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Abstract Based on the Coupled Model Inter-comparison
Project 5 (CMIP5) models, the tropical cyclone (TC) activity
in the summers of 1965–2005 over the western North Pacific
(WNP) is simulated by a TC dynamically downscaling sys-
tem. In consideration of diversity among climate models,
Bayesian model averaging (BMA) and equal-weighed model
averaging (EMA) methods are applied to produce the ensem-
ble large-scale environmental factors of the CMIP5 model
outputs. The environmental factors generated by BMA and
EMA methods are compared, as well as the corresponding
TC simulations by the downscaling system. Results indicate
that BMA method shows a significant advantage over the
EMA. In addition, impacts of model selections on BMAmeth-
od are examined. To each factor, ten models with better per-
formance are selected from 30 CMIP5 models and then con-
duct BMA, respectively. As a consequence, the ensemble en-
vironmental factors and simulated TC activity are similar with

the results from the 30 models’ BMA, which verifies the
BMA method can afford corresponding weight for each mod-
el in the ensemble based on the model’s predictive skill.
Thereby, the existence of poor performance models will not
particularly affect the BMA effectiveness and the ensemble
outcomes are improved. Finally, based upon the BMAmethod
and downscaling system, we analyze the sensitivity of TC
activity to three important environmental factors, i.e., sea sur-
face temperature (SST), large-scale steering flow, and vertical
wind shear. Among three factors, SSTand large-scale steering
flow greatly affect TC tracks, while average intensity distribu-
tion is sensitive to all three environmental factors. Moreover,
SST and vertical wind shear jointly play a critical role in the
inter-annual variability of TC lifetime maximum intensity and
frequency of intense TCs.

1 Introduction

The western North Pacific (WNP) is the region where tropical
cyclones (TCs) occur most frequently in the world. TC activ-
ity in this basin often causes serious casualties and economic
losses in China and other countries in Southeast Asia. In re-
cent years, such losses are particularly severe in China due to
the high population density and rapid development in the
coastal region of China (Zhang et al. 2009; Zhang et al.
2013). Thereby, modeling simulations and projections of TC
activity in the western North Pacific are an important research
topic that has significant societal impact.

In the context of global warming, simulations and projec-
tions of TC activity have been conducted progressively.
Presently, the research mainly focuses on the following three
aspects: (1) to deduce present TC activity and its future pro-
jection based on changes of large-scale environmental factors
(Vecchi and Soden 2007; Yokoi and Takayabu 2009; Zhang
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et al. 2010). Generally, the TC genesis potential index (GPI)
and potential intensity (PI), which are directly linked with
large-scale environmental factors, are calculated and applied
to project TC activity. This approach can roughly estimate TC
activity and changes, but the results are often less accurate and
incomplete, which cannot provide detailed features of TC ac-
tivity; (2) to simulate TC activity directly using high-
resolution numerical models or algorithm (Oouchi et al.
2006; LaRow et al. 2008; Sugi et al. 2009; Zhao et al. 2009;
Chen and Lin 2011; Camargo 2013). This method is straight-
forward and provides clear information of TC activity.
However, most studies use high-resolution atmospheric
models to detect TC forced by prescribed sea surface temper-
ature from observations or predictions, rarely employing
ocean-atmosphere coupling models (Camargo 2013).
Emanuel (2013) still pointed out that this approach severely
underresolves tropical cyclones, resulting in a substantial trun-
cation of the intensity spectrum of simulated storms, even at
50-km grid spacing (Zhao et al. 2009), and usually produces
fewer events than observed; (3) to simulate and predict TC
activity based on coarse-resolution general circulation model
outputs and/or global reanalysis datasets using statistically (Yu
and Wang 2009; Zhao and Held 2010; Villarini and Vecchi
2012,2013) or dynamically downscaling methods (Knutson
et al. 2008; Bender et al. 2010; Lavender and Walsh 2011).
The statistically downscaling method is based on statistical
skill and theory without representation of clear physical pro-
cesses. Meanwhile, the dynamically downscaling method can
better describe various physical processes and obtain details
related to TC activity with high-resolution, but consumes
much time and calculation resource. On the basis of the
statistical/dynamic techniques proposed by Emanuel et al.
(2008), a downscaling system has been developed specifically
for the study of TC activity in the WNP basin by Zhao et al.
(2010). Using this downscaling system, possible physical
mechanisms for the TC activity change in the WNP basin on
various time scales have been explored (Zhao et al. 2010,
2011, 2014; Zhao and Wu 2014; Zhao 2016) and the future
changes in the TC activity have been predicted (Wang andWu
2012, 2015).

