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Abstract
Different configurations of the Weather and Research Forecasting (WRF-ARW) regional climate model, centered over the
Eastern Nile Basin, have been investigated. Extensive sensitivity analyses were carried out to test the model performance in
simulating precipitation and surface air temperature, focusing on the horizontal extent of the simulation domain, the mesh size
and the parameterizations of the boundary layer, radiation, cloud microphysics, and convection. A simulation period of 2 years
(1998–1999) was used to assess the model performance during the rainy season (June–September) and the dry season
(December–March). Three sets of numerical experiments were conducted. The first tested the effects of changing the horizontal
extent of the simulation domain; three domains have been examined to investigate, e.g., the effect of including a larger part of the
Indian Ocean, for which no significant impact was found. The second set of experiments tested the sensitivity of WRF to the
horizontal mesh size (about 16, 12, and 10 km). It was found that increased resolution results in a more accurate simulation of
precipitation and surface temperature. The third set of experiments was designed to select the optimal combination of physics
parameterizations. All simulations were forced by ERA-Interim reanalysis data to provide initial and boundary conditions,
including sea surface temperature, and the Noah land surface model (NPAH) was used to simulate land surface processes. To
rate the model performance, we used a range of statistical metrics, summarized with a scoring technique to obtain a single index
that ranks different alternatives. The simulated precipitation was found to be much more sensitive to the choice of physics
parameterization compared to the surface air temperature. Precipitation was most sensitive to changing the cumulus and the
planetary boundary layer schemes, and least sensitive to changing the microphysics scheme. Modifying the long-wave radiation
scheme led to more significant changes compared to the short-wave radiation scheme.

1 Introduction

Global climate models (GCMs) are main tools for projecting
future changes in the earth’s climate and provide the data
products necessary for impact, adaptation, and mitigation
studies in many societal sectors. A major limitation of
GCMs is their horizontal mesh resolution which is quite
coarse relative to the scale of processes that control, e.g.,
clouds and precipitation, as well as exposure metrics in most
impact assessments. Most GCMs do not provide information

on scales less than about hundred kilometers and commonly
several hundreds of kilometers.

Thus, estimating climate changes on the local scale from
the global scale modeling products requires some form of
regionalization. It means downscaling fromGCMoutput from
global to local climate conditions, i.e., from a coarse to a high
spatial resolution. Downscaling of climate data can be carried
out by either statistical or dynamical methods. Statistical
downscaling is based on the development of empirical rela-
tionships between historical large-scale atmospheric and local
climate characteristics. Statistical downscaling incorporates a
heterogeneous group of methods that varies in sophistication
and applicability. The main statistical downscaling categories
include linear methods (Hay and Clark 2003; Hay et al. 2000;
Zorita and von Storch 1999), weather classifications methods
(Yin 2011; and Benestad 2008), and weather generator
methods (Wilby and Dawson 2013; Ahmed et al. 2013;
Jones and Thornton 2013; UNFCCC 2013; Semenov 2012;
Wilby et al. 2009). Dynamical downscaling refers to the use of
high-resolution regional climate models (RCMs), driven by
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boundary conditions provided by GCMs. The RCM is char-
acterized by a higher spatial resolution and better representa-
tion of regional information, which more realistically repre-
sent the local topography and atmospheric processes. The ad-
equacy of the RCM simulation results depends to a large ex-
tent on the used boundary conditions from the GCM (Wilby
et al. 2009). In addition, each RCM contains different dynam-
ical schemes and physical parameterizations for the grid re-
solved and sub-grid scale variables. The RCMs need to be
customized through adjusting the configuration and optimiz-
ing tunable parameters.

The weather research and forecasting model (WRF) is a
state-of-the-art regional climate model, i.e., a mesoscale nu-
merical weather prediction system designed for both atmo-
spheric research and operational forecasting needs. The model
serves a wide range of meteorological applications across
scales from tens of meters to thousands of kilometers
(Michalakes et al. 2001). Parameterization of sub-grid scale
variables is one of the challenging problems in the application
of WRF (García-Díez et al. 2013; Dudhia 2014). Physics pa-
rameterizations are representations of important physical pro-
cesses that cannot be directly resolved by the model, based on
simplified physical or statistical, i.e., empirical representa-
tions. Parameterizations are needed because the processes
may occur on a sub-grid scale, are too complex, and compu-
tationally costly to be resolved explicitly, or when a process is
not sufficiently well understood to be represented through
mathematical equations, hence parameterizations aim at
predicting the effects of sub-grid scale process using only
information at the resolved grid.

