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Abstract Existing forecast models applied for reservoir in-
flow forecasting encounter several drawbacks, due to the dif-
ficulty of the underlying mathematical procedures being to
cope with and to mimic the naturalization and stochasticity
of the inflow data patterns. In this study, appropriate adjust-
ments to the conventional coactive neuro-fuzzy inference sys-
tem (CANFIS) method are proposed to improve the mathe-
matical procedure, thus enabling a better detection of the high
nonlinearity patterns found in the reservoir inflow training
data. This modification includes the updating of the back
propagation algorithm, leading to a consequent update of the
membership rules and the induction of the centre-weighted set
rather than the global weighted set used in feature extraction.
The modification also aids in constructing an integrated model
that is able to not only detect the nonlinearity in the training
data but also the wide range of features within the training data
records used to simulate the forecasting model. To demon-
strate the model’s efficacy, the proposed CANFIS method
has been applied to forecast monthly inflow data at Aswan
High Dam (AHD), located in southern Egypt. Comparative
analyses of the forecasting skill of the modified CANFIS and
the conventional ANFIS model are carried out with statistical

score indicators to assess the reliability of the developed meth-
od. The statistical metrics support the better performance of
the developed CANFIS model, which significantly outper-
forms the ANFIS model to attain a low relative error value
(23%), mean absolute error (1.4 BCM month−1), root mean
square error (1.14 BCM month−1), and a relative large coeffi-
cient of determination (0.94). The present study ascertains the
better utility of the modified CANFIS model in respect to the
traditional ANFIS model applied in reservoir inflow forecast-
ing for a semi-arid region.

1 Introduction

1.1 Background

Dam reservoirs are significant components of water resource
management systems. The main purpose of reservoirs is to
provide and regulate sufficient irrigation water, drought and
flood control, and hydropower generation and to perform oth-
er hydrological functions for day to day living. Therefore,
efficient reservoir operations by means of deducing a suitable
schedule of water release policy is important for strategic wa-
ter resources management. An accurate and reliable reservoir
inflow forecast is a vital reference for decision-makers in re-
ducing the impacts of water surpluses or water deficits.
Furthermore, determining the most proper model for forecast-
ing future water inflows can play an essential role in making
appropriate decisions for reservoir management and for pro-
viding effective and successful reservoir policies. In this con-
text, developing model for reservoir inflow forecasting re-
mains of particular interest in the operational areas of hydrol-
ogy and water resources planning (Coulibaly et al. 2000;
Lohani et al. 2012).
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Reservoir inflow patterns entail highly complex pro-
cesses to be described using simple predictive models
because of the nonlinearity, spatial distribution, and time
varying characteristics of the data (Bai et al. 2015;
Valizadeh et al. 2017). There are two primary methods
for inflow forecasting that have been examined in previ-
ous studies: mechanistic or Bphysically-based^ models
and sys tem theore t i c (o r da ta -d r iven) mode l s .
Developing mechanistic models for encapsulating the hy-
drological processes is a devious task for decision-makers,
yet they require high-level erudite mathematical proce-
dures and significant amount of calibration (or initial/
boundary condition) data to secure an acceptable level
of modeling accuracy. Consequently, the hydrologists
have paid a lot of attention to utilize the rapidly evolving
data-driven models based on system theoretic principles
rather than using the highly complex mechanistic models
as a suitable alternative to model the complex hydrologi-
cal process. This is due to the fact that data-driven models
have the aptitude to adequately mimic the input-output
dynamics of water systems without requiring an insightful
understanding of the fundamental physical processes of
the system. Recently, most conceptual reservoir inflow
forecasting models are embracing data-driven models for
reservoir inflow forecasting presumably due to practical
reasons with physical models, such as the calibration is-
sues and data unavailability (El-Shafie and Noureldin
2011). Furthermore, physically-based models also tend
to disregard the time-varying, and stochastic characteristic
of the inflow system, so data-driven models which at-
tempt to combine the representative nonlinear relation-
ships into the reservoir inflow values (as time series and
climatology parameters) are becoming popular tools for
water resource managers.

Data-driven (or system theoretic) methods forecast the in-
flow patterns by direct mapping of relationship between input
variables and a target (output) set-based time series procedure
(El-Shafie et al. 2009; Keshtegar et al. 2016). This mapping
between the variables is achieved without the need for elabo-
rate consideration of the internal framework of the physical
processes. One of the most conventional method under this
approach is the auto regressive moving average (ARMA)
which is a linear approach proposed by Box and Jenkins
(1970). The ARMA has commonly been utilized for inflow
forecasting due to its straightforward procedure and effortless
development process (Valipour et al. 2013). Although, such
approaches have successfully revealed satisfactory results for
reservoir inflow forecasting, these models were unsuccessful
in several aspects of their implementations, mainly due to their
inability to address nonlinear and dynamical behavior of the
inflow values. Since these models do not always enable highly
accurate values (Valipour et al. 2013), alternative nonlinear
models are highly warranted.

