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Abstract Using climate models with high performance to
predict the future climate changes can increase the reliability
of results. In this paper, six kinds of global climate models that
selected from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) under Representative Concentration Path
(RCP) 4.5 scenarios were compared to the measured data
during baseline period (1960–2000) and evaluate the simula-
tion performance on precipitation. Since the results of single
climate models are often biased and highly uncertain, we ex-
amine the back propagation (BP) neural network and arith-
metic mean method in assembling the precipitation of multi
models. The delta method was used to calibrate the result of
single model and multimodel ensembles by arithmetic mean
method (MME-AM) during the validation period (2001–
2010) and the predicting period (2011–2100). We then use
the single models and multimodel ensembles to predict the
future precipitation process and spatial distribution. The result
shows that BNU-ESMmodel has the highest simulation effect
among all the single models. The multimodel assembled by
BP neural network (MME-BP) has a good simulation perfor-
mance on the annual average precipitation process and the
deterministic coefficient during the validation period is
0.814. The simulation capability on spatial distribution of pre-
cipitation is: calibrated MME-AM > MME-BP > calibrated
BNU-ESM. The future precipitation predicted by all models

tends to increase as the time period increases. The order of
average increase amplitude of each season is: winter > spring
> summer > autumn. These findings can provide useful infor-
mation for decision makers to make climate-related disaster
mitigation plans.

1 Introduction

Precipitation plays a key role in climate system and precipita-
tion variability in the context of climate change induces sub-
stantial impacts on both nature environments and human so-
ciety (Chen and Frauenfeld 2014), underscoring the need to
better evaluate the future climate trends to response climate
change and ensure water security. Projections of future climate
change using climate model coupled with atmosphere-ocean
circulation system also suggest that climate in the future will
more severe due to the increased greenhouse gas concentra-
tions (Hirabayashi et al. 2013). However, because of model
structural errors, parameterization uncertainty, and different
region scales, the output of climate model tend to exhibit
substantial bias in the spatial-temporal distribution of regional
precipitation (Steinschneider and Lall 2015). Therefore, it is
very important to select an effective model for regional appli-
cation such that it can both simulate the climate reasonably in
the past and test the reliability of future climate trend
prediction.

At present, the advanced climate prediction data of
atmosphere-ocean general circulation models (AOGCMs) is
provided by the World Climate Research Programme
(WCRP), which participates in the fifth phase of the
Coupled Model Intercomparison Project (CMIP5) (Stocker
et al. 2013). When using a single global climate model to
assess the trend of future climate in a particular watershed,
the results are often biased and highly uncertain, thus they
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cannot provide reliable information to decision makers
(Sarwar et al. 2012). The multimodel ensemble (MME) tech-
nique has been an effective ways for improving weather and
climate forecast to reduce uncertainty (Feng et al. 2011; Sun
et al. 2015). Lu et al. (2014) used MMEs including 21 global
climate models in CMIP5 coupled with VIC model to predict
the spatial and temporal variation of snow depth in the upper
reaches of the Yangtze River in the next 30 years. Lim et al.
(2015) proposed a MME method based on independent com-
ponent analysis and regression analysis, and they then
predicted the future summer rainfall over global and regional
scales. Wang et al. (2014) predicted the future extreme climate
trends under different emission scenarios byMME projections
via Bayesian model average method.

Additionally, plenty of studies have been carried out on
comparing different MME methods. Du et al. (2010) used a
weighting ensemble method of pattern correlation coeffi-
cients in moving windows, and they found that the result
is better than the result of multimodel assembled by the
arithmetic mean method and the traditional correlation
coefficient. Min et al. (2014) compared the difference be-
tween the multiple regression method, arithmetic mean
method, and stepwise projection method when assembling
different single models. The results show that the stepwise
projection method is the best and the arithmetic average
method is better than the multiple regression method. Ke
et al. (2009) analyzed the difference between multiple linear
regression model and arithmetic mean method when assem-
bling multimodels, and found that the MMEs calculated by
the multiple linear regression model is not suitable for the
high latitude region. Besides, a lot of studies (Kharin and
Zwiers 2002; Peng et al. 2002) show that the result is un-
satisfactory when using the weight optimization or complex
models for assembling the multimodel data, and it is even
worse than the simple arithmetic mean method.

Huaihe River basin is one of the most important energy
bases and food-production bases which is attacked by flood
disaster frequently in China (Wu et al. 2015). In recent years, a
lot of researches have been devoted to predict the climate
trend over the Huaihe River basin. Gao et al. (2012) used
the measured data to evaluate the trend of average tempera-
ture, extreme temperature, and precipitation during historical
periods and applied the ECHAM5 model to predict the trend
of precipitation and temperature in the future. Wu and Yan
(2013) predicted the temperature and precipitation changes
under the A2, A1B, and B1 SRES scenarios in the next
30 years by using eight kinds of climate model data of IPCC
AR4. Li et al. (2012a) predicted the trend of precipitation and
temperature during three future time periods (2020s, 2050s,
and 2080s) by using the CSIRO and HadCM3 climate model
and used the predicted temperature result as the input of an
evaporation function model to simulate the evaporation pro-
cess in the future.