Simulations of TC activity are highly dependent on the
accuracy of large-scale environmental factors. In previous
study, multi-models average of environmental factors is uti-
lized to make light of the uncertainty between climate
models(Knutson et al. 2007, 2008, 2010; Emanuel et al.
2008; Bender et al. 2010; Villarini and Vecchi 2012, 2013;
Camargo 2013). However, the existence of poor skill models
can lessen the reliability of the ensemble mean. In addition,
more complex physical and chemical parameterization
schemes employed in models, as well as the increased quan-
tity ofmodels, themulti-models average behaves unsatisfac-
torily. It is necessary to carefully evaluate the performance of
each individual model, and then conduct differently

weighted ensemble to obtain the optimum results. By this,
Bayesian model averaging (BMA) may achieve the desired
effect. It is a statistical analysis method based on Bayes’
theorem and accounts for uncertainties in the models.
BMA can combine information from different sources and
maximize the use of each individual model result (Raftery
et al. 2005). The method performs well in the model ensem-
ble prediction of temperature, precipitation, wind vectors
etc. on synoptic-scale (Raftery et al. 2005; Tebaldi et al.
2005; Sloughter et al. 2007, 2013; Liu et al. 2013; Zhi et al.
2014).

In the present study, we propose an approach to simulate
climatic features of TC activity over the WNP basin. In con-
sideration of the uncertainties among CMIP5 models, other
than multi-model average with or without evaluation and se-
lection (e.g., Emanuel et al. 2008; Bender et al. 2010), BMA
Method is applied to produce superior ensemble results of
environmental factors influencing TC activity and is also com-
pared with multi-model average. Furthermore, a TC dynami-
cally downscaling system is adopted to enhance the regional
resolution. The data and method used in this study are intro-
duced in Section 2. In Section 3, the ensemble effectiveness of
BMA and EMA methods are compared based upon two as-
pects: large-scale environment features and simulations of TC
activity. In Section 4, ten models that perform better are se-
lected in terms of the models’ evaluation, and then the ten
models’ BMA results are compared with the 30 models’ to
detect possible effect of model selection in the BMA method.
Later, three sensitive experiments are designed to explore the
sensitivity of TC activity to SST, large-scale steering flow, and
vertical wind shear using the BMAmethod and the downscal-
ing system in Section 5. Lastly, the conclusion is presented in
Section 6.

2 Data and methodology

2.1 Data

The study period covers the summers (July–September) from
1965 to 2005. TC observations are derived from the Joint
Typhoon Warning Center (JTWC) best-track dataset, and
SST observation is from NOAA Extended Reconstructed
SST V3.0 in 2° × 2° grid (Smith et al. 2008). Monthly mean
winds are extracted from NCEP Reanalysis with a resolution
of 2.5° × 2.5° in latitude and longitude (Kalnay et al. 1996).

The historical experiment output of 30 CMIP5 models is
used in this study (http://cmip-pcmdi.llnl.gov/cmip5/
availability.html). Details of the 30 CMIP5 models are listed
in Table 1. Due to differences in resolution among these
models and observations, all data are interpolated to a 2.
5° × 2.5° grid for the convenience and unification of analysis.
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2.2 Methodology

BMA is a statistical analysis method that is based on Bayes’
theorem and accounts for uncertainties in the model ensemble.
It combines information from different sources and maximize
the use of each individual model result by assigning different
weighting coefficient. The weighting coefficients provided by
BMA are the possible posterior probabilities of each model,
which reflect the models’ skill over the training period.
Detailed introduction of the BMA method can be found in
Raftery et al. (2005) and Liu et al. (2013). In this study, we
focus on the BMA ensemble results of environmental factors
from CMIP5 models.