1.2 Problem statement

Soft computing approaches such as the artificial neural net-
works (ANN), fuzzy inference set (FIS), and adaptive neuro-
fuzzy inference systems (ANFIS) have become increasingly
popular modeling tool for inflow forecasting. Over the recent
three decades, ARMAmodels have been slowly been replaced
by soft computing models that show greater ability to detect
the nonlinearity dynamics present in the reservoir inflow pat-
terns. This popularity is evidenced in recent research works
that have dealt with the implementation of soft computing
approaches (Smith and Eli 1995; Whigham and Crapper
2001; Jothiprakash and Magar 2009, 2012; Ju et al. 2009;
El-Shafie et al. 2009; Lin and Wu 2011; Guo et al. 2011;
Kisi et al. 2012; Danandeh Mehr et al. 2013; Chen et al.
2013; Deo and Şahin 2016; Allawi and El-Shafie 2016).
However, there can be a difficulty in the associated mathemat-
ical procedure in the ANN and the ANFIS model to detect the
highly stochastic patterns and wide range of the inflow attri-
butes present in the data, which warrants a need to enhance
soft-computing procedures.

In this study, a consideration is given to the variation of
the ANFIS model with an aim to improve its performance.
The ANFIS model is a good candidate because it has been
proven to possess the highest ability among all of the soft-
computing approaches to detect the nonlinearity patterns
in the input data. In fact, the ANFIS method, which inte-
grated the ANN with FIS algorithm, was first developed
as multiple inputs—single output procedure where the
merits of the two standalone (ANN & FIS) models were
combined for improved performance. The study of Jang
et al. (1997) (Jang et al. 1997) proposed further enhance-
ments to the ANFIS procedure, where they aimed to con-
sider applications with multiple inputs—multiple output
patterns and also introduced a method namely, the coac-
tive neuro-fuzzy inference system (CANFIS). Such new
procedure is likely to permit enhancements in the conven-
tional ANFIS model since it encompasses the back prop-
agation procedure to allow a re-evaluation of the rule of
the membership function used in the prediction algorithm.
With this improvement, the CANFIS method is likely to
better detect the nonlinearities and the stochastic patterns
at several local points in the predictor dataset. This is
particularly useful for long historical input data used in
a predictive model, as used in our case study.

1.3 Objectives

This research paper investigates the performance of a
reinvigorated CANFIS procedure to construct a reliable fore-
casting model for reservoir inflow forecasting. A total of
130 years monthly basis inflow data measured at Aswan
High Dam (AHD) has been used to examine the predictive

546 M. F. Allawi et al.



model. The different training approaches with different data
splitting criterion have been considered to examine the ability
of the model to detect the nonlinearity pattern between the
input and the output. The present study discusses the influence
of the four different training approaches on the reservoir in-
flow forecasting accuracy. Finally, a comprehensive compar-
ison analysis between the improved model (CANFIS) and the
conventional model (ANFIS) is carried out via several statis-
tical indexes to examine the reliability of the inflow forecast-
ing accuracy.

2 Case study

The main water resource infrastructure in Egypt is the
Aswan High Dam (AHD). The AHD was constructed to
provide Egypt a long-term protection against floods and
drought. The Nile River flows from south to north, sup-
plying water to AHD; it has a length of approximately
6850 km. Almost 10% of all African countries depend
on the Nile catchment basin. The reservoir of the dam
(i.e., Lake Nasser) supplies water for different purposes
such as irrigation, industrial use, navigation, and energy
production. This research has utilized 130 years monthly
inflow data (1870 to 2000), recorded from the upstream
gauge (i.e., Dongola gauge station). The data were col-
lected from the Nile Water Authority (NWA), Aswan
High Dam Authority (AHDA), and Ministry of Water
Resources and Irr igat ion, Egypt (El-Shafie and
Noureldin 2011). Figure 1 shows the location of Lake
Nasser which was created by the AHD. The water storage
capacity of this lake is about 160 billion m3 (BCM).

By a preliminary analysis of the data that were col-
lected, it is observable that the historical inflow data
during the study period has a high monthly fluctuation
pattern. The natural inflow of the AHD is presented in
Fig. 2. It is evident that the average values of the inflow
are different for the entire 130 years for both the yearly
and the monthly time scales. Figure 2a–c shows the dif-
ferent extreme events that occurred in three different
months, which show the dynamical behavior of the water
inflow in the AHD. For example, it is noticeable that the
maximum record in August, February, and June were
(29.1 BCM month−1), (6 BCM month−1), and (5.16
BCM month−1), respectively. Conversely, the low inflow
values observed in August, February, and June were
found to be (6.5 BCM month−1), (1.15 BCM month−1),
and (0.9 BCM month−1) respectively. Such a wide range
of data recorded in the historical inflow period reveals
the challenge in accomplishing accurate forecasting of
such data, and the need for optimized models to attain
reliable forecasting accuracy.

3 Modeling methodology

3.1 Adaptive neuro-fuzzy inference system (ANFIS)
method

ANFIS model has a proven capability for highly nonlinear
feature mapping and this model is seen to outperform the
ordinary linear approaches when utilizing nonlinear time se-
ries data (Jang et al. 1997). Developed as a multi-layer feed
forward network, this model adopts a neural network learning
algorithm coupled with a fuzzy-logic tool to map the input-
output space in such a way that the mean square error between
forecasted and observed data in training period are minimized.