WRF offers a series of physics options that can be com-
bined into different configurations. These options range from
simple and efficient to complex and computationally costly.
The WRF system categorizes physics parameterization
schemes into (1) shortwave radiation (SWR), (2) longwave
radiation (LWR), (3) planetary boundary layer (PBL), (4) cu-
mulus convection scheme (CUM), (5) microphysics (MIC),
and (6) land surface model (LSM).

The Eastern Nile Basin (ENB), which encompasses the
Blue Nile, Tekeze river basin, Atbara river basin, Sobat river
basin, and Baro-Akobo river basin, is the main source of Nile
inflow at Aswan in Egypt. It contributes ~ 85% of the total
water flow at the High Aswan Dam. Egypt comprises about
4% of the total basin area, Sudan 13%, South Sudan 61%, and
Ethiopia 22%. The basin has both tropical and sub-tropical
climates, with seasonal precipitation, while most of the north-
ern area of the basin is considered arid to semi-arid. Regarding
the orography of the region, the elevation within the basin is
found to range from zero meter above sea level (ASL) at the
northern part of the basin to 4300 m ASL in the Ethiopian
highlands.

Many previous studies have tested the WRF sensitivity to
alternative physics parameterizations for different simulation

timescales and a variety of locations worldwide (Ruiz et al.
2010; Zittis et al. 2014; Flaounas et al. 2011). Zittis et al.
(2014) used the WRF model over the MENA–CORDEX do-
main (MENA is Middle East–North Africa; CORDEX is
COordinated Regional climate Downscaling Experiment).
They investigated the performance of 12 different physics com-
binations at 50 km grid resolution, assessing the model perfor-
mance in simulating total precipitation, minimum and
maximum surface air temperature, and compared with gridded
observational data and station measurements. The results
showed that the simulated surface air temperature is most
sensitive to the choice of the microphysics parameterization
selection, while the precipitation is more sensitive to the
cumulus parameterization, and also that precipitation is
difficult to be captured by the model, especially in areas with
pronounced topography. Finally, they found that the obtained
configuration should be considered only for the MENA region,
while for other locations with different topography and
prevailing weather patterns, the results may differ.

Argent et al. (2015) customized the WRF model for the
Lake Victoria basin in order to capture precipitation patterns
in the region. Comparison of 13 different physics parameter-
izations was made to obtain the best combination to be used,
in addition to different sea surface temperature regimes. Also
they compared the results for extreme years with the climatol-
ogy year used for the initial analysis. Finally, their work pro-
vided a method for comprehensively customizing the model
for a particular region that can be used for future work over
any region. Mooney et al. (2013) evaluated the sensitivity of
the WRF model to parameterization schemes over Europe.
They used the WRF model to downscale the ERA-Interim
reanalysis data over a domain covering Europe for 12 different
physics parameterization combinations. The results showed
that the model can simulate the surface air temperature ade-
quately with high correlation and low bias. With respect to
precipitation it seems that it is not well modeled by the WRF
model, with a low correlation coefficient and large bias. Mean
sea level pressure modeled by the WRF model showed no
significant bias with a high correlation coefficient.

Regarding our study area, climate change impacts are poor-
ly understood and rarely investigated. Studies with regional
climate models over the ENB are needed to demonstrate the
effects of climate change on the basin, and especially the water
resources in the region. In order to study the climate change
impacts, a first step is to customize the RCM over the area,
which is our main objective here, to be able to use the model
for climate change projections. To obtain a recommended
configuration for the WRF model over the ENB, many nu-
merical experiments were conducted. The experimental de-
sign is descried briefly in Section 2. Results and discussion
are given in Section 3. The WRF recommended configuration
is detailed in Section 4. The summary and main conclusions
are presented in Section 5.
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2 Data and methodology

2.1 Model and domain

ENB hindcast climate simulations were performed with the
non-hydrostatic fully compressible WRF (WRF-ARW ver-
sion 3.5; Skamarock et al. 2008). Two nested domains were
used; the parent simulation domain is the MENA–CORDEX
domain which covers the Middle East and North Africa, with
a horizontal resolution of 0.44° (≈ 50 km) and 30 vertical
levels. The extents of the MENA–CORDEX domain, in addi-
tion to a higher resolution nested domain centered over the
ENB are shown in Fig. 1a.

All simulations were forced by ERA-Interim reanalysis
data (Dee et al. 2011) over a period of 2 years (1998–1999),
with additional 6-month spin-up period starting in July 1997.
The Noah land surface model (NPAH) was used to represent
the land surface processes in all simulation experiments (Chen
et al. 1996). Other settings that were common in all simula-
tions are the pre-processing and implementation of the forcing
fields in the simulations such as the relaxation zone, the setting
of vertical layering, land use databases, and sea surface
temperatures.