The downscaling system used in this study is similar to that
in Emanuel (2006) and Emanuel et al. (2008). The system
consists of TC track module and TC intensity module, which
are used to simulate TC track and TC intensity, respectively,
and the TC generation module is replaced by observed

generation of storms. The TC trackmodule is developed based
on the trajectory model proposed by Wu and Wang (2004).
The generated storm is described by equations of motion for
particles and moves following the large-scale steering flow
(i.e., vertically averagedwinds between 850 and 300 hPa) plus
mean beta drift. In addition, random synoptic-scale distur-
bances are put into the translation vectors. TC intensity is
described following the coupled hurricane intensity prediction
model proposed by Emanuel et al. (2008), which is developed
based on the Carnot heat engine and TC maximum potential
intensity theory. This intensity module is designed for the
simulations of intensity of an ideal symmetrical hurricane. It
mainly considers effects of latent heat flux transport from
tropical oceans to tropical cyclones, radiative cooling at the
outflowing layer of the tropical cyclone, and vertical wind
shear. This model has been applied in operational forecast
due to its satisfactory performance in TC intensity simula-
tions. In the TC intensity module, TC intensity is calculated

Table 1 Description of 30
CMIP5 models Model Institution Country Horizontal resolution

ACCESS1-0 CSIRO-BOM Australia 1.88 × 1.25

ACCESS1-3 CSIRO-BOM Australia 1.88 × 1.25

BCC-CSM1-1 BCC China 2.80 × 2.80

BCC-CSM1-1-m BCC China 1.13 × 1.12

CanESM2 CCCMA Canada 2.80 × 2.80

CCSM4 NCAR USA 1.25 × 0.94

CESM1-BGC NSF-DOE-NCAR USA 1.25 × 0.94

CESM1-CAM5 NSF-DOE-NCAR USA 1.25 × 0.94

CESM1-FASTCHEM NSF-DOE-NCAR USA 1.25 × 0.94

CESM1-WACCM NSF-DOE-NCAR USA 2.50 × 1.89

CMCC-CESM CMCC Italy 3.76 × 3.76

CMCC-CMS CMCC Italy 1.88 × 1.88

CNRM-CM5 CNRM-CERFACS France 1.41 × 1.40

CNRM-CM5-2 CNRM-CERFACS France 1.41 × 1.40

FGOALS-g2 LASG-CESS China 2.81 × 3.05

FIO-ESM FIO China 2.81 × 2.81

GFDL-CM2p1 NOAA GFDL USA 2.50 × 2.00

GFDL-CM3 NOAA GFDL USA 2.50 × 2.00

GFDL-ESM2G NOAA GFDL USA 2.50 × 2.00

GFDL-ESM2M NOAA GFDL USA 2.50 × 2.00

GISS-E2-H NASA GISS USA 2.50 × 2.00

GISS-E2-H-CC NASA GISS USA 2.50 × 2.00

GISS-E2-R NASA GISS USA 2.50 × 2.00

GISS-E2-R-CC NASA GISS USA 2.50 × 2.00

HadGEM2-AO NIMR/KMA Korea/UK 1.88 × 1.25

IPSL-CM5A-LR IPSL France 3.75 × 1.88

IPSL-CM5A-MR IPSL France 2.50 × 1.25

IPSL-CM5B-LR IPSL France 3.75 × 1.88

NorESM1-M NCC Norway 2.5 × 1.88

NorESM1-ME NCC Norway 2.5 × 1.88
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along the simulated tracks based on surrounding environmen-
tal factors, including SST and vertical wind shear. Some pa-
rameters used in the modules are the same as that in Emanuel
et al. (2008).

3 Comparison of two multi-model ensemble methods

3.1 Comparison of ensemble environmental factors
by the two methods

Multi-model ensemble can somewhat reduce uncertainty and
increase the accuracy of large-scale environmental factors sim-
ulated by global climate models. However, the weighting co-
efficient assigned to each model for ensemble analysis must be
considered carefully. The climatologically mean SST distribu-
tions from ensemble results using BMA method and EMA
method are shown in Fig. 1. It shows clearly that SST distri-
bution from the BMA is consistent with that of Reanalysis,
realistically reproduces the spatial pattern of the observation.
While the results from the EMA method are not satisfactory,
SST is underestimated in much of the area. Over the region
around 20° N and lower latitudes where TCs are active, SST
produced by EMAmethod is lower than observations by more
than 0.5 °C. Besides, the correlation coefficient of time series
of SST averaged over the region (0 ~ 40° N, 100° E ~ 180° E)
between BMA ensemble result and Reanalysis is 0.79, and the
value is only 0.14 between the EMA result and Reanalysis. In
addition, meridional and zonal wind speed (figure not shown)
from the BMAmethod are also more accurate than those from
the EMA method.