In an ANFIS model, a popular rule set with two fuzzy IF-
THENs is defined in the following way (Eqs. 1 and 2):

Rule 1 : if u is u1 and n is n1 then f 1 ¼ p1uþ q1nþ r1 ð1Þ
Rule 2 : if u is u2 and n is n2 then f 2 ¼ p2uþ q2nþ r2 ð2Þ
where u and n are the membership functions related to input
variable(s), and the outputs are the p, q, and r parameters. The
architecture of the ANFIS method comprises of five primary
layers, which are the fuzzifications layer, firing strength layer,
normalized firing strength layer, consequent parameters layer,
and the overall output layer, (Lohani et al. 2007). Further
theoretical details of the ANFIS model can be found in
(Jang et al. 1997).

3.2 Co-active neuro-fuzzy inference system method

The conventional form of the CANIFIS model is an extension
of the original ANFIS model (Jang et al. 1997). The underly-
ing concept of the CANFISmodel can be extended to consider
any number of input and output pairs, as shown in Fig. 3a
(Shoaib et al. 2016). The essential component of the
CANFIS is generally similar to the components of the
ANFIS model where a fuzzy neuron that represents a param-
eter called the membership function (MF) is used to construct
the modeling framework. There are several types of MFs that
can be utilized, including the triangular, trapezoidal, sigmoi-
dal, Gaussian, z-shape, and s-shape functions, pi, the general
bell and the Gaussian equations. CANFIS structure includes
the normalizing axon that aims to normalize the output vari-
ables in the range of 0–1. The architectural network of
CANFIS model has the combined axon applied the target (or
output) of the MFs to the target for the neuronal network
(Alecsandru and Ishak 2004), which is still similar to the com-
mon ANFIS procedure.

CANFIS model is improved such that, in order to generate
multiple outputs, the model aims to maintain the same ante-
cedent behavior of the ANFIS procedure, with the restructure
that allows the modeling procedure to use fuzzy rules that are
constructed with shared membership values to express
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possible correlations with the output. Furthermore, when the
consequent parts are correlated (i.e., when two neural conse-
quents, neural rule1 and neural rule 3 are fused into one NN1

and neural rule 2 and neural rules 4 are fused into another
NN2), a typical modular network is constructed in similar
fashion. The outputs of the two NNs are mediated and trained
by an integrating unit (typically a gating network). The train-
ing is based on an independent training scheme whereby the
antecedent parts and the consequent parts are trained individ-
ually and then positioned together. Another training approach

used in the CANFIS model is to train the antecedent and the
consequent parts concurrently.

3.3 The modified CANFIS model

One of the substantial tasks that needs to be performed in the
CANFIS-based modeling is the predefined selection of the
optimal internal parameters for the CANFIS architecture (in-
cluding the number and shape of the MFs) (Tabari et al. 2012;
Lohani et al. 2012). The number of MFs selected before the

Fig. 1 Geographic location of the Aswan High Dam (AHD) and the Lake Nasser region in Egypt highlighted by the red circle (source: https://www.
mapsofworld.com/lat_long/egypt-lat-long.html)
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training phase contributes to the definition of every mapping
between input and output variables, hence providing a desir-
able and an improved predictive model (El-Shafie et al. 2007).
Deducing the proper values of the CANFISmembership func-
tions is a thus significant process for sufficiently mapping the
variables (Lohani et al. 2012).

A noteworthy point is that the CANFIS procedure permits
the modeler to introduce a further step to expand the back
propagation phase to commence at the fuzzification layer. In
respect to ANFIS, a major change in the CANFIS procedure is
to begin the common nodes of the input set that are passed to
the last layer of output. However, the errors are modified by a
back propagation phase toward the weights and biases within
the fuzzification layer, which accords to the membership rule.
In this context, the fuzzy axons and their MFs could be mod-
erated using the back-propagation framework through the sys-
tem exercises and the adjustment of the weight and biases for
the particular patterns, leading to an overall improvement in
the model’s accuracy.

As presented in Fig. 3b, Bthe dotted line connections,^
show an implementation of the modified CANFIS model pro-
cedure by means of modifying the available barebones back
propagation algorithm. In accordance with this, the CANFIS
back propagation procedure stems from the pattern-dependant
weights between the consequent layer and the fuzzy associa-
tion layer, namely, the membership rule. The modification
proposed for the back propagation procedure to the member-
ship rule layer is known as the Bfuzzification rule.^ In this
context, the membership values correspond to those of dy-
namically changeable weights that depend on the input pat-
tern. In fact, the current back propagation procedure before
modification (Fig. 3b, Bsolid line connections^) attempts to
deduce one specific set of weights that are common to all
training patterns. In other word, the weights are utilized in a
global fashion in the CANFIS model.

In this study, we propose to introduce modifications in the
CANFIS model such that it allows the back-propagation algo-
rithm to adjust the weights in a much local manner (i.e.,

Fig. 2 Historical naturalized
inflow trends at the AHD for
months of August, February, and
June for years between 1870 and
2000
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allowing a better feature extraction from the training inflow
dataset). With this modification that aims to improve the over-
all accuracy, the CANFIS model structure has a new mecha-
nismwhereby it is able to generate a center-weighted response
to small receptive fields, thus, localizing the primary input
excitation. In this sense, the proposedmodified CANFISmod-
el in this study can be functionally equivalent to the classifi-
cation of the input pattern to different categories of features
with different set of weights.

