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Abstract We have conducted a case study to investigate the
performance of support vector machine, multivariate adaptive
regression splines, and random forest time series methods in
snowfall modeling. These models were applied to a data set of
monthly snowfall collected during six cold months at
Hamadan Airport sample station located in the Zagros
Mountain Range in Iran. We considered monthly data of
snowfall from 1981 to 2008 during the period from October/
November to April/May as the training set and the data from
2009 to 2015 as the testing set. The root mean square errors
(RMSE), mean absolute errors (MAE), determination coeffi-
cient (R2), coefficient of efficiency (E%), and intra-class cor-
relation coefficient (ICC) statistics were used as evaluation
criteria. Our results indicated that the random forest time series
model outperformed the support vector machine and multivar-
iate adaptive regression splines models in predicting monthly
snowfall in terms of several criteria. The RMSE, MAE, R2, E,

and ICC for the testing set were 7.84, 5.52, 0.92, 0.89, and
0.93, respectively. The overall results indicated that the ran-
dom forest time series model could be successfully used to
estimate monthly snowfall values. Moreover, the support vec-
tor machine model showed substantial performance as well,
suggesting it may also be applied to forecast snowfall in this
area.

1 Introduction

Snowfall is one of the most important and sensitive compo-
nents of a climate system that may be severely affected by
climate change (Ke et al. 2009). This fascinating phenome-
non, which is a highly reflective and emissive climate ele-
ment, has low thermal conductivity and affects the global heat
budget. This effect mainly works via triggering an increase in
surface albedo along with outgoing longwave radiation that
leads to a feedback to surface temperature which in turn
causes climatic fluctuations (Robinson and Kukla 1985;
Barnett et al. 1989; Ke et al. 2009). Furthermore, water re-
sources are influenced by climate change through alteration of
the snowfall distribution pattern and the intensity and the
amount of precipitation and evaporation resulting from tem-
perature and radiation changes as well as changes in vegeta-
tion response (Matondo andMsibi 2001). Several studies have
indicated snowfall variation exerts an influence on climatic
parameters such as temperature, precipitation, and circulation
(Knowles et al. 2006;Walland and Simmonds 1997; Frei et al.
1999; Bednorz 2004).

Time series models have been widely used to predict the
future behavior of climatic phenomena including snowfall
which occur in cyclic patterns with spatial and temporal fluc-
tuations. Long-term forecasting of snowfall is usually con-
ducted through classical time series models like the
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autoregressive integrated moving average (ARIMA) models.
Despite several advantages including easy interpretation and
automatic model selection, time series models suffer from
some shortcomings as well. In particular, these models usually
do not take the nonlinear characteristics of the data into ac-
count (Kisi and Parmar 2016) and attempt to remove high-
frequency noises from the data in order to detect local trends
based on linear dependence in observations (Kane et al. 2014).
Moreover, ARIMAmodels assume that the standard deviation
of the errors is constant over time. This issue can be addressed
by utilizing another class of time series model known as
Autoregressive Conditional Heteroskedasticity (GARCH).
Nevertheless, this model also suffers from limitations. For
example, optimization of the GARCH model for parameter
estimation presents significant challenge (Kane et al. 2014).
To address the issues related to traditional time series models,
a new class of regression models has been developed, whose
framework rests on machine learning methods. Examples of
these models include support vector machine (SVM), random
forest (RF), and multivariate adaptive regression splines
(MARS) (Jalalkamali et al. 2015; Kane et al. 2014; Kisi and
Cimen 2012; Kisi and Parmar 2016; Leathwick et al. 2006;
Sedighi et al. 2016; Zapranis and Alexandridis 2011).

SVM uses structural risk minimization which alleviates the
overfitting problem by attempting to find a global optimum
instead of a local one (Adnan et al. 2017). Adequate perfor-
mance of the SVM has been verified by several studies in the
climatology field including precipitation (Kisi and Cimen
2012; Pour et al. 2016), Rainfall–Runoff (Sedighi et al.
2016), drought (Chi et al. 2013; Jalalkamali et al. 2015), and
temperature (Zapranis and Alexandridis 2011). RF regression
is an ensemble learning technique that creates several decision
trees, with each tree recursively partitioning the input space
until homogeneous small subspaces are created (Kane et al.
2014). A prediction rule is, then, created by calculating the
average of the outcome dependent variable associated with the
input variables in the subspace (Breiman 2001; Kane et al.
2014). While RF has been utilized effectively in prediction
of time series data (Kane et al. 2014), few studies have utilized
RF for the purpose of forecasting meteorological and clima-
tological data (Pour et al. 2016). MARS is a data mining
technique, which according to some studies offers adequate
flexibility and precision along with the ability to rapidly fore-
cast both continuous and binary output variables (Kisi and
Parmar 2016). MARS models develop a functional relation
using a set of coefficients and basic functions based on the
regression data (Kisi and Parmar 2016). The main advantage
of MARS model is that in these models, the relationships are
considered additive and interactive, thereby leading to fewer
variable interactions (Lee et al. 2006; Leathwick et al. 2006;
Kisi and Parmar 2016).