Thereby, it is concluded that the BMA can obtain environ-
mental factors more consistent with observations. Furthermore,
are the simulations of TC using the environmental factors from
the BMA ensemble can also be satisfactory?

3.2 Comparison of TC simulations using the two types
of ensemble environmental factors

Input environmental factors for the downscaling system in-
clude SST, large-scale steering flow and vertical wind shear.
Characteristics of the TC activity are simulated using the
downscaling system. First of all, simulate TC characteristics
using the NOAA and NCEP Reanalysis data as input, viewing
the simulations as the best performance of the downscaling
system, and compare the simulations with JTWC data to ver-
ify the reliability of the downscaling technique. Then, simu-
late TC from BMA and EMA ensemble environmental fac-
tors, Reanalysis downscaling simulations as reference, in or-
der to exclude the influence of downscaling system.

The frequency of TC occurrence at each 2.5° × 2.5° grid is
calculated to quantify TC tracks (Wu and Wang 2004), and
Fig. 2 depicts the annual frequency distribution of TC

occurrence from July to September. Fig. 2a, b shows that the
TC tracks simulated with environment input of Reanalysis is
consistent with TC observation, from one hand, verifying the
reliability of the downscaling technique (Wang andWu 2015).
From Fig. 2b–d, the TC simulations using the environmental
factors obtained by BMAmethod perform better than those by
the EMA method. The former’s spatial distribution is similar
to Fig. 2b, while the latter underestimates the frequency of TC
occurrence over the region east to Taiwan and the extratropics.
However, both the two cannot realistically reproduce the two
maximum area of TC occurrence. Figure 3 illustrates the spa-
tial pattern of TC intensities in July–September during the
period 1965–2005. The simulations with NOAA and NCEP
Reanalysis as large-scale forcing can approximately repro-
duce the spatial features of TC intensities from observations.
However, the strong intensity band to the east of Taiwan
Island is overestimated, while the simulated TC intensities
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Fig. 1 Average SST distributions in July–September during the period
1965–2005 (°C). a NOAA Extended Reconstructed SST. b SST of 30
models BMA ensemble. c SST of 30 models EMA ensemble



are slightly lower than JTWC observations in the Philippine
Islands and east of WNP. The discrepancy reflects the defect
of the downscaling system (Wang and Wu 2015), and some
studies also pointed out the possible uncertainty in the TC
intensity of the JTWC dataset (Kossin et al. 2007).
The spatial pattern of TC intensity simulated with ensemble
environment factors by BMA as input is highly consistent
with simulations with Reanalysis as input (Fig. 3b, c.
Meanwhile, the simulations with ensemble environmental fac-
tors by EMAmethod as input underestimate in a great amount

of the area and the simulated strong intensity region shifts to
west (Fig. 3b, d).

In addition to the spatial pattern of basin-wide TC intensity,
realistic simulations of inter-annual variability of TC intensity
are also important. Recent studies (Wu and Zhao 2012; Zhao
et al. 2014) suggested that the frequency of intense TCs (cat-
egories 4 and 5 on the Saffir-Simpson scale) and the lifetime
maximum intensity are more sensitive to large-scale environ-
mental conditions and changes. Thereby, the two metrics are
employed to investigate the inter-annual variability of TC
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Fig. 2 Annual frequency of TC occurrence in July–September during the period 1965–2005 derived from a the JTWC best-track data, b the NCEP
Reanalysis simulation, c the BMA ensemble simulation, and d the EMA ensemble simulation

a b

c d

Fig. 3 As in Fig. 2, but of spatial distribution of TC intensity (units m s−1)



intensity. The annual lifetime maximum intensity is calculated
by averaging the lifetime maximum intensities of individual
TCs in each year (Wu 2007). As shown in Fig. 4, the simulat-
ed annual TC lifetime maximum intensity and frequency of
cat-45 TCs with Reanalysis as input are close to JTWC data,
particularly after 1975 when Dvorak technique is applied for
TC observations. The temporal correlation coefficients be-
tween the simulations and observations are 0.75 and 0.67,
respectively. Compared the simulations with environmental
factors from the two ensemble methods with the simulations
using Reanalysis as input, it is clear that the simulations with
environmental factors from BMAmethod are more consistent
with the simulations from Reanalysis than the simulations
from EMA method. Correlation coefficients for lifetime max-
imum intensity and frequency of cat-45 TCs between the sim-
ulations with BMA method and from Reanalysis are 0.96 and
0.86, respectively. Biases in the simulations with EMA meth-
od are relatively large, and the correlation coefficients are 0.83
and 0.74 for the lifetime maximum intensity and frequency of
cat-45 TCs, respectively. The root mean square errors (RMSE)

for are also larger in the simulations with environmental fac-
tors from EMA than those from BMA method.