Every node of layer 1 has the MFs degree for a fuzzy
group (i.e., R1, R2, T1, T2) and this specifies the grade of the
presented input that is associated with one of fuzzy sets.
The second step (layer) receives the results of each target
(output) which has arrived from the previous step. A third

step includes two major sections, known as the upper and
the lower section. The first component (upper section) ap-
plies the MFs to all input variables, while the second sec-
tion (lower section) is the demonstration of the employment
network. The latter calculates the total firing strengths for
all outputs (Aytek 2009; Yan et al. 2010).

Layer 4 generates a definitive output of the network,
which provides the final shape for the output variables by
computing the normalized weights of the output that arrives
from the upper and lower components in the third layer.
Two models are fundamentally utilized as the training pro-
cedure, the Tsukamoto and the Sugeno model. For the MFs,
the three parameters belonged for the bell type, whereas
two parameters for correction belonged for Gaussian

Fig. 3 The architecture of the
CANFIS model; a original
structure with multiple inputs—
multiple outputs; b modified
structure with new back
propagation algorithm procedure
and multiple inputs—single
output
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function type (Chang and Chang 2006). The bell-shaped
function is defined as below:

μAi ¼
1

1þ xþci
ai

�
�
�

�
�
�

2bi
ð3Þ

μAi ¼
1

1þ x−ci
ai

�
�
�

�
�
�

2bi
ð4Þ

where a, b, and c values are the parameters of the bell-shaped
function that change the shape of the membership function.
The generalized bell function is more adaptable compared to
the Gaussian function. Accordingly, the bell function has been
utilized for the training model in this research paper.

The networks are training with an error correction learning,
which implies that a target response of a system should be
recognized. This correction works through a system response
at a processing element at iteration n, yi (n). In addition, a
target response di (n) of a certain input pattern and the imme-
diate error ei (n) is expressed as:

ei ¼ di nð Þ−yi nð Þ ð5Þ

Utilizing the concept of the gradient descent learning algo-
rithm, the weights in the CANFIS model is acclimated to
using the correction of the current weights for the terms, which
is symmetrical of a current input variables as well as the errors
which are encountered in the weights (Memarian et al. 2013).

The back-propagation algorithm works to update the
weight coefficients for every input pattern in the CANFIS
model. With the modified CANFIS model, this algorithm
modifies the membership function in addition to updating
the rules of the modular neural network. It should be noted
that the original CANFIS model generally minimizes the
error from the updating of the weights for the neural net-
work without changing fuzzy axons. However, the process-
ing technique used by the CANFIS model after introducing
the modification, as this study, aims to facilitate the re-
active fuzzifier process. This improvement provides a new
membership function value where the re-adjustment of the
fuzzy axons by itself is performed, thus creating new rules
to not only reduce the training error but also to create local
weight sets for each input pattern. In respect of the signif-
icant improvement introduced in this study, the new
CANFIS model is considered to be superior to the original
CANFIS and the predecessor, i.e., ANFIS model. With the
modifications introduced for the CANFIS model in this
paper, the new adaptive learning procedure for the MFs is
likely to lead to a greater precision within a fixed (and
reasonable) amount of the computation time.

3.4 Model evaluation

In this study, several statistical measures have been utilized to
examine the performance accuracy of the proposed method
for reservoir inflow forecasting. These indicators aim to ex-
amine the effect of the training approach and the testing per-
formance of the models. The statistical measures used for
model evaluation are: the mean absolute error (MAE), corre-
lation coefficient (R2), root-mean-square error (RMSE), and
percentage of relative error (%RE). The coefficient of deter-
mination (R2) (Eq. 6) is a popular indicator that compares the
covariance of the observed and forecasted data in the testing
phase (Gillberg and Wahlström 2008). The resulting error be-
tween the forecasted and the observed inflow data is computed
through the RMSE andMAE (Eqs. 7 and 8, respectively). The
relative error is the difference between forecasted and actual
values over the actual inflow, as shown in Eq. (9).

R2 ¼
∑n

t¼1 Ioð Þ− Ioð Þ
� � �

I f
� �

− I f
�� �	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
t¼1 Ioð Þ−

�

Io
�� �2

∑n
t¼1 I f

� �

− I f
� �� �2

s ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
∑
n

t¼1
I f
� �

− Ioð Þ� �2

s

ð7Þ

MAE ¼ 1

N
∑n

t¼1 I f tð Þ−Io tð Þ�
�

�
� ð8Þ

%RE ¼ I f tð Þ−Io tð Þ
Io tð Þ *100 ð9Þ

The forecasted values are represented in the above equa-
tions by lf, while the observed inflow values are given the
symbol lo, and the parameter n represents the number of data
points in the test phase. For further analysis, two different
visual diagnostic evaluation measures, the Taylor diagram
and the boxplot of error distributions, have also been consid-
ered to examine the actual and forecasted inflow data.

