
indices

In a predictor screening process carried out throughout literature
review, a selection of skilful predictors among the climate indi-
ces commonly used as Sahelian driving forces was carried out.
From this selection, the SOI, RH, SST, and SLP were retained.
The selected predictors were individually lagged from 0 to
18 months in relation to the SPI-3. Lag 0 corresponds to July
of the SPI-3 year and lag 18 to January of the previous year as
explained schematically in the diagram of Fig. 4. The fuzzy
rule-based model was then simulated for each lag period.

After running different simulations, the lead time at which
the model displays the highest performance was retained as
optimal lag time for its corresponding predictor. For a clear
understanding of the link predictor-predictand, the correlation
coefficients R and Kendal τ were computed. The optimal lag
time and the correlation coefficients are presented in Table 5.
As can be seen in the afore-mentioned table, the SOI and the
SLP optimal lag times are station-dependent. The influence of
the SOI appears to be delayed to 1 month at Bouza, Tahoua
and Tillabery stations whereas the lead time is 3 months at Say
station. At the optimal lag time, the SOI is negatively corre-
lated to the SPI-3 of Tahoua while it is positive for the other
stations.

Although it is well documented that the connexion between
Sahelian summer rainfall and SOI has increased during the
last three decades of the twentieth century (Janicot et al.,
1996), the spatial and temporal variation of this relationship
has not been investigated in detail. The results obtained here
reaffirm the spatiotemporal variability of the ENSO effects
over the Sahel region at a rainfall station scale.

The SLP influence on the SPI-3 occurs at a lead time of
8 months at Bouza, 10 months at Say and Tahoua, and

Table 5 Lag time and correlation predictors-predictand

Predictor Stations

SPI of Bouza SPI of Say SPI of Tahoua SPI of Tillabery

R τ Lag R τ Lag R τ Lag R τ Lag

SOI 0.18 0.11 − 1 0.32* 0.24 − 3 − 0.26* − 0.18 − 1 0.25* 0.15 − 1
SST − 0.36* − 0.18* − 3 − 0.35* − 0.19 − 3 − 0.40** − 0.19* − 3 − 0.37** − 0.25** − 3
RH 0.68** 0.33* − 1 0.64** 0.35** − 1 0.63** 0.31** − 1 0.68** 0.32** − 1
SLP − 0.36** − 0.22* − 8 − 0.32* − 0.22* − 10 − 0.36** − 0.25** − 10 − 0.32* 0.18* − 15

Note: R is used for the Pearson correlation coefficient and τ represents the Kendal τ

*Significant at 5% level; **significant at 1% level
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15 months at Tillabery station. This confirms the temporal
variability of the SLP influence on Nigerien rainfall pattern.
However, the significant and negative correlation coefficient
(Table 5) attests to the spatial uniformity of the positive impact
of the SLP on precipitation over the country. The optimal lag
time for the SST is 3 months with a negative correlation to the
SPI-3 at all the stations—that is to say, warmer phases of SST
from the South Atlantic in April enhances drought over Niger
during July–September. Similarly, in a previous study using
the climate model simulation of Goddard Institute for
Space Studies, Druyan (1991) found that warmer SST in
the South Atlantic, starting from 1st of March, tends to
reduce June–August rainfall over the Sahel. The negative
influences of this SST on Sahelian rainfall have also been
emphasized in several studies (Hastenrath, 1984; Janicot,
1992; Rodriguez-Fonseca et al., 2015).

The relationship between the RH and the SPI-3 was
found to be the strongest with a lead time of 1 month.
The link between RH and SPI-3 is positive and significant
at the 1% level. Therefore, RH from the Mediterranean

basin enhances rainfall over Niger. The robust connexion
between Sahelian rainfall and RH from the Mediterranean
was proved by Djibo et al. (2015) who qualified this cli-
mate variable as one of the best predictors for seasonal
rainfall forecasting over the Sahel.

From the above results, the effects of the relative humidity
from the Mediterranean basin and the South Atlantic SST
on Western Niger SPI-3 index are space independent and
both variables can be used as skilful predictors. However,
the use of El Niño and SLP for drought predictions over
Niger should be handled with caution. Additionally, a
minimum lead time of 1 month was obtained for the se-
lected predictors. One month can be sufficient for drought
risk managers and stakeholders to take appropriate actions
for drought preparedness and water resource planning. In
addition, the input variables used are forecasted each year
by the NOAA and are opened to the public (available
online at http://www.esrl.noaa.gov). Therefore, the
implemented FL forecast model can be run at the beginning
of each calendar year.