Generally, the BMA method can provide more accurate
large-scale environmental factors than the EMA method and
simulate TC activity more realistically with the downscaling
system. The BMAmethod shows significant advantages in pro-
viding environmental factors for TC simulations. However, the
above results are based on direct application of BMAmethod to
all the 30 models. There may exist some models that have bad
skills in simulating environmental factors. Effects of those
models with unsatisfactory performance on the ensemble result
should be assessed.

4 Impacts of model selections on BMA ensemble
results

The BMA ensemble results might be affected by those among
the 30 models that perform poorly in the simulations of envi-
ronmental factors for TC activity. For this reason, we first
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Fig. 4 Time series of a lifetime
maximum intensity (units m s−1)
and b the number of intense TCs
from the JTWC dataset and three
simulations in July–September
during the period 1965–2005. (R-
EMA represents the correlation
coefficient of NCEP Reanalysis
simulation and EMA simulation,
while R-BMA represents the cor-
relation coefficient of NCEP
Reanalysis simulation and BMA
simulation)



evaluate the performance of each individual model for the
simulations of SST and wind fields, and identify those models
that can well simulate SST or wind fields. BMA are then
conducted to the selected models and compare the ensemble
results to 30 models BMA ensemble.

4.1 Evaluations of model performance for the simulation
of environmental factors

Evaluations of the environmental factors from global climate
models focus on two aspects: the mean climate state and inter-
annual variability. The simulations of mean climate state re-
flect the models’ capability of describing climate conditions
on certain period, while the capability to realistically simulate
the inter-annual climate variability is important for reliable
prediction of future climate change scenario. NOAA and
NCEP Reanalysis datasets are used as observations. The
SST and wind fields (at 850 hPa) are evaluated, which are
chosen based on the structure of the downscaling system.

The NOAA Extended Reconstructed SST and NCEP
Reanalysis data are taken as observations for SST and wind
speed. Pattern correlation coefficients (PCC) and root mean
square errors (RMSE) between the factors’ climate state of
models output and observations are calculated and applied for
evaluation of the model performance. Results are shown in Fig.
5a–e. The 30 models can generally well simulate the spatial
pattern of climatic SST, and the correlation coefficients between
all the model results and observations are greater than 0.9. In
general, CMIP5 models’ simulations of SST have been im-
proved compared to that of IPCC AR4 (Yu et al. 2011). Large
differences are found in the simulations of climate state of
850 hPa wind fields. For zonal wind, models that achieve high
correlation coefficients also obtain small RMSE. CESM1-
CAM5, CNRM-CM5, CNRM-CM5–2 can better simulate
zonal wind at 850 hPa than other models. Correlation coeffi-
cients between these three model simulations and observations
of zonal wind are greater than 0.95, and the RMSEs are around
1 m/s. The meridional wind simulations are generally less rea-
sonable than the zonal wind simulations. Compared to models
of IPCC AR4 (Yu et al. 2014), there is no significant improve-
ment in the simulations of climatic 850 hPa wind fields in
CMIP5.

The capability of the CMIP5 models for the simulations of
inter-annual variability of environmental factors is evaluated
based on mean SST and 850 hPa winds for the 41 summers
averaged over 100° E ~ 180°, 0 ~ 40° N. We calculate the
RMSE and time correlation coefficient (TCC) between the
observation and outputs of each climate model. As shown in
the right panels of Fig. 5b, d, f, the CMIP5 models’ capability
for SST simulation is still limited and large differences exist
among results of CMIP5 models, but better than that of IPCC
AR4 (Yu et al. 2011). The simulations of inter-annual variabil-
ity of low-level winds are even worse. For the model

simulations of inter-annual variability, further optimization
and improvement are still necessary.

4.2 Selected models ensemble

The above evaluations have shown that the climate state of
environmental factors can be better simulated than their inter-
annual variability by CMIP5 models, and SST simulations are
better than wind simulations for both climate state and inter-
annual variability. It is worth noting that for simulations for
the climate state and inter-annual variability of both SST and
wind, the performance of each individual model changes sig-
nificantly (Fig. 5). Considering the general performance, to
each factor, those models are selected if their TCC, PCC,
and RMSE of each environmental factor reach certain thresh-
olds (denoted by blue and red lines in Fig. 5). Eventually, ten
models are selected to each factor, respectively.