Three different sets of simulations were conducted to
test the sensitivity of the WRF model, in order to obtain a

recommended configuration for the model to be used in
climate studies in the ENB. The first set of experiments
was designed to investigate the effect of different horizon-
tal extents of the domain. The second set of experiments
was designed to investigate the effect of different horizon-
tal mesh resolutions for the model domain over the ENB.
The last set of experiments tested the performance of dif-
ferent combinations of physics parameterization schemes
to pursue the optimal combination to be used in an RCM
assessment.

Table 1 shows the coordinates of three different horizontal
extents used to test the sensitivity of WRF to different ENB
domain definitions. These simulations were performed to test
the effect of including the Indian Ocean on hindcasted precip-
itation and air temperature over the ENB domain. Figure 1c
shows the extent and the orography of the nested domain over
the ENB relative to the parent domain.

Using the outcomes of the domain horizontal extent simu-
lations, the second set of experiments was performed to inves-
tigate the mesh resolution of the nested domain over the ENB.
As the parent domain mesh resolution is 0.44°, three ratios for
the mesh size of the parent domain to the mesh size of the
nested domain were tested. Table 2 shows the different tested
ratios: 1:3, 1:4, and 1:5 which are the common nesting ratios
used for the WRF model.

Fig. 1 a Extent andmask of theMENA–CORDEX domain in addition to
the ENB domain extent, with red for land and blue for water. b The six
sub-regions defined for model evaluation: 1 Lake Tana, 2 Grand

Ethiopian Renaissance Dam (GERD), 3 Sobat, 4 Tekeze, 5 Akobo, and
6 Ethiopian Highlands (EH). c The extent and orography of the three
different alternatives, i.e., from left to right extent 1, 2, and 3
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2.2 Physics parameterization

Subsequent to selecting the horizontal domain extents and the
mesh resolution, a third set of simulations was performed to
determine the most appropriate ensemble of physics parame-
terization schemes. Sixteen different WRF configurations of
physics parameterizations were applied (Table 3).

Three cumulus convection schemes were examined, the
Kain-Fritsch scheme (KF; Kain 2004), the Betts-Miller-
Janjic scheme (BMJ; Janjic 1994), and the Grell 3D scheme
(Grell 3D; Grell 1993; Grell and Devenyi 2002). The KF
scheme is a deep and shallow sub-grid scheme using a mass
flux approach with downdraft and CAPE removal time scale;
it includes condensed and gaseous water detrainment. The
BMJ scheme is an adjustment scheme for deep and shallow
convection, and relaxing is applied towards variable tempera-
ture and humidity profiles which determined from thermody-
namic consideration. Grell 3D is a multi-closure, multi-param-
eter, ensemble method that explicitly accounts for updrafts
and downdrafts, designed for higher resolution, allowing for
subsidence between neighboring columns.

Three different planetary boundary layer schemes were
used, the Mellor-Yamada-Janjic scheme (MYJ;Janjic
1994), the Yonsei University scheme (YSU; Hong et al.
2006), and the symmetric convective model V2 (ACM2;
Pleim 2007). The MYJ is a local scheme with total kinetic
energy-based vertical mixing in boundary layer and free
atmosphere. The YSU is a nonlocal mixing scheme with
explicit treatment of entrainment, suitable for weather

forecasting and climate prediction models. ACM2 is a
nonlocal mixing upwards from the surface layer and local
mixing downwards. Six different microphysics options
were used, the WRF single-moment 3, 5, and 6-class
schemes (WSM3/WSM5/WSM6; Hong et al. 2004;
Hong and Lim 2006), the Lin scheme (Lin et al. 1983),
the Eta microphysics (Eta; NOAA 2001), and the
Goddard microphysics scheme (GCE; Tao et al. 1989).

The radiation schemes evaluated were the Community
AtmosphereModel (CAM; (Collins et al. 2004) for shortwave
and longwave, Dudhia scheme for shortwave radiation
(Dudhia 1989), and the Rapid Radiative Transfer Model
scheme (RRTM;Mlawer et al. 1997) for longwave radiation.
CAM is a spectral scheme with eight longwave bands, allows
for interaction with aerosols, clouds, and trace gases, and the
ozone profiles are a function of month and latitude. Dudhia is
a simple downward integration efficiently representing cloud
and clear sky absorption and scattering. The RRTM scheme is
an accurate spectral scheme, accounts for multiple bands,
trace gases, and microphysical properties, as it also interacts
with clouds, while the ozone profile is specified. The Noah
land surface scheme (NOAH LSM; Tewari et al. 2004) was
kept common in all WRF configurations. The NOAH LSM
represents soil temperature and soil moisture in four layers,
and fractional snow cover, frozen soil physics, and vegetation
effects are included, while also it provides heat and moisture
fluxes to the planetary boundary layer. NOAH LSM is the
recommended land surface model to be used with MODIS
land category data, used in this study.