3.3 Model efficiency

The number of membership function as well as the FIS type
was obtained using fuzzy C-means clustering approach adjust-
ed by expert decision and literature review. Mamdani FIS type
with six membership functions (Fig. 5) for input and output
variables were found to perform the best forecast results. The
model efficiency was assessed by computing the mean absolute
error (MAE), Nash-Sutcliffe efficiency (NSE), and coefficient
of determination R2 (Table 6). The FL model was then

Fig. 5 Membership function for input variables

Table 6 Model efficiency

Climate Station Fuzzy Logic Model Decision tree model

MSE NSE R2 MSE NSE R2

Bouza 0.15 0.87 0.88 0.36 0.55 0.69

Say 0.17 0.81 0.81 0.22 0.53 0.55

Tahoua 0.14 0.81 0.84 0.33 0.55 0.56

Tillabery 0.14 0.79 0.80 0.18 0.73 0.79
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Fig. 6 Predicted and observed
SPI-3
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compared to decision tree (DT)-based forecast model imple-
mented inMATLAB_R2015awith the function Bclassregtree.^
A comparison between the MAE, NSE, and R2, presented in
Table 6, shows clearly that the FLmodel yields the best forecast
skills at the four rainfall stations. Moreover, the frequency dis-
tribution of the forecasted and observed drought classes are
computed and presented in Fig. 6. It resulted that the frequency
distribution of predicted and observed drought classes for the
FLmodel are equal at 99% of level of confidence. Furthermore,
the forecast model is found to be more skilful for near normal
(NN) and moderate dry (MD) drought class prediction com-
pared to the other drought classes (Fig. 7).

The implemented forecast model has an average perfor-
mance of R2 = 0.83, using the rainfall data of four stations.
The model has the ability to overcome the complex rela-
tionship between drought occurrence in Western Niger and
large-scale climate variables using an unsupervised algo-
rithm (fuzzy C-means clustering technique) and can
achieve acceptable results. Therefore, it can be applied in
other drought-prone areas using different type of predic-
tors. The model has the advantage of being simple and
comprehensible in common language; thus, its understand-
ing does not require mathematical background knowledge.
Among the limitations of this model is the decrease in its
efficiency when predicting extreme events. This is due to
the presence of the few number of extreme wet and severely
dry classes in the training set compared to the other classes
during the study period. In the other hand, the predictor
selection carried out through running different simulations
of the model can be time consuming against the presence a
large number of predictors.

4 Conclusions

Since the Sahelian prolonged drought, the implementation of
a skilful drought forecast model for this region has been a
challenging issue. The teleconnection between this part of
Africa and the oceanic basins have been subjected to strong
variabilities, certainly because of the global warming. As a
result, the selection of skilful predictor which is the key factor
to achieve a good forecast model becomes more and more
complex. The model presented in this paper can help to over-
come this issue. The application of fuzzy c-means clustering
combined with expert decision and literature survey to gener-
ate membership functions and fuzzy rules, in a fuzzy logic
model for meteorological drought forecasting, yields satisfac-
tory results. The large-scale climate indices, namely, SOI,
South Atlantic SST, RH from the Mediterranean basin, and
Atlantic SLP, used to implement the model, were found to be
suitable drought predictors for the study area. Additionally, it
was possible to understand the spatial and temporal variability
of the teleconnection between the oceanic basins and drought
occurrence in Niger by using the SPI-3 of four different rain-
fall stations as predictand.

The present model, in contrast to the conventional
statistical methods mentioned in the introduction, is simple
and comprehensible in human language. It has the ability to
incorporate any kind of predictor regardless to the nature
(linear or non-linear) of its relationship with drought occur-
rence. Therefore, the model can be adapted to new predictors
that may incorporate the impact of human activities (such as
wood cutting, greenhouse effects, urbanization, over grazing,
and agriculture).

Fig. 7 Frequency distribution of predicted and observed drought classes. Note: In the above figure, EWextremely wet, VW very wet, MWmoderately
wet, NN near normal, MD moderately dry, SD severely dry, ED extremely dry
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The application of this model to the rainfall data of all the
available rainfall stations over Niger can be an important step
for the elaboration of a drought early warning system for the
country. Thus, drought occurrence in the country may be
prevented from turning into disaster or state of emergency.
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