The BMA method is applied to SST and wind speed
based on the ten selected models separately. Results are
compared with that from the 30 CMIP5 models simulations.
It is found that the difference between the two is negligible,
and both results are almost identical to reanalysis (please
refer to Fig. 1). For the description of inter-annual variabil-
ity of environmental factors, the ensemble results of the 30
models’ simulations are slightly better than that of the ten
selected models’ simulations. The correlation coefficients
between the two ensemble results and Reanalysis are 0.52
(30 models ensemble) and 0.41 (10 selected models ensem-
ble), respectively.

The above analysis indicates that both ensemble results can
well reproduce the realistic environmental factors. Furthermore,
we evaluate the impacts on TC simulations. The two BMA
ensemble results of environmental factors are used respectively
as input for the downscaling system to simulate TC activity.
The simulated frequency of TC occurrence and TC intensity
are shown in Fig. 6. It is found that the spatial pattern of TC
occurrence is well simulated in two BMA results. Little differ-
ence can be found between the simulated TC occurrences driv-
en by the two BMA ensemble results. However, the areas of
maximum frequency are not correctly represented in both two
simulations. The spatial pattern of TC intensity is also similar in
the two simulations. TC lifetime maximum intensity in the two
simulations is consistent to that from Reanalysis with correla-
tion coefficients up to 0.96 and 0.95, respectively. The simula-
tions of frequency of intense TCs are slightly worse, with cor-
relation coefficients of 0.86 and 0.87, respectively between the
two simulations and Reanalysis (Fig. 7). In general, it is illus-
trated that TC simulations driven by the BMA ensemble results
of ten selected models and 30 models both present similar and
realistic results.

The above results indicate that the BMA ensemble results
of the ten selected models and 30 models produce similar
large-scale environmental fields. The simulations of TC
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activity driven by the large-scale environmental fields from
the two BMA results are also quite close. Apparently, the
ensemble result of the 30 models is still reasonable, despite
the poor performance of some models among the 30 CMIP5
models. This might be attributed to two reasons. First, in-
creases in the number of models used for ensemble study
may effectively reduce the uncertainties in various models
and improve the general representation of the model results.
Second, the BMA method has an advantage in ensemble. It
uses the posterior probabilities of the models as the weights in
the ensemble. The posterior probability of a model actually
reflects the model’s relative contribution to predictive skill. So
theoretically, the BMAmethod can greatly reduce the impacts

of poor performance models on the ensemble result. We can
roughly verify the advantage of BMA. The BMA method is
applied to each individual grid, and the domain average of
weights can generally show the weights of the model in the
ensemble result. We compare the rankings of 30 models’
weights generated by BMA and sequences of evaluation of
their performances to verify its weights allocation. It turns out
that the orders of weights correspond well to the orders of
evaluation performance for the 30 models, which demon-
strates that the BMA method indeed determines the weight
of each individual model based on the model skill. Thereby,
the impacts of poor performance models on the ensemble
result are greatly reduced. For the two reasons, we suggest
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Fig. 5 Scatter plots of RMSE,
PCC, and TCC derived from 30
individual GCMs. (a, b) SST; (c,
d) zonal wind speed at 850 hPa;
(e, f) meridional wind speed at
850 hPa. (a, c, e) RMSE and PCC
of factors’ climate state, (b, d, f)
RMSE and TCC of factors’ inter-
annual variability. Red (blue)
lines indicate the selection
thresholds for RSME (PCC,
TCC)



that the BMAmethod can be applied in multi-model ensemble
while the evaluations and selection of models are unnecessary.