Table 1 Longitude, latitude, and number of grids for the domain
horizontal extents numerical experiments

Extent 1 Extent 2 Extent 3

Longitude 25.5° E–42° E 25.5° E–50.0° E 25.5° E–56.0° E

Latitude 2.5° N–24.5° N 2.5° N–24.5° N 2.5° N–24.5° N

No. of grid cells 112 × 151 × 30 160 × 151 × 30 208 × 151 × 30

Table 2 Attributes of the numerical experiments for testing the domain
mesh size

Experiment 1 Experiment 2 Experiment 3

Longitude 25.5° E–42.0° E 25.5°E – 42.0°E 25.5° E–42.0°E

Latitude 2.5° N–24.5° N 2.5° N–24.5° N 2.5° N–24.5° N

Parent grid ratio 1:3 1:4 1:5

Resolution 0.147°
(≈ 16 km)

0.110°
(≈ 12 km)

0.088°
(≈ 10 km)

No. of grid cells 112 × 151 × 30 149 × 201 × 30 186 × 251 × 30

Table 3 Combination of physics parameterization for the 16 different
simulations

Simulation SWR LWR PBL CUM MIC LSM

#1 Dudhia RRTM YSU KF WSM3 Noah

#2 CAM CAM YSU KF WSM5 Noah

#3 Dudhia RRTM ACM2 Grell 3D Eta Noah

#4 Dudhia RRTM YSU BMJ WSM5 Noah

#5 CAM CAM MYJ BMJ Lin Noah

#6 Dudhia RRTM ACM2 BMJ Eta Noah

#7 Dudhia CAM ACM2 Grell 3D Eta Noah

#8 CAM CAM YSU BMJ WSM5 Noah

#9 CAM CAM ACM2 Grell 3D Eta Noah

#10 CAM CAM ACM2 BMJ Eta Noah

#11 CAM CAM ACM2 BMJ WSM6 Noah

#12 CAM CAM YSU BMJ WSM6 Noah

#13 CAM CAM MYJ BMJ Eta Noah

#14 Dudhia RRTM ACM2 KF Eta Noah

#15 CAM CAM MYJ BMJ WSM6 Noah

#16 CAM CAM MYJ BMJ GCE Noah
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The ERA-Interim reanalysis dataset (Dee et al. 2011) was
used to provide initial and boundary conditions, including sea
surface temperature. The boundary conditions were updated
every 6 h. ERA-Interim is a global atmospheric reanalysis data
including global atmospheric and surface parameters available
from 1979 to present at a spectral resolution ≈ 80 km and 60
vertical levels from the surface up to 0.1 hpa. The Noah-
modified 21-category IGBP-MODIS land-use scheme with
30 arc second resolution was used to represent the land mask
of the domain, different vegetation categories, topography,
different soil categories, surface albedo, green fraction, etc.

2.3 Observations

To evaluate the model performance, we focused on two sur-
face variables: precipitation (convective and non-convective
precipitation) and the surface air temperature 2 m above the
ground. For precipitation, the Global Precipitation
Climatology Centre (GPCC) version 6 (Schneider et al.
2011) was used. The GPCC is a monthly total precipitation
dataset available from 1901 to present, with a spatial resolu-
tion of 0.5° × 0.5°. The University of Delaware (UDEL)
dataset was used in assessing the model performance in sim-
ulating the surface air temperature. The UDEL dataset is a
monthly global gridded high-resolution station (land) data
for air temperature and precipitation available from 1901 to
2010, with a spatial resolution of 0.5° × 0.5°. Precipitation and
air temperature fields were re-gridded and interpolated to the
grid of the nested domain mesh size to facilitate the evaluation
of the simulated WRF results.

2.4 Evaluation methodology

The model performance was assessed for two seasons, the
rainy season from June through September (JJAS), and the
dry season from December through March (DJFM). In addi-
tion, the analysis was made using only grid points over the
identified sub-regions, shown in Fig. 1b. In order to evaluate
the WRF output, we used a range of statistical metrics, focus-
ing on the two surface variables, i.e., the total precipitation and
surface air temperature, and compared with the re-gridded
observation fields. The statistical metrics were divided into
three major categories: the standard regression statistics, error
indices, and dimensionless techniques.