Snowfall as a climatic element with high volatility has sub-
stantial positive and negative socioeconomic effects

particularly on agriculture as well as water resources.
Seasonal forecasting of precipitation especially snowfall plays
a key role in the planning and managing of water resources.
Moreover, quantitative forecasting of precipitation in the form
of snowfall in high-altitude regions during cold episodes of
year from October/November to April/May (which is the pre-
vailing period of middle-latitude westerlies in Iran, and the
precipitation is often in the form of snowfall in altitudes) will
be very helpful for government policymaking. In the present
study, the snowfall data related to the six cold months of the
year at Hamadan Airport sample station (located in the moun-
tain ranges of the Zagros altitudes) were utilized for long-term
forecasting of snowfall. The previous studies conducted in this
area have confirmed the importance of detecting the likely
impact of climate change on the water resources on the region-
al and local scale. To our knowledge, no study has investigat-
ed the performance of RF, SVM, and MARS in forecasting
snowfall. Therefore, this study aimed compares the perfor-
mance of RF, MARS, and SVM time series models for pre-
diction of snowfall.

2 Material and methods

2.1 Study area and data description

The site of the present study, Hamadan, is situated in a moun-
tainous area in the West of Iran as indicated on the map of
Fig. 1. In this study, monthly snowfall data during six cold
months from 1981 to 2015 collected from the Hamadan syn-
optic station also known as the airport station were used. The
area is relatively mountainous with elevations ranging from
1730 to 3550m (latitude: 35° 20′N; longitude: 48° 68′E). The
mean precipitation including both rainfall and snowfall in this
area is about 300 mm annually ranging from 280 in the central
low lands of the region to 550 mm in the mountainous area
(Maryanaji et al. 2017), and exhibits a strong temporal vari-
ability. Rainfall occurs at lower elevations (less than 2500 m)
during autumn and winter. Snowfall occurs during winter,
spring, and autumn above this elevation, but rain is the dom-
inant precipitation of the region. Generally, during April and
March, precipitation is often minimal throughout the area, but
the rainfall events normally occur with high intensity. The
mean annual air temperature of the area is 11.8 °C. The central
and eastern parts of the area are characterized by low temper-
atures, while the southern parts are characterized by high
temperatures.

In this study, the monthly snowfall data was extracted and
registered. Before carrying out any calculation, we performed
the Run test to check the accuracy as well as to examine
homogeneity of the data. The homogeneity of the data was
confirmed, and there was no gap. To prevent the problem of
overfitting, the cross-validation method was applied. To this
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end, the data was divided into two parts, namely the training
part representing 80% of the data and the testing sets corre-
sponding to the remaining 20% of the data. Specifically,
monthly snowfall data from 1981 to 2008 corresponding to
the period from October/November to April/May were con-
sidered as training set, and the remaining data were used as the
testing set from 2009 to 2015. The monthly statistics of the
data set including mean, standard deviation, and maximum
and minimum of snowfall are given in Table 1. While for
the data used, the distribution of the training and test sets
was slightly different from each other; we considered them
to be approximately similar.

2.2 The random forest model

In a RF regressionmodel, which is an ensemble tree method, a
large number of trees, for example, 1000 are created
(Grömping 2009). This method utilizes randomness in two
ways: (i) each of the trees in the RF is created using a random
subset of the observations (boot strapped sampling), and (ii)
each split in a tree is created using a random subset of

candidate variables (Breiman 2001; Grömping 2009). As
these trees are relatively unstable, this randomness leads to
establishment of differences in individual predictions obtained
from each tree (Barnett et al. 1989). Injecting the randomness
into the base learning process improves the performance of
this ensemble learning method (Barnett et al. 1989). To obtain
an overall prediction for the final forest, the mean of the pre-
dictions obtained from the individual trees is calculated. This
can significantly improve the performance of the learning pro-
cess (Barnett et al. 1989). Random forest takes into account

Table 1 The statistical parameters of monthly snowfall data set (cm/
month)

Parameter Entire data Training set Test set

1981–2015 1981–2008 2009–2015

Mean 18.86 19.92 16.86

Minimum 0.00 0.00 0.00

Maximum 112.50 112.5 108.00

Standard deviation 23.10 23.38 23.47

Iran

Fig. 1 Geographical situation of
the study area

Application of random forest time series, support vector regression and multivariate adaptive regression... 771



nonlinear effects or higher order interactions of predictors as
well as complex relationships between them automatically
(Barnett et al. 1989).