5 Sensitivity of the simulated TC activity to various
environmental factors

Investigating the contribution of each individual environmen-
tal factor to TC activity helps better understand the predict-
ability of TC, which is important for the projections of TC
using various global climate models. Previous studies have
shown that TC activity especially TC intensity is sensitive to
SST anomaly (Knutson and Tuleya 2004; Emanuel 2005;
Webster et al. 2005). However, most of these studies focused
on the impact of local SST anomaly on TC activity and rarely
considered changes in large-scale circulation induced by SST
anomaly. In the studies of Wang and Wu (2012, 2015), the
downscaling system was applied to investigate the impacts of
environmental factors on TC intensity. In each experiment of
their studies, only one single environmental factor was

changed with global warming while all other factors remained
historical conditions. By this method, they quantified the rel-
ative importance of each individual factor for changes of TC
intensity. However, one weakness in their study is that the
balance and interactions between these environmental factors
are ignored. In the present study, sensitivity experiments are
conducted using the downscaling model system and BMA
method. The inherent physical and dynamical interactions
among the environmental factors are considered and their im-
pacts on TC track and intensity are investigated.

We focus on the impacts of SST, large-scale steering flow,
and vertical wind shear on TC track and TC intensity. The
control experiment conducts BMA to three factors respective-
ly, which has demonstrated and compared to the observation
in Section 3. The sensitivity experiment applies BMA first to
one environmental factor from 30 models to obtain the
weights, which are then employed to the other two factors.
Hence, three factors ensemble results are obtained and comply
one weight. This approach is repeated for the three environ-
mental factors, respectively, and here comes three series of
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from (a, b) the NCEP Reanalysis simulation, (c, d) the 30-models BMA ensemble simulation, (e, f) the 10-selected models BMA ensemble simulation



SST, large-scale steering flow, and vertical wind shear. The
ensemble results are then used as input for the downscaling
system to simulate TC activity. The characteristics of TC ac-
tivity driven by the three series are compared with control
experiment results to explore the TC sensitivity to SST,
large-scale steering flow, and vertical wind shear. The three
sensitive experiments are named as SST-BMA, LSF-BMA
(large-scale steering flow), VWS-BMA (vertical wind shear),
respectively. The weights of the models in the ensemble are
determined by one single environmental factor, which makes
this factor to be the optimum ensemble result while the other
two factors are not. Since the same weights are used for all
three environmental factors, the relationship among these fac-
tors in each climate model remains unbroken. For example,
the SST-BMA sensitivity experiment applies BMA to get op-
timum SST ensemble and corresponding weights are then ap-
plied to retrieve other two factors, which can be considered
that the other two factors are determined by SST based on the
physical and chemical processes in individual coupled ocean-
atmosphere climate model. SST is the key factor that domi-
nates the process. The sensitivity experiment results closer to
control experiment results mean that its corresponding factor
plays a more significant role in TC activity. Otherwise, if the
bias between the sensitivity experiment results and control

experiment results is relatively large, then TC activity is more
sensitive to the other two factors.

Figure 8 shows annual frequency of TC occurrence from
control and three sensitivity experiments. Compared with the
results of control experiment, the TC occurrence of SST-BMA
experiment is generally similar in holistic pattern except the
maximum area; LSF-BMA experiment better reproduces the
spatial pattern but overestimates the maximum area; the bias
between VWS-BMA experiment result and control experi-
ment result is much larger, which failed to reproduce the TC
occurrence pattern from control experiment. Large discrepan-
cies exist among the simulations of TC intensity by the three
experiments. As shown in Fig. 9, SST-BMA experiment un-
derestimates TC intensity in the east of the region but overes-
timates TC intensity in the area west to 150° E; LSF-BMA
experiment underestimates the TC intensity over most of the
area; VWS-BMA experiment also generally underestimates
the intensity and mistakes the position of TC intensity maxi-
mum. The three sensitivity experiments all perform poorly in
the spatial distribution of TC intensity, so the influence of each
factor to annual intensity cannot be neglected. Results shown
in Fig. 10 and Table 2 indicate that the SST-BMA experiment
can well reproduce the inter-annual variability of TC lifetime
maximum intensity and frequency of intense TCs. The
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Fig. 7 Time series of a lifetime
maximum intensity (units m s−1)
and b the number of intense TCs
from NCEP Reanalysis and two
BMA ensemble simulations in
July–September during the period
1965–2005. (R1 represents the
correlation coefficient of
Reanalysis simulation and 10-
models BMA simulation, while
R2 represents the correlation co-
efficient of Reanalysis simulation
and 30-models BMA simulation)



correlation coefficients between the SST-BMA experiment
results and control experiment results are 0.96 and 0.86 for
TC lifetime maximum intensity and frequency of intense TCs,
respectively. The results of VWS-BMA experiments are also
coincide with these of control experiment. The correlation
coefficients between LSF-BMA results and control experi-
ment results are even less, both in TC lifetime maximum in-
tensity and frequency of intense TCs. Thereby, SST and

vertical wind shear jointly have a great impact on TC lifetime
maximum intensity and frequency of intense TCs.