Standard regression statistics were used to determine the
strength of the linear relationship between the simulated data
and corresponding observed data, where the slope and y-inter-
cept of the best fit regression line and Pearson’s correlation
coefficient were calculated. The slope indicates the relative
relationship between simulated and observed values and the
y-intercept indicates the presence of a lag or lead between
model results and observations; also it indicates if there is an
over- or underestimation in the model results compared to the

observations. A slope of 1 and y-intercept of 0 indicate that the
model perfectly reproduces the observed data. The Pearson’s
correlation coefficient is a measure of the strength of a linear
association between the simulation and observations. The
Pearson’s correlation coefficient is given by the Eq. (1), which
varies between zero and one, where the value of zero indicates
that there is no correlation between the model simulations and
the corresponding observations, while a value of one indicates
that the model simulations and observations are perfectly cor-
related by a straight line:

COR ¼
∑n

i¼1 Obs:i−obs:
� �

Sim:i−Sim:
� �

σObs:σSim:
ð1Þ

where:

n the total number of the grid points,
σObs.σSim. the standard deviation of the observations and

the model simulations, respectively, and
Obs; Sim the mean values of the observations and the

model simulations, respectively.

Error indices were used to quantify systematic deviations in
the data of interest. We used the mean absolute error (MAE)
given by Eq. (2) and the percent bias (Pbias) given by Eq. (3).
A perfect fit is achieved with an MAE value of zero. The
optimal value of Pbias is also zero, with low-magnitude values
indicating accurate model simulations. Positive values indi-
cate a model overestimation bias, while negative values indi-
cate a model underestimation bias. The dimensionless modi-
fied index of agreement (MIA), given by Eq. (4), was used as
a standardizedmeasure of the degree ofmodel prediction error
(Willmott 1981; Legates and McCabe 1999). MIA varies be-
tween 0 and 1, with a MIAvalue of 1 indicating perfect agree-
ment between the simulated and observed values, and a MIA
value of zero indicates no agreement at all.

MAE ¼ 1

n
∑n

i¼1 Sim:i−Obs:ið Þ ð2Þ

Pbias ¼ 100� ∑n
i¼1 Sim:i−Obs:ið Þ
∑n

i¼1Obs:i

� �
ð3Þ

MIA ¼ 1−
∑n

i¼1 Obs:i−Sim:ið Þ
∑n

i¼1 Sim:i−Obs:
���

���þ Obs:i−Obs:
���

���
ð4Þ

where:

n the total number of the grid points, and
Obs; Sim the mean value of the observation and simulation

fields, respectively.
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In order to facilitate the comparison process between
each model configuration against the observations, a sin-
gle weighted average index measure is computed from the
previously described statistical measures. A total index
score of 100 points is divided evenly among the five dif-
ferent statistical metrics such that each one can achieve 20
points out of the total 100. For each statistical measure,
the allocated weight is divided between the minimum and
maximum values of the measure, where the lowest range
of the statistical measure takes a value of 0 and the
highest range a value of 20, with linear interpolation ap-
plied in between.

For example, in the Pearson’s correlation coefficient the
minimum value, which is zero, means no correlation between
the simulation data and observations, so we allocate a mini-
mum score of 0, while the maximum value of the Pearson’s
correlation coefficient, which is one, means perfect correlation
between the simulation data and observations, thus, it is allo-
cated a maximum score of 20. For Pearson’scorrelation coef-
ficients between 0 and 1, a linear interpolation was applied to
determine the corresponding score that varies from 0 to 20.
Because the y-intercept and the percent bias may be negative,
we used the absolute values of both measures such that the
minimum value becomes zero and the maximum is the max-
imum of absolute value. In this way, for a certain WRF con-
figuration experiment, by adding the weights from the differ-
ent statistical metrics, we obtain a final score out of 100 that
represent the relative accuracy of each WRF configuration
against the observations.

Taylor diagrams are used to provide a brief statistical sum-
mary of how well different WRF configurations and observa-
tions match in view of their correlation and standard deviation
(Taylor 2001). The correlation and standard deviation are in-
dicated with a single point on a 2-D polar coordinates plot.
The standard deviation is represented by the polar distance
from the origin and the azimuthal position refers to the corre-
lation. The reference point with a correlation and standard
deviation of 1 is also indicated on the Taylor plot. This dia-
gram helps identify the model configuration with optimal per-
formance and to distinguish between errors due to limitations
in the simulation results.