3.5 Data and model development

Table 1 shows the statistical parameters of the monthly inflow
data for the case study site, (i.e., the AHD). Here, the mean
(Xmean), maximum (Xmax), and minimum (Xmin) values over
the 130 years of operation have been enumerated. In addition,
this table includes the standard deviation (Sx), skewness (Csx),
variation coefficient (Cv), and the median values for the
monthly inflow data. In terms of the dynamical changes, a
relatively high standard deviation is evident for the
September data, while for the March records, the standard
deviations are relatively low. The inflow values for the month
of May reveal a high variation coefficient, whereas a low
variation coefficient is observed for the records obtained
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during the month of August. Another remarkable feature in
Table 1 is that the high and low skewness indicators corre-
spond to the months of December and September, respective-
ly, and the minimum and maximum monthly inflow values
during the 130 year period were recorded for the months of
May and September, respectively. In terms of the median
values, the data show that of the second half of the year me-
dian values were relatively high compared to the other months
over the 130 year period. This is attributable to the fact that
reservoir of the present dam generally receives a large water
volume beginning from the month of August until the end of
the year.

In order to construct the models, the reservoir inflow data
from 1870 to 2000 were separated into two distinct sets: the
training and validation set (or testing). This study has investi-
gated the ability of the proposed models by the inclusion of
four different training procedures. That is, we have utilized
four distinct training approaches to develop a robust predictive
model based on the modified CANFIS and the ANFIS model-
ing techniques.

The first procedure (denoted as Btraining approach #1^)
aimed to establish the model structure based on the partitioned
data with 75% of all available values was allocated to training
of the models and the remaining 25% of data used to verify (or
test) the trained models. In the second training procedure
(Btraining approach #2^), a new model was built after chang-
ing the percentage of the inflow data, to about 80% of the
inflow values being used during the training phase, and the
remainder 20% of data was used to validate (or test) the pre-
dictive models. In the third training procedure (Btraining ap-
proach #3^), the monthly inflow data for the period from 1930
to 1997 (i.e., 15% of total data) are used for testing the per-
formance of the models and using the remainder 85% of the

all data for training the models. Finally, the fourth training
procedure (“training approach #4”) allocated 90% of total data
to the training of the models and 10% of the data used for the
model testing phase. The utilization of four distinct data
partitioning, and the subsequent modeling procedures, en-
abled a robust extraction of the data attributes necessary to
attain the most accurate predictive model. The distribution of
inflow data during training and testing period with four differ-
ent training procedures are shown in Fig. 4.

The present study has developed the most optimal archi-
tecture of the modified CANFIS model comprised of the mul-
tiple inputs—single output system where statistically signifi-
cant lagged combinations of historical inflow data, Ia, as per
earlier studies (e.g., Chiew et al. 1998; Deo and Şahin 2016),
were used to construct the most accurate predictive models.

The present models utilized five sets of input data series: Ia
(t − 1), Ia (t − 2) … Ia (t − 5), and considered the role of
statistical memory in constructing forecasted value of the in-
flow (If). The architecture of the inflow forecasting models
using the ANFIS and modified CANFIS techniques are
expressed as:

Model 1 : I f ¼ Ia t−1ð Þ� �

; ð10Þ
Model 2 : I f ¼ Ia t−1ð Þ; Ia t−2ð Þ� �

;
Model 3 : I f ¼ Ia t−1ð Þ; Ia t−2ð Þ; Ia t−3ð Þ� �

;
ð11Þ

Model 4 : I f ¼ Ia t−1ð Þ; Ia t−2ð Þ; Ia t−3ð Þ; Ia t−4ð Þ� �

; ð12Þ
Model 5 : I f ¼ Ia t−1ð Þ; Ia t−2ð Þ; Ia t−3ð Þ; Ia t−4ð Þ; Ia t−5ð Þ� �

;

ð13Þ
where If = the forecasted inflow representing the output and
Ia = actual reservoir inflow representing the input data.

Table 1 Statistical analysis of the
monthly inflow data at the AHD
for the study period between 1870
and 2000

Month Xmean

(BCM
month−1)

Sx (BCM
month−1)

Cv (Sx /
Xmean)

Csx Xmax (BCM
month−1)

Xmin (BCM
month−1)

Median
(BCM
month−1)

January 4.30 1.003 23.30 0.718 7.7 1.72 4.2

February 3.15 0.90 28.51 0.654 6.04 1.15 3.12

March 2.75 0.86 31.44 0.816 5.81 1.07 2.69

April 2.52 1.05 41.61 0.428 5.25 0.95 2.5

May 2.33 1.01 43.54 0.449 4.71 0.8 1.96

June 2.24 0.82 36.59 0.810 5.16 0.9 2.1

July 5.24 1.76 33.66 0.758 11.02 1.74 5.03

August 18.96 4.32 22.82 −0.074 29.1 6.5 18.86

September 21.50 5.053 23.49 −0.196 32.79 7.31 21.45

October 14.51 4.23 29.16 0.168 27.4 5.96 14.8

November 8.11 2.24 27.65 0.564 14.4 4.12 8

December 5.54 1.36 24.55 1.198 11 2.83 5.22

Xmean mean value, Sx standard deviation, Cv coefficient of variation, Csx skewness, Xmin minimum value, Xmax

maximum value)
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4 Result and discussion

The modified CANFIS and the comparative ANFIS models
for reservoir inflow forecasting were developed according to
the procedure discussed in the previous sections. A compre-
hensive analysis of the results and a comparison between their
performances were performed to examine the functionality of
the proposed techniques. The evaluation of the models’ per-
formance and the influence of the training approach on the
forecasted results have been summarized in this section. To
yield a deeper and more conclusive analysis of the present
modeling approach, the evaluation of the methods’ reliability
was carried out in the model training and testing phases with
respect several statistical indices.