In summary, the TC track is under major influences of SST
and large-scale steering flow, while TC average intensity dis-
tribution is sensitive to all three environmental factors. SST
and vertical wind shear jointly play a critical role in the inter-
annual variability of TC lifetime maximum intensity and fre-
quency of intense TCs.
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Fig. 8 Annual frequency of TC occurrence in July–September during the period 1965–2005 derived from a control experiment simulation, b the SST-
BMA experiment simulation, c the LSF-BMA experiment simulation, d the VWS-BMA experiment simulation

Fig. 9 As in Fig.8, but of spatial distribution of TC intensity (units m s−1)



6 Conclusions

With the development of the global climate models, more and
more researchers apply them to TC investigation, mainly on
TC simulations and projections. Other than qualitative analy-
sis based on large-scale environmental factors (Vecchi and
Soden 2007; Yokoi and Takayabu 2009; Zhang et al. 2010)
and high-resolution numerical climate models (Oouchi et al.
2006; LaRow et al. 2008; Sugi et al. 2009; Zhao et al. 2009;
Chen and Lin 2011), we adopt the dynamically downscaling
method combining the CMIP5 outputs. In this way, the reli-
ability of TC simulation highly depends on the large-scale

environmental factors. Some previous study utilize the
multi-models average of the environmental factors from dif-
ferent climate models to reduce the uncertainty (Knutson et al.
2008, 2010; Emanuel et al. 2008; Bender et al. 2010).
However, with the existence of poor skill models as well as
the increased quantity and complexity of models, the multi-
models average behaves unsatisfactorily. In our paper, we em-
ploy the BMA method to assign corresponding weight for
each model in the ensemble based on the model’s predictive
skill and compare it with the EMA (i.e., multi-models aver-
age). Furthermore, the advantage of the BMA is verified.
Finally, with the BMA and downscaling system, three sensi-
tive experiments are designed to explore the sensitivity of TC
activity to SST, large-scale steering flow, and vertical wind
shear. Based upon the above analysis, the major conclusions
in the present study are as follows:

1. The BMA and EMAmethods are applied to the ensemble
of environmental factors simulated by the 30 CMIP5
models. Compared to those results using the EMA meth-
od, the ensemble factors with the BMA method are more

Table 2 Correlation coefficient of three sensitivity experiment and
control experiment in TC lifetime intensity and numbers of intense TC

Sensitive experiment Lifetime intensity Frequency of intense TCs

SST-BMA 0.96 0.86

LSF-BMA 0.61 0.31

VWS-BMA 0.73 0.67
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Fig. 10 Time series of a lifetime
maximum intensity (units m s−1)
and b the number of intense TCs
from control experiment
simulation and three sensitivity
experiment simulations in July–
September during the period
1965–2005
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consistent with observation in both the mean climate state
and the inter-annual variability of these environmental
factors. The ensemble factors produced by the two
methods are then used as input for the downscaling sys-
tem to simulate TC activity. Results further indicate that
the simulations when using the ensemble factors generat-
ed by the BMAmethod as inputs are more consistent with
the downscaling simulations using the inputs from
Reanalysis datasets and JTWC data. It is concluded that
the ensemble factors from the BMA method are more
realistic and reliable than those from the EMA method.

2. The environmental factors from the 30 CMIP5 models are
evaluated and top ten models with better performance are
selected for BMA ensemble. Results are compared with
the ensemble factors of all the 30 models using the same
BMA method. It is found that both ensemble results are
consistent with observations, and little difference can be
found between the two ensemble results, suggesting the
advantages of weights allocation BMA. This effectively
reduces the impacts of poor model performance and un-
certainties on the ensemble results. Thereby, multiple
models can be applied in ensemble using the BMA meth-
od while evaluations and selection of models are not
necessary.

3. Among the three environmental factors (i.e., SST, large-
scale steering flow, and vertical wind shear), SST and
large-scale steering flow can greatly affect TC tracks in
the WNP, while TC average intensity distribution is sen-
sitive to all three environmental factors. SST and vertical
wind shear jointly play a critical role in the inter-annual
variability of TC lifetimemaximum intensity and frequen-
cy of intense TCs.
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