Recently, the back propagation (BP) neural network
has been widely used in the medium long-term forecast-
ing of the hydrological terms (Luo et al. 2016; Shoaib
et al. 2016) as it has the advantages of good fault toler-
ance, self-adaptation, and parallel data processing ability.
However, previous studies seldom use the BP neural net-
work to assemble the multi climate models. Therefore, we
selected the Huaihe River basin as the study area and
divided the climate data which spans from 1960 to 2010
into three periods: baselines period (1960–2000), valida-
tion period (2001–2010), and prediction period (2011–
2100). The main objectives of this paper are to (1) eval-
uate the simulation performance of six global climate
models provided by IPCC AR5 under RCP 4.5 scenario;
(2) assemble the global climate data by using arithmetic
mean method (MME-AM) and BP neural network (MME-
BP); (3) use the Delta method to calibrate the bias of
single climate models and MME-AM and rebuild the fu-
ture precipitation series; (4) predict the long-term linear
trend, interannual distribution, and spatial distribution
trend of precipitation during the prediction period over
the Huaihe River basin using the calibrated single climate
model with high simulation performance, calibrated
MME-AM, and MME-BP.

The balance of this paper is organized as follows: in the
next section, we describe the study area and the data for this
study. Section 3 mainly describes the Methodology of BP
neural network. The evaluation and calibration of global cli-
mate models and MME-AM are presents in Section 4. In
Section 5, simulation results by BP neural network are pre-
sented, followed by Section 6 that predicted the future change
of precipitation. In the last section (Section 7), we summarize
the main findings.

2 Study area and data

The historical monthly precipitation data measured at 29
rainfall stations in or around the Huaihe River basin are
gathered over a period from 1960 to 2010. The position of
rainfall stations is shown in Fig. 1. The global climate
data involved with six AOGCMs under Representative
Concentration Pathways (RCP) 4.5 are provided by
IPCC AR5, including BCC-CSM-1.1, BNU-ESM,
MIROC-ESM, CNRM-CM5, MPI-ESM-LR, and MRI-
CGCM3. The global climate model (GCM) output of the
precipitation is calculated from 1960 to 2100. The detail
information of each climate model is shown in Table 1.
We set the baseline period starting from 1960 to 2010 and
establish the validation period starting from 2001 to 2010
as well as defining the prediction period which starts from
2011 to 2100.
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3 Methodology

3.1 Delta method

As the spatial resolution of GCM output is so coarse that it
increases the difficulty in predicting the regional climate pre-
cisely, the delta method is commonly applied to correct the
bias of GCM scenario prediction results (Hay et al. 2000; Liu
et al. 2012).

The delta method uses the difference between the sim-
ulation results of GCM models and the measured data
during the baseline period to rebuild the future climate
data series. Specifically, for precipitation data, we calcu-
late the precipitation change rate of each grid between
average simulation result and average measure data dur-
ing the baseline period. We then multiply the GCM per-
dition output with the change rate to rebuild the future

perdition precipitation series. The equation for future pre-
cipitation scenarios on each grid is shown below:

Pf ¼ P0⋅
PGf

PG0
ð1Þ

The term Pfis the rebuilt future precipitation data; the term
PGfis the GCM output of future precipitation data; the term
PG0is the GCM output of multiyear average precipitation dur-
ing the baseline period, and the term P0 is the observation of
multiyear average annual precipitation during the baseline
period.

3.2 BP neural network

BP neural network is a multilayer feed forward artificial neural
network with error back propagation algorithm, which has

Fig. 1 The location of study area,
rainfall station, and global climate
model

Table 1 Lists the multiyear
average precipitation value
between climate model and
measured data

Number Model name Simulation
value (mm)

RE
(%)

CC DC SD
(mm)

RMSE
(mm)

A BCC-CSM-1.1 1082.3 20.7 0.344 0.348 133.0 227.4

B BNU-ESM 1045.3 16.6 0.766 0.610 141.2 197.1

C MIROC-ESM 960.6 7.1 0.603 −0.458 113.6 193.4

D CNRM-CM5 868.7 −3.1 0.665 0.007 136.3 194.0

E MPI-ESM-LR 946.6 5.6 −0.133 −1.349 131.2 209.4

F MRI-CGCM3 527.4 −41.2 0.610 0.336 71.7 167.7

G MME-AM 938.5 4.7 0.799 0.281 57.1 166.2
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presented a particularly popular artificial neural network
method within past 20 years. BP neural network is composed
of an input layer, a hidden layer, and an output layer. In this
paper, we establish a BP neural network with three layers. The
number of nodes in the input layer is the number of global
climate models. The input value is the predicted precipitation
value of each climate model. The output layer has one node
and the expected output value is the fitting network of MME.
Each node of the input layer uses the linear activation func-
tion, and the nodes of the hidden layer as well as that of the
output layer use sigmoid activation function.