2.3 The support vector machine model

SVM is one of the most widely used machine learning
methods for classification and regression problems that works
based on structural risk minimization (Hamidi et al. 2015; Kisi
and Cimen 2012; Yoon et al. 2011). Due to the fact that the
SVM minimizes the experimental error and the complexity
simultaneously, its generalization ability for prediction pur-
poses is improved greatly (Yoon et al. 2011). This method
uses the basic idea of mapping the input vector of x space into
a space with higher dimensions using an appropriate nonlinear
kernel function, ϕ(x). Therefore, a simple linear regression
may address the complex nonlinear regression of the input
space (Kisi and Parmar 2016; Hamidi et al. 2015). To explain
the SVM problem, let (x, y) be a set of variables, where x ∈ℝm

stands for an input vector with m components serving as pre-
dictors, and y stands for an output variable representing the
outcome. An SVM estimator ( f ) for the regression problem
can be mathematically represented by the following equation:

y ¼ f xð Þ ¼ w:ϕ xð Þ þ b ð1Þ
where w shows a weight vector representing the regression
coefficient, and b shows the bias term in the equation
(Hamidi et al. 2015). The solution to this equation is obtained
using a convex optimization method with an ε-insensitivity
loss function (Yoon et al. 2011; Hamidi et al. 2015). To obtain
the weight vector and the bias term, the objective function can
be converted to the following expression:

1

2
wTwþ C ∑

N

i¼1
ξi þ C ∑

N

i¼1
ξ*i ð2Þ

which is minimized with respect to the restrictions given the
following constraints:

wTϕ xið Þ þ b−yi≤εþ ξi
yi−w

Tϕ xið Þ−b≤ ε þ ξ*i
ξi; ξ

*
i ≥ 0; i ¼ 1;…N

8<
: ð3Þ

In expression (2), C is a tradeoff parameter that takes pos-
itive values and determines the extent of the empirical error in
the optimization problem (Hamidi et al. 2015). In addition, ξi
and ξ*i are slack variables that penalize training errors by the
loss function over the error tolerance ε. Projecting the input
space into high dimensional feature space is performed using
common kernel functions (Çimen and Kisi 2009) including
polynomial, Gaussian radial basis (GRBF), and exponential
radial basis. The present study exploited the GRBF kernel
function k(xi, x) = exp(−γ|xi − x|2) (Hamidi et al. 2015).

2.4 The multivariate adaptive regression splines model

Another nonlinear regression model that is utilized for
predicting continuous numeric outcomes isMARS. This mod-
el is a nonparametric technique that avoids the questionable
linearity assumption of classical time series and regression
models (Zhang and Singer 2010). The main advantage of the
MARS model is that it explains the complex nonlinear rela-
tionship of the inputs and the outcome variable (Kisi and
Parmar 2016).The MARS model has the following form
(Zhang and Singer 2010):

y ¼ β0 þ ∑βij xi−τ j
� �* þ ∑

i≠k
βijkl xi−τ j

� �* xk−τ lð Þ* þ⋯:

In the above formula, (xi − τj)
∗ is a positive (or negative)

truncated function. By adopting a value for the variable
(which is used to define the inflection point in the range of
predictors representing input variables or two basic functions,
the function maps from the predictor space (variable x) into
the output space (new variable y) using y = maximum(0, x-c)
and y = maximum(0, c-x), where c represents the threshold
value. The intersection between two adjacent splines at a knot
is used to maintain the continuity of the basic functions (Kisi
and Parmar 2016). There are several research areas that
MARS model can be applied. One of these situations is when
there is time series data. The MARS model also performs
variable selection, and using the backward stepwise procedure
eliminates the unnecessary variables thereby improving fore-
casting accuracy (Kisi and Parmar 2016).