The statistical indicators of model accuracy including the
MAE, RMSE, R2, and the maximum percentage of relative
error (%RE) for both methods using training approach #1 are
shown in Table 2. It can be seen that model II is considerably
better than other models for both of the proposed methods.
Importantly, the results clearly show that the modified
CANFISmodel is more effective than the ANFISmodel when
both methods are subjected to the testing dataset. This is evi-
dent in the R2 obtained by the modified CANFIS model,
which is approximately 0.78 (a relatively high utility value
compared to the ANFIS model). Furthermore, the MAE and
RMSE values generated by the modified CANFIS model are
less than those using the ANFISmodel. On the other hand, the
maximum percentage of the relative error of model II using
the modified CANFIS is less than those yielded by the ANFIS
model.

Table 3 enumerates the statistical analysis of the results ob-
tained by proposed artificial-intelligence models using training
approach #2. It is remarkable to note that the performance of the
ANFIS and the model modified CANFIS using two input var-
iables (i.e., If = Ia(t − 1), Ia(t − 2) used in Model II) is better

compared than using two input variables in training approach
# 1, suggesting that the utilization of 80% of data for training
leads to an optimization of the feature extraction in reservoir
inflow forecasting. Notably, in the calibration (or training) peri-
od, the worst performance is also attained using model I where
only If = Ia(t − 1) is used as the model input. In concurrence with
the results of training approach # 2, the results of the model II
obtained by the modified CANFIS model is more accurate than
those provided by the ANFIS model.

Proceeding to the assessment of both models with training
approach # 3, Table 4 demonstrates the values of RMSE,
MAE, R2, and the maximum percentage of relative error
(%RE) attained using the ANFIS and modified CANFIS.
Note that here, the data partitioning used 85% (training) and
15% (testing) ratios. Further improvement in the model accu-
racy for the training phase is evident for the ANFIS model in
the case of model II with a smaller value of error and a larger
coefficient of determination compared to the ANFIS model in
training approach # 2 for 1-month-ahead inflow forecasting.
We also note that the predictive ability of the modified
CANFIS model using two antecedent values of reservoir in-
flow data as the model input is superior to the ANFIS method
with same input variables (i.e., with relative error of 23 vs.
31%). It should be highlighted that the relative error indicator
in the testing phase is considered to be one of the important
statistical indicators using to examine the proposed models. It
can be seen from Table 4 that the maximum error percentage
using the modified CANFISmethod with two previous inflow
records, If = Ia(t − 1), Ia(t − 2) is considerably less than those
obtained by other ANFISmodel. This shows that the modified
CANFIS technique is able to yield accurate forecasts of res-
ervoir inflow data.

Further examination of the modified CANFIS vs. the
ANFIS model for different input combinations (Eqs. 10, 11,
12, and 13) is presented Table 5 where the predictive models

Fig. 4 Data splitting during training and testing phases in the four different training approaches
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are trained with 90% and tested with 10% of all lagged com-
bination of reservoir inflow data. Evidently, this table shows
that in the calibration phase, the modified CANFIS-model II
has a higher accuracy compared to the other models.
Furthermore, it is noticeable that model II with inputs defined
by If = Ia(t − 1), Ia(t − 2) and constructed with the modified
CANFIS algorithm generated a minimum root-mean-square
error (i.e., 2.51 BCM month−1), mean absolute error (i.e., 1.8
BCM month−1), and correlation coefficient of approximately
0.81. Conversely, the results of the best model attained by the

ANFIS method for training approach #4 were found to yield
RMSE = 3.07 BCM month−1, 1.84 BCM month−1, and
R2 = 0.73. It can be further seen that the minimum relative
error was attained using the modified CANFIS model (with
train/test scenario denoted as model II) when trained with 90%
and tested with 10% of the lagged combinations of inflow

Fig. 5 Scatter plot of model II
with four training approaches
using ANFIS (left) and modified
CANFIS model (right)

�Fig. 6 Observed versus forecasted inflow pattern using the ANFIS
method-Model II for testing period; a training approach #1; b training
approach #2; c training approach #3; d training approach #4

556 M. F. Allawi et al.
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data. There is no doubt that the performance of model II uti-
lizing the modified CANFIS approach is more accurate than
those provided by ANFIS approach (Tables 2, 3, 4, and 5).

For an optimized data-driven predictive model, it is neces-
sary to identify the best data-partitioning approach undertaken
to construct and evaluate the final model as there is “no rule of
thumb” for data division, and in fact, this optimization is likely
to depend on the problem under investigation.

The partitioning of the predictor data in this study
followed the notion that many researchers have used differ-
ent data divisions between testing and model training sets
that can vary with the problem. Kurup and Dudani (2002)
used 63% of data used for training, (Boadu 1997) used 80%
of the data used for training, (Pal 2006) used 69% of data
used for training, and (Samui and Dixon 2012) used 70% of
data for training and 30% for testing purposes to attain
optimum results. In this study, the ability of the objective
model, modified CANFIS vs. the comparative model
ANFIS for reservoir inflow forecasting, was established
by a trial of four different training approaches, as listed in
Tables 2, 3, 4, and 5.