Firstly, we normalize the input data between α and β using
the following equation.

ai tð Þ ¼ αþ β−αð Þ⋅ xi tð Þ−Xmin

Xmax−Xmin
ð2Þ

where the termxi(t) is the precipitation value of ith climate
model at time t; the term XmaxandXmin are the maximum and
minimum value of input series, respectively; the term αand β
are the parameters of data normalization, which satisfies α +
β = 1; and the term ai(t) is the normalized precipitation value
of ith climate model at time t.

We then normalize the expected output value T(t) between
αand β as what is done to the input data:

b tð Þ ¼ αþ β−αð Þ⋅ T tð Þ−Tmin

Tmax−Tmin
ð3Þ

where Tmaxand Tminare the maximum and minimum value of
expected output series, respectively; the termb(t) is the nor-
malized expected value at time t.

The output of this neural network is shown in Eq. (4):

y tð Þ ¼ f ∑
m

j¼1
wj f ∑

n

i¼1
vijai tð Þ þ θ j

� �
þ θ0

 !
ð4Þ

where y(t) is the normalized MME value of precipitation at
time t; f(⋅) is the transferring function, the Sigmoid function;
the term wj is the weight coefficient for connecting the hidden
layer and the output layer; the term vij is the weight coefficient
for connecting the hidden layer and the input layer; nis the
number of climate model; m is the dimension of the hidden
layer; and the term θj, θ0 are thresholds of hidden layer and
output layer, respectively.

When the model training is completed and parameters are
fixed, we predict the future precipitation by MME-BP. At this
time, the model output is normalized to the range [0, 1], which
needs to be converted to its actual value using Eq. (5).

y tð Þ
∧

¼ Tmin þ Tmax−Tminð Þ y tð Þ−αð Þ= β−αð Þ ð5Þ

where y tð Þ∧ is precipitation value of MME at time t.

3.3 Inverse distance weight method

In spatial interpolation process, inverse distance weight meth-
od is one of the most widely used interpolation methods
(Samanta et al. 2012; Yang et al. 2015). The general idea of
this method is based on the hypothesis that the variant value of
interest of an interpolation point is the weight average of the
sampled point, which the interpolation point are closer to the
sampled point has a larger weights (Croke et al. 2011;
Waseem et al. 2016). The equations for the IDW method are
as follows:

P x; yð Þ ¼ ∑
n

j¼1

ω j

∑
n

j¼1
ω j

P x j; y j
� �

ð6Þ

ω j ¼ 1

dc
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x j−x
� �2 þ y j−y

� �2r !c ð7Þ

where P(x, y) is the variable of interest at the unknown site
with the location (x, y); where P(xj, yj) is the variable of inter-
est at the known site with the location (xj, yj); nis the number
of known sites; d is the distance between the site (x, y) and site
(xj, yj); cis the power parameter; ωj is the interpolation weight
assigned by the jth site.

4 Global climate model evaluation

In order to assess the precipitation simulation performance of
climate models over the Huaihe River basin, we calculate the
monthly precipitation of each climate model and discuss the
difference between the output of climate model and measured
data in temporal and spatial scales. Five indices are selected
for evaluating the performance of climate model, the relative
error (RE), the deterministic coefficient (DC), the standard
deviation (SD), the correlation coefficient (CC), and the root
mean squared error (RMSE). In specific, DC reflects the
fitting degree of precipitation process while the DC value
closer to 1 reflects a better fitting performance. SD shows
the simulation ability of climate model on center amplitude.
CC reflects the degree of correlation between the model and
the observation, the absolute value of CC closer to 1means the
higher correlation level. RMSE denotes deviation between
simulated value and observed value while the smaller of
RMSE value indicates the smaller deviation. The indices of
SD, CC, and RMSE are expressed as the form of Taylor dia-
gram (Li et al. 2012b; Sun et al. 2015) which has the advan-
tage of comparing multiple model results simultaneously to
represent the difference between the simulation result and
measured data (Singh et al. 2015; Tiwari et al. 2016). Select
model B as an example, where an and bn are the data series of
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measured data and simulated data of model B, respectively.
Then the formulas for calculating the indices are as follows.