3 Results

3.1 Domain extents and mesh resolution

The WRF experiments that were performed to test the hori-
zontal extent of the ENB nested domain did not result in
apparent differences in the simulated precipitation and surface
temperature fields for the different three tested domains.
Accordingly, it was decided to use the smallest ENB domain

extent (25.5° E–42.0° E, 2.5° N–24.0° N) in all other model
configurations. This approach helps minimize computational
cost because of the relatively smaller size of the nested do-
main. TheWRF experiments that were performed to select the
optimal mesh size of the nested domain indicated that higher
mesh resolutions result in more realistic simulations of the
precipitation fields. Accordingly, all further WRF configura-
tion are performed with the highest mesh resolution of 10 km.
All 16 WRF configurations for the physics parameterizations
were performed using the selected nest horizontal domain
(25.5° E–42.0° E, 2.5° N–24.0° N) and the selected nest mesh
size (10 km).

3.2 Precipitation

Figure 2 shows the daily mean precipitation bias (WRF–
GPCC) during the wet season months (JJAS) for different
WRF configurations of physics parameterizations during the
period 1998–1999. All simulations overestimated the ob-
served precipitation amounts over the pronounced topography
of the Ethiopian highlands. In simulations 5, 13, 15, and 16 the
overestimations are relatively smallest. In these four simula-
tions, the common physics schemes were CAM scheme for
the short and the longwave radiation, BMJ scheme for the
cumulus convection, MYJ scheme for the planetary boundary
layer, andNoah land surfacemodel scheme. Other simulations
showed larger overestimations of precipitation over the south-
western part of the domain, such as simulations 1, 2, 3, and 14.
Figure 3 shows the daily mean precipitation bias during the
dry season months (DJFM). The same pattern can be found
during the dry season where precipitation was overestimated
in the same simulations.

In order to investigate the effects of each physics pa-
rameterization individually and to identify how the differ-
ent schemes affect precipitation, we selected simulations
where only a single parameterization scheme is changed.
To check the effect of changing the shortwave radiation
schemes, simulations 7 and 9 were used, and for the
longwave radiation schemes, simulations 3 and 7 were
used. To check the impact of changing the cumulus con-
vection schemes simulations 3, 6, and 14 were used.
Simulations 5, 13, 15, and 16 showed the consequences
of changing the microphysics scheme. Finally, simulations
11, 12, and 15 showed the effects of changing the plane-
tary boundary layer schemes. By comparing the above
simulations, it was found that the precipitation simulation
is most sensitive to changing the cumulus parameteriza-
tion scheme and the planetary boundary layer scheme, and
less sensitive to changing the microphysics scheme. As
for the effect of radiation the precipitation seems to be
more sensitive to changing the longwave than the short-
wave radiation scheme.
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To compare the 16WRF configurations and to evaluate the
performance of the model with each physics combination, the
different statistical metrics have been calculated at the 10 iden-
tified sub-regions, and the scoring technique was applied. In
the following, the results at the GERD sub-region were pre-
sented as a sample of model results. Figure 4a, b presents the

Taylor diagrams for the 16 WRF configurations for both the
rainy and dry seasons. Most simulations achieve a correlation
coefficient varying between 0.45 and 0.65, and the centered
root mean square error ranged between 2 and 3. For the wet
season, it was found that some simulations have a high corre-
lation coefficient, such as simulation 9, when compared to

Fig. 2 Daily mean precipitation bias (WRF–GPCC) for the wet season for combinations of physics parameterizations, during the period 1998–1999
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other simulations such as simulation 11. Further, simulation
11 has a lower standard deviation than simulation 9. Figure 4c,
d shows the probability density function for the 16 simulations
and the GPCC data during the wet and dry seasons.

Focusing on the wet season, many simulations could not
capture the general pattern of the GPCC, while some

simulations captured the general pattern but with slight chang-
es in the density of some small values of precipitation. For
some simulations such as 1, 2, and 3, it was noticed that the
relative likelihood of large precipitation amounts was higher
than in GPCC, which means overestimation of precipitation in
these simulations. Figure 4e presents the daily mean

Fig. 3 Daily mean precipitation bias (WRF – GPCC) for the dry season for combinations of physics parameterizations during the period 1998–1999
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precipitation by month during the whole simulation period at
the GERD sub-region. Some simulations were able to capture
the annual cycle of precipitation, e.g., simulations 15, 12, and
8, with a small bias during the wet season. Other simulations
yielded high biases, such as simulation 3 where the bias
reached about 17mm/day. Also simulations 1, 2, 8, and 9 gave
rise to strong overestimations during the rainy months.