It is noticeable that in the model verification (i.e., test-
ing) period, the results are quite variable among the four
training approaches. Obviously, the worst results are
attained by both models that utilized training approach
#1, where the error values between the forecasted inflow
and the observed inflow data are considerably higher
(Table 2) than those found in the other training approaches
(Tables 3, 4, and 5). The performance criteria of these
models register a notable improvement in the results of
models that utilize training approach #2 and #3, but over-
all, models constructed with training approach 3 (where
85% data are applied for training and 15% for testing re-
mains superior). It implies that the training approach #3 is
more suitable for both the ANFIS and the modified
CANFIS models used in the current problem of reservoir
inflow forecasting which is presumably due to the fact that
both model construction methods were able to extract op-
timal information during the training phase, and conse-
quently, to learn the pattern embedded in the inflow data.
Another remarkable observation is that, although the num-
ber of data points used in the training phase are greater in
models with training approach #4 (i.e., 90% train vs. 10%
test) compared to training approach #3 (i.e., 85% train vs.
15% test), the present models provide poor accuracy using
training approach #4. This indicates that an increase in
training dataset length might lead to counterproductive

results, at least in the present problem under investigation,
so a proper selection of the optimal train: test-ratioed
dataset is necessary to attain the most accurate simulation
model.

The results of the scatter plot diagram for model II uti-
lizing the ANFIS and the modified CANFIS methods with
different training approaches are presented in Fig. 5. Based
on the values of the correlation between the observed and
the forecasted data, the training approach 3 seems to pro-
vide the best results with both artificial intelligence
methods. Furthermore, the level of correlation between
the actual monthly reservoir inflow and the forecasted in-
flow values generated by the modified CANFIS method is
higher those by the ANFIS model. It is remarkable that the
higher correlation utilizing the ANFIS attained a value of
(i.e., R2 = 0.85) with training approach #3, while the mod-
ified CANFIS method attained an R2 value of 0.94.
According to the correlation indicators, there is no doubt
that the efficiency of the modified CANFIS model applied
for reservoir inflow forecasting is considerably better than
the ANFIS model under all training approaches.

From a practical viewpoint, it is useful to check the patterns
and level of agreement between the forecasted and the observed
inflow values in the testing phase in order to generate a detailed
comparison between the present results. Fig. 6 presents the
hydrograph of the best model (i.e., Model II) for each training
approach using theANFIS technique. In this figure, there appear
to be many peak values of the inflow data shown as a quasi-
periodic pattern during the testing phase. On the other hand, the
patterns of inflow data forecasted by model II utilizing the mod-
ified CANFIS method with four different training approaches is
also presented in Fig. 7. It can be seen that both proposed tech-
niques have a high ability to forecast monthly inflow data, but
the optimal forecast is attained by using training approach #3.
However, it is apparent fromFig. 6c that theANFISmodel is not
able to forecast the low and the high inflow values as accurately
as the modified CANFIS model. It can be further observed that
the ANFIS model is able to detect only the pattern of medium
inflow values most of the time, to reflect a lesser degree of the
inflow forecasting. However, in accordance with Fig. 7c, we
notice that the modified CANFIS method is able to forecast
the data values that are more closely matched to the actual low
and high inflow values in the testing phase. Based on Figs. 6 and
7, it is evident that the use of training approach #3 for model
development and the application of the modified CANFIS mod-
el (in contrast to the ANFIS model) led to a significant improve-
ment in the model performance.

Further statistical analysis is performed using the Taylor
diagram that shows the statistical patterns (and their relative
location from a reference point) of the best models using the
ANFIS and the modified CANFIS algorithms under different
training approach (see Fig. 8). Note that the Taylor diagram is
a model inter-comparison tool where the reference (i.e.,

�Fig. 7 Observed versus forecasted inflow pattern using the modified
CANFIS method-Model II for testing period; a) Training approach #1;
b) Training approach #2; c) Training approach #3; d) Training approach
#4
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observed) data are used to benchmark the location of predic-
tive model data based on the root-mean-square difference
(RMSD) and the triangle inequality comparisons (Taylor
2001). It is observed that the modified CANFIS model perfor-
mance is better than the ANFIS model for all training ap-
proach since it is located closer to the reference line
(RMSD) and observed dataset. In terms of comparing the
models, the position of the best model in the diagram using
the modified CANFIS technique is attained by training ap-
proach #3.

Figure 9 shows a boxplot of the distribution of the forecasted
reservoir inflow values for model II by twomethods under train-
ing approach #3 compared to the actual inflow values in the
testing phase. TheWhisker-based indicators display the extrem-
ity values of the forecasted and the actual inflow properties
including their respective quartiles. Note that the lower-end of

the boxplot shows the lower-quartile, I25 (representing the 25th
percentile data), while the upper-end of the boxplot, I75, repre-
sents the 75th percentile value. On the other hand, the second
quartile is the median of the reservoir inflow value represented
by I50 (i.e., 50th percentile). Whiskers are stretched outwards
from the top-quartile to the bottom-quartile and the lower and
upper quartile (I25, I75) extends the smallest and largest outlier
values, respectively. These results indicate that the distribution
of the forecasted inflow values by the modified CANFIS model
are relatively close to actual inflow data in the testing phase.
However, the low inflow values tend to be slightly
underestimated when compared with the observed values. In
contrast, the ANFIS model provided a different distribution of
the forecasted inflow data compared with the modified CANFIS
model, which in fact showed a reduction in the accuracy for
reservoir inflow forecasts.