The standard deviation of the measured data A is:

σa ¼ 1

N
∑
N

n¼1
an−a
� �2	 
1=2

ð8Þ

The standard deviation of the model B is:

σb ¼ 1

N
∑
N

n¼1
bn−b
� �2	 
1=2

ð9Þ

The correlation coefficient between an and bnis:

R ¼
1

N
∑
N

n¼1
bn−b
� �

an−a
� �

σaσb
ð10Þ

where a andb are the mean value of the measured data and the
simulated data.

The centralized RMSE is:

E ¼ 1

N
∑
N

n¼1
bn−b
� �

− an−a
� �h i2( )1=2

ð11Þ

The correlation coefficient, standard deviation, and central-
ized RMSE are in accordance with the equation below:

E2 ¼ σ2
a þ σ2

b−2σaσbR ð12Þ

The mean annual precipitation of the Huaihe River Basin
during the period (1960–2000) is 896.6 mm. As can be seen
from Table 1, the results of simulation value of the CNRM-
CM5 model and MRI-CGCM3 model are smaller than the
mean annual precipitation, and the results of simulation value
of other models are larger than the mean annual precipitation.
The simulation performances of different models are distinc-
tive. The result of MRI-CGCM3 mode has the largest relative
error which is about −41.2%. The BNU-ESM model has the
highest deterministic coefficient which is about 0.610 while
the MPI-ESM-LR model has the lowest deterministic coeffi-
cient which is about −1.349. The simulation effect of MME-
AM on the multiyear average precipitation is relatively high,
and the relative error is 4.7%, but the deterministic coefficient
of the precipitation process is relatively low which is about
0.281.

According to Eq. (12), we can draw the Taylor diagram as
shown in Fig. 2. The position of each model represented by
letter appearing on the plot quantifies how closely that simu-
lated precipitation of each model matches with observations.
The point, REF, on the x-axis is identified as observed value.
Consider model B as an example, its correlation with obser-
vation is about 0.77. The centralized root mean square be-
tween the model and the observation is proportional to the

distance from the model B to the REF which is about. The
normalized standard deviation of model B is the radial dis-
tance from the origin which is about, while the normalized
standard deviation of the observed is 1. The model with high
simulation performance is near the point REF on the x-axis
which has relatively high correlation low RMS errors with
observed data. The position of model is closer to the dash line
of 1 (radius of 1) that means has a closer normalized standard
deviation to the observation. As can be seen in Fig. 2, the rank
of precipitation simulation ability of each model is as follows:
BNU-ESM > MME-AM > CNRM-CM5 > MRI-CGCM3 >
MIROC-ESM > BCC-CSM-1.1 > MPI-ESM-LR.

4.1 Simulation of annual distribution

The multiyear average monthly precipitation simulated by
each single model is compared with measured data during
the baseline period as shown in Fig. 3. Except for the BNU-
ESM model, the rest of models have a relatively poor perfor-
mance. The simulated precipitation value in May and June is
much larger than the measured precipitation except for the
CNRM-CM5 and MRI-CGCM3 model. The maximum value
of the measured precipitation occurs in July while that of the
MIROC-ESM model occurs in June. In overall, the annual
distribution simulation results of BNU-ESM, MME-AM,
and MPI-ESM-LR model are more consistent with the mea-
sured precipitation process. The monthly precipitation and the
variance trend of BNU-ESM model are similar to the mea-
sured data which has the best performance among the entire
selected climate models.

Fig. 2 The Taylor Diagram of each model during the baseline period.
The correlation coefficient of model E is a negative value, thus it is not
shown in the figure
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4.2 Simulation of spatial distribution

The four seasons in the Huaihe River basin are spring (from
March toMay), summer (from June to August), autumn (from
September to November), and winter (from December to
February). Figure 4 illustrates the spatial distribution of mea-
sured data during baseline period. The annual precipitation of
the Huaihe River basin decreases from south to north, and
precipitation in the mountain area is larger than that in the
plain area while that in the coastal area is larger than that in
the inland region. The precipitation mainly occurs in the
spring and summer season. Precipitation in summer in most

part of the Huaihe River basin ranges between 400 and
500mm, while that in the coastal areas and the south mountain
area are larger than 500 mm.

We interpolate the global climate data of each year
during the baseline period into the whole basin by using
the Inverse Distance Weighted (IDW) method. Figure 5
draws the spatial distribution map of relative error be-
tween the simulated result of BNU-ESM model and the
measured data. As can be seen from Fig. 5, the simulation
performance of BNU-ESM model in spring and winter is
less effective and the simulation value is higher than the
measured data in most places, and the place where the

Fig. 3 The annual distribution of
precipitation simulated by each
model during the baseline period
(1960–2000)

Fig. 4 Spatial distribution of
measured precipitation data in
different time scales: (a) spring,
(b) summer, (c) autumn, (d)