Figure 5 shows the scatter plots between the simulated
precipitation on the y-axis and GPCC observations on the
x-axis during the wet season. It clearly shows the precip-
itation biases, i.e., either overestimation or underestima-
tion for the different WRF configurations. Comparing the
simulated precipitation from the different WRF physics
configurations against the observations underscores the

Fig. 4 a Taylor diagrams
showing the correlation
coefficients, RMSE, and standard
deviations of precipitation during
the wet season relative to GPCC
for the 16 simulations over the
GERD sub-region, b same for the
dry season, c the PDF of
precipitation for the 16
simulations for the GERD sub-
regionin the wet season, d for the
dry season, and e daily mean
precipitation by month, over the
GERD sub-region for the 16
simulations and GPCC during the
period 1998–1999
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strong sensitivity of precipitation results to the adopted
physics parameterization schemes. A detailed selection
of the recommended combination of physics scheme will
be presented later in the paper.

3.3 Surface air temperature

Figure 6 shows the mean daily bias of the surface air tempera-
ture (WRF vs. UDEL) in the wet season during the simulation
period 1998–1999. Unlike precipitation, there are no major

differences between the 16 different WRF configurations in
the surface air temperature. Some differences were found in
simulations 7 and 16, which showed an apparent underestima-
tion compared to other simulations during the wet season.

The statistical metrics were computed at the 10 identi-
fied sub-regions with the results at the GERD presented
hereafter as a sample of model results. Figure 7a shows a
Taylor diagram for the 16 simulations for the surface air
temperature in the wet season, where all simulations
achieve similar correlation coefficients, central RMSE,

Fig. 5 Scatter plots between the simulated precipitation in the wet season on the y-axis and GPCC on the x-axis, over the GERD sub-region for the 16
simulations
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and standard deviations. Figure 7b shows the mean sur-
face air temperature on a monthly basis during the whole
simulation period, and the bias between the simulations
and the observations is typically nearly 3 °C, while the
annual cycle of surface air temperature is captured well by
all simulations. Figure 7c presents the probability density
function between the simulated surface air temperature

and the UDL data, where all simulations approximately
capture the general pattern of the observations. Figure 8
shows the scatter plots between the simulated surface air
temperature during the wet season on the y-axis and UDL
on the x-axis over the GERD sub-region for the 16 simu-
lations. It indicates no major differences between the dif-
ferent WRF configurations.

Fig. 6 Bias (WRF–UDEL) for themean surface air temperature in thewet season for combinations of physics parameterizations during the period 1998–1999
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4 Recommended WRF configuration

Previous investigations of the simulated precipitation and
surface air temperature compared to observational data
emphasized that changing the physics parameterization
schemes can have major effects on the simulated precip-
itation fields, which is less the case for the surface air
temperature over the ENB. To select the recommended
WRF physics parameterization configuration over the
ENB, the total score of the different statistical metrics at
different sub-regions as well as the whole simulation do-
main were computed for the precipitation and surface air
temperature in both the wet and dry seasons. Figure 9a
shows a color matrix of the total scores (out of 100) for
simulated precipitation and Fig. 9b for the simulated

surface air temperature. For precipitation, the Lake Tana
sub-region showed a low score for all simulations, but by
considering the whole domain the score increases. For
surface air temperature the majority of the simulations
achieve a high score, except at the GERD sub-region.

Table 4 presents the integral scores at all sub-regions for
different WRF configurations. WRF configurations1 and 2
resulted in the lowest total score among the different configu-
rations. Configurations 8, 12, and 15 attained the highest
scores with minor differences between the three configura-
tions. We find that any of these three configurations could
be used adequately over the ENB domain. Focusing on the
total score of precipitation during the wet season among these
three, it was found that configuration #15 is optimal for the
region.

Fig. 7 a Taylor diagram showing correlation coefficients, RMSE, and
standard deviations of surface air temperature during the wet season
relative to UDL for the 16 simulations over the GERD sub-region, b
daily mean surface air temperature by month over the GERD sub-

region for the 16 simulations and UDL during the period 1998–1999,
and c PDF for surface air temperature in the wet season for the 16 simu-
lations in the GERD sub-region
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Zittis et al. (2014) recommended a configuration for the
whole MENA domain at 50 km resolution, with the YSU
planetary boundary layer scheme, KF as cumulus scheme,
the WSM6 microphysics scheme, CAM for long- and short-
wave radiation, and the NOAH land surface model. The dif-
ferences between his configuration and the recommended one
here include the planetary boundary layer and the cumulus
scheme, which appear to have major effects on the simulated
precipitation compared to other parameterizations. This is
mainly related to the nature of our study area, which is wetter
than most of the MENA domain regions.