Fig. 8 Taylor diagram for the best results using the ANFIS and the modified CANFISmethods under four training approaches compared to the observed
data; a training approach #1 (model II); b training approach #2 (model II); c training approach #3 (model II); d training approach #4 (model II)
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5 Conclusion

Forecasting monthly reservoir inflow data is a vital require-
ment for water resources planning and management and ev-
eryday decision-tasks implemented in real hydrological prac-
tices. In literature, there are several models used to forecast the
reservoir inflow, but in this study, the modifications to the
original CANFIS method which is extension of ANFIS meth-
od were made to purposely enhance its mathematical proce-
dures. This included two major stages: introduction of the
fuzzy axons and modular networks, resulting in the construc-
tion of the modified CANFIS method. To evaluate their ver-
satility, both the ANFIS and the modified CANFIS methods
have been applied to forecast the monthly reservoir inflow for
the Aswan High Dam, located in Egypt. The forecasting mod-
el has been structured by utilizing different scenario for the
input patterns detection that included 1 to 5 previous (or an-
tecedent) statistically significant inflow records used to con-
struct the five different models using each of the two algo-
rithms. In addition, four different training approaches have
been examined considering the different splitting of the
input-target data for the entire 130 years of monthly records
of natural inflow.

In order to examine the performance of the modified
CANFIS versus the conventional ANFIS model, four statisti-
cal indicators were used to evaluate the performance of each
training approach with the various input structures (i.e., five
models). These statistical indicators were the %RE, MAE,
RMSE, and R2 values attained by both methods. For further
analysis, two different visual data evaluation methods namely,
the Taylor diagram and boxplot were considered to examine
the correspondence between the actual and forecasted inflow
from both methods. Generally, the modified CANFIS model
outperformed the ANFIS model for all modeling scenarios
(i.e., different lagged input combinations of antecedent inflow
data) and different training approaches (different ratios for the
partitioning of data into train/test sets). The present results
revealed that the forecasted results attained by the modified
CANFIS model that utilized input structure for Model II (with
If = Ia(t − 1), Ia(t − 2);with training approach #3) are the most

accurate case compared to the other input combinations and
training-testing approaches. The results also showed that the
modified CANFISmodel for the case of model II with training
approach #3 attained the minimum %RE (23), MAE (1.4
BCMmonth−1), RMSE (1.14 BCMmonth−1), and the highest
value of R2 = 0.94. Clearly, the present study supports the
preferable use of modified CANFIS model with two anteced-
ent lagged input combinations and training approach #3 for
optimal forecasting of reservoir inflow data.

In spite of the good performance of the modified CANFIS
model demonstrated in this study, the study does contain po-
tential drawbacks that could address in follow-up works.
Since the reservoir data is expected to rely on other climate
and environmental inputs (e.g., temperature, humidity, winds,
etc.), further investigation is necessary to incorporate these
factors, with proper model input structure be carried out into
the CANFIS model, to improve the forecasting ability. In fact,
this step is an essential for understanding the most influential
variable on the accuracy of the model output and for designing
real-life expert systems. Further improvement could be intro-
duced in terms of the training approach by considering a set of
12 different models, i.e., Bone model for each month^ to en-
capsulate the high variability of the inflow patterns for each
month that are expected to be distinct due to different climatic
and environmental patterns. In fact, train the CANFIS model
with the high variability of the historical inflow pattern is
likely to experience difficulty if the modelers fail to mimic
the patterns with other variables/factors and to provide a better
mapping between the input (i.e., predictor) and the output (i.e.,
target data). Finally, there is also room to introduce further
improvements by the use of ‘add-in’ optimizer algorithms
(e.g., Firefly Algorithm; Particle Swarm Optimisation;
Genetic Algorithm and Multiverse Optimisation) (e.g., (Wu
and Chau 2006; Sedki and Ouazar 2010; Raheli et al. 2017;
Ghorbani et al. 2017) to increase the learning ability of the
modified CANFIS model. In this context, the back-
propagation procedure within the modified CANFIS method
could overcome some of the weakness in the fine-tuning of its
internal parameters if such methods are used to construct hy-
brid CANFIS models.

Fig. 9 Boxplots of the observed
inflow and forecasted values
using the ANFIS method-model
II and the modified CANFIS
method-model II under training
approach #3
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Taken together, future enhancements made to the proposed
CANFIS model could focus on the three different phases of
the modeling procedure. First, the utilization of a large pool of
environmental variables (e.g., temperature, humidity, solar ra-
diation and wind data) and the implementation of the model’s
input selection through a suitable procedure for identifying
data pattern considering the most influence variables is impor-
tant to achieve a better forecasting accuracy. Second, for the
training approaches, modelers must investigate more efficient
training methods that provide the model the ability to mimic
all the possible inflow patterns. Third, within the CANFIS
method itself, modelers must utilize more effective optimiza-
tion algorithms to search for optimal CANFIS parameters.
These approaches are likely to lead to a more robust
CANFIS model that is responsive to the attributes within the
input data, and hence, yield more accurate performance to
increase its ability to be implemented in real-time reservoir
inflow simulation systems.
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