2.5 Performance criteria

Several evaluation criteria were used to assess the perfor-
mance of the methods. In particular, the root mean square
error (RMSE), the coefficient of efficiency (E), the deter-
mination coefficient (R2), and the mean absolute error
(MAE) were used to evaluate the prediction accuracy of
the three used methods of SVM, RF, and MARS. R2 was
utilized as a measure of the linear relation between the ob-
served and estimated snowfall values. Higher values of R2

indicate better prediction with R2 = 1 representing a perfect
prediction. The RMSE was used as a measure of the good-
ness of fit relevant to high snowfall values, and MAE was
employed as a measure yielding a more balanced perspec-
tive of the goodness-of-fit at moderate snowfall values
(Çimen and Kisi 2009; Hamidi et al. 2015). The smaller
values of RMSE and MAE indicate better prediction with
zero values for these two criteria indicating a perfect pre-
diction. The coefficient of efficiency was also applied to
measure the differences between the observed and estimat-
ed snowfall values relative to the variability in the observed
snowfall values. The values of E that are greater than 90%
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show very satisfactory performances (Çimen and Kisi
2009). The RMSE, E, and MAE are calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑ Snowfallobserved−Snowfallpredicted
� �2

r

MAE ¼ 1

n
∑ Snowfallobserved−Snowfallpredicted

�� ��

E %ð Þ ¼ 1−
∑ Snowfallobserved−Snowfallpredicted
� �2

∑ Snowfallobserved−Snowfallmeanð Þ2

ð4Þ

where n is the number of observations, and Snowfallmean is
the average snowfall amount. We also applied intra-class
correlation coefficient (ICC) to investigate the agreement
between predicted and observed snowfall values.

3 Results

In the present study, monthly snowfall level in Hamadan, Iran
was modeled using three data mining techniques. All analyses
were conducted in R version 3.4.0 using random Forest (Liaw
and Wiener 2002), e1071 (Dimitriadou et al. 2006), and Earth
(Milborrow 2011) packages. The accuracy of the RF, SVM,
and MARS models were calculated using the evaluation
criteria described above. Specifically, the cross-validation
technique was applied to investigate the performance of the
models employed by dividing the data into training data and
testing data subsets. The training and testing sets used for each
model are given in Table 1. For the SVM, three parameters,
namely C, γ, and ε were tuned. We determined the optimum
values for C, γ, and ε using the trial and error method to be 1,
0.2, and 0.001, respectively.

For the three different methods employed, the RMSE,
MAE, E, and R2 statistics were calculated based on the train-
ing and testing data sets. The results are provided in Table 2.
As is evident, the RMSE and MAE values for the RF model
are smaller than those of the other two models in both the
training and testing sets. In the RF model for snowfall predic-
tion, these values were determined to be RMSE = 4.37 and

MAE = 2.47 based on the training data set and RMSE = 7.84
and MAE = 5.52 based on the testing data set. Moreover, the
efficiency and the R2 values in the RF model were greater than
those of the other two models in both training and testing data
sets (E = 0.96, R2 = 0.98, and ICC = 0.99 for training set and
E = 0.89, R2 = 0.99, and ICC = 0.93 for the test set). This
implies that the RF performance was better than the other two
models for the given data. However, the SVM showed similar
performance to that of the RF model with the values of the
evaluation parameters being very close to those obtained
based on the RF model.

The temporal variation of the observed monthly snowfall
values and their estimated values obtained from the RF, SVM,
and MARS models for the test period are plotted in Fig. 2a, b,
c, respectively. It is clear from these graphs that the estimated
snowfall values obtained from the SVM and the RF models
are in good agreement with the observed values indicating that
the models employed predicting snowfall fluctuations accu-
rately. Moreover, the RF model predicted the best estimates
for the observed values of snowfall followed by the SVM
model. A residual plot is also illustrated for the three methods
(Fig. 3). As is evident, the performance of the RF model was
superior compared with the SVM and the MARS models.

In addition, the estimated values of snowfall obtained from
the RF, the SVM, and the MARS models along with their
corresponding observed values of snowfall are illustrated in
the form of scatter plots in Fig. 4. As indicated by the fitted
line equations of the form y = a0 x + a1 in the scatter plots of
Fig. 4, compared with the other two models the a0 and a1
coefficients associated with the RF model are closer to 1 and
0, respectively.

Based on these results, the RF and SVM models showed
promising performances in predicting the given snowfall fluc-
tuations. The methodology based on the RF model was found
to be better than those based on the SVM and the MARS
models for modeling snowfall fluctuations based on the used
data set.