An additional experiment was performed to assess the
suitability of the recommend WRF configuration in sim-
ulating the precipitation and surface air temperature dur-
ing a drought period in the ENB. The simulation period
of this experiment extended over 2 years (1984–1985)
with additional 6 months of spin-up period, thus starting
in July 1983.The overestimation in simulated precipita-
tion (results not shown) over the Ethiopian highlands
was still noticeable, though smaller compared to the
results from the simulation period of the configuration
experiments. This was mainly because precipitation was

Fig. 8 Scatter plots between the simulated surface air temperature on the y-axis and UDL on the x-axis, during the wet season over the GERD sub-region
for the 16 simulations
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minimal during this period. The results for the surface
air temperature appeared to be satisfactory with some
overestimation during the dry season (results not
shown). The results of the statistical metrics for each
sub-region during the drought period indicate higher
scores for surface air temperature and acceptable values
for precipitation.

The relative enhancement in simulating the precipita-
tion and surface air temperature by using the recommend
WRF configuration (#15) over the default set of physics
parametrizations (#1) was calculated and is presented in
Fig. 10. It shows the enhancement in percent, which is the
improvement in the simulated precipitation and surface air

temperature in the recommended and the default physics
configuration relative to the observations. During the wet
season of the simulation period, enhancements in the sim-
ulated precipitation from the recommend configuration
reached up to 300% at a few grid points, while 64% of
the domain grid points had an enhancement between 0
and 50%, and 16% of the domain grid points had an
enhancement between 50 and 100%. Over the whole do-
main, the precipitation enhancement was found to be
47.5%. The enhancement was much less for the surface
air temperature, with a maximum value of 12% during the
rainy season at some grid points, and with an average
enhancement value of 4% over the whole domain.

Fig. 9 aColor matrix showing the score (/100) for simulated precipitation during the wet season in each sub-region for the 16 simulations. b Score (/100)
for simulated surface air temperature during the dry season in each sub-region for the 16 simulations
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5 Conclusions

With the objective of developing a regional climate model for
the Eastern Nile Basin, our study focused on testing the per-
formance of different parameterization configurations of the
WRF-ARWmodel in hindcasting precipitation and surface air
temperature. A simulation period over 2 years (1998–1999),
with an additional 6-month spin-up period (thus starting in
July 1997), was used to assess the performance of different
WRF configurations in simulating precipitation and surface
air temperature over the ENB during the wet season (June–
September) and the dry season (December–March). Three sets
of numerical experiments were conducted.

The first set tested the effects of changing the horizontal
extents of a nested domain centered over the ENB within the
CORDEX-MENA region as the parent domain. Three extents
for the nested domain were tested to investigate the effect of
including a larger area of the Indian Ocean into the simulation
domain. No significant impact was found from increasing the
horizontal extent of the nested domain, so it was decided to
use the smallest domain extent considering the high computa-
tional cost of increasing the domain size. The second set of
experiments tested the sensitivity of WRF to the horizontal
mesh size; three experiments were performed for the resolu-
tions 16, 12, and 10 km. Increasing resolution improved the
simulation of precipitation and surface air temperature.
Accordingly, it was decided to proceed with the highest reso-
lution tested (10 km).

The third set of experiments was designed to select a rec-
ommended combination of physics parameterizations. A total
of 16 WRF configurations with different physics parameteri-
zation combinations were tested to derive the optimal combi-
nation over the ENB. Generally, it was found that precipitation
is most difficult to model realistically, as the performance of
the WRF in simulating surface air temperature fields was gen-
erally more realistic than the simulated precipitation fields.
The biases in the simulated surface air temperature fields were
much less than the precipitation biases. Simulation of precip-
itation over the Ethiopian highlands, where the topography is
most pronounced within the ENB, showed a significant pos-
itive bias.

Simulating precipitation was much more sensitive to the
change in physics parameterization compared to the surface
air temperature. Precipitation was most sensitive to changing
the cumulus parameterization and the planetary boundary lay-
er schemes, and least sensitive to changing the microphysics
scheme. Modifying the longwave radiation scheme leds to
more significant changes compared to the shortwave radiation
scheme. The recommended WRF configuration for the ENB
consists of a CORDEX-MENA parent domain with a higher
resolution nested domain extending from 25.5° E to 42.0° E
and 2.5° N to 24.0° N with a mesh size of 10 km. The recom-
mended physics parameterizations include NOAH for the landTa
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surface scheme, CAM for the longwave and shortwave radia-
tion, the BMJ for the cumulus scheme, MYJ for the planetary
boundary layer schemes, andWSM6 for the cloud microphys-
ics. The recommended physics parameterization combination
enhanced the simulated precipitation and surface air tempera-
ture over the ENB by an average of 47.5 and 4%, respectively,
compared to the WRF default physics parameterizations.
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