4 Discussion

Water resources management requires a comprehensive un-
derstanding of precipitation behavior. In mountainous regions
and in the middle latitudes of Iran, winter precipitation regime
is often in the form of snowfall. Therefore, forecasting the
snowfall behavior as an important climatic element is benefi-
cial for environmental planning and policymaking. This can
be achieved through analysis of the hidden features of the
snowfall. In Iran, snowfall starts from November to April as
a consequence of the cold weather at high latitudes as a result
of Mediterranean cyclones. Using statistical methods with
minimal error and high performance plays an important role
in providing prospects for understanding future climate

Table 2 The evaluation criteria of RMSE, MAE, E, R2, and ICC
statistics of SVM, RF, and MARS for prediction of snowfall

Criterion

Model RMSE MAE E (%) R2 ICC

RF Train 4.37 2.47 0.96 0.98 0.99

Test 7.84 5.52 0.89 0.92 0.93

SVM Train 2.12 1.49 0.99 0.99 0.99

Test 9.18 6.76 0.84 0.95 0.91

MARS Train 18.08 12.49 0.40 0.40 0.73

Test 20.95 16.46 0.10 0.16 0.54

Application of random forest time series, support vector regression and multivariate adaptive regression... 773



changes in different regions. In this context, comparing the
performance of different models gives an insight for identifi-
cation of better models for forecasting purposes. There are
several regression methods for analyzing snowfall fluctua-
tions. Among them, those methods that are based on statistical
learning theory have shown promising performances in differ-
ent areas of study including time series data analysis. This

study compared the accuracy of the RF, SVM, and MARS
models in modeling monthly snowfall data. A cross-
validation method was utilized for evaluating the performance
of the models.

The performance of the models revealed that the RF model
exhibited the highest potential in forecasting snowfall in the
given mountainous area followed by the SVMmodel. Several
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Fig. 2 Snowfall prediction
values (cm/month) obtained using
a random forest (RF) time series,
b support vector machine (SVM),
and c MARS models along with
the observed values (cm/month)
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criteria clearly demonstrated that the RF and SVMmodels are
more capable than the MARS model in estimating snowfall
values.

Other studies have confirmed that the performance of the
SVM model is better as compared with relevant data mining
techniques using artificial neural networks (Adnan et al. 2017;
Hamidi et al. 2015; Yoon et al. 2011; Sedighi et al. 2016). In a
study conducted by Kisi and Parmar, the performance of the
SVM and theMARSmodel was similar in predicting monthly
river water pollution (Kisi and Parmar 2016). Moreover, the
RF performance was better compared with that of the ARIMA
model in predicting avian influenza H5N1 outbreaks (Kane
et al. 2014). Although we used significant lags as input vari-
ables to increase the performance of the models, their addition
did not result in a significant increase in the accuracy of snow-
fall modeling.

Our results revealed that the RF model could be success-
fully used in estimatingmonthly snowfall. The results present-
ed are related to long-term prediction of snowfall and are
useful for management of the water resources. Consistency
and agreement between observed and predicted data demon-
strated the high capability of these techniques in modeling and
estimating snowfall variations. In addition, these models are
capable of displaying the periodic and non-periodic snowfall
data over time. One of the most important advantages of ap-
plying data mining techniques compared to the classical time
series models is that models such as RF and SVM do not rely
on any distributional assumptions regarding the structure of
the input and output variables. When one applies for example
an ARIMA model, there is a need to evaluate the model as-
sumptions such as linearity using residuals. However, it
should be noted that the performance of the methods
employed is data-dependent. Therefore, the performance of
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Fig. 3 Residuals for snowfall predictions (cm/month) obtained using random forest (RF) time series, support vector machine (SVM), and MARSmodels
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Fig. 4 Comparison of snowfall predictions (mm/month) using a random
forest (RF) time series, b support vectormachine (SVMwith the observed
values (mm/month) (minimum and maximum weather temperature was
used as covariates)), and c multivariate adaptive regression splines
(MARS)
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these models should be investigated using other data sets. It is
also worthwhile to assess the performance of other data min-
ing techniques based on water resources data in the future.

5 Conclusion

In the present study, the performance of the RF, SVM, and
MARS models was compared for prediction of monthly
snowfall, and the potential of these techniques for modeling
monthly snowfall was investigated. The results indicated that
the RF model provided better results compared with the SVM
and MARS models for prediction of monthly snowfall.
Moreover, the performance of the SVM was similar, though
slightly inferior, to that of the RF model. The performance of
the MARSmodel was, however, deemed unsatisfactory based
on the data used in the present study. The RF model uses
randomization to improve its performance. The SVM works
based on structural minimization, which is helpful in finding a
global minimum, and leads to successful predictions.
Therefore, the SVM and RF models are useful for prediction
of monthly snowfall in the region considered in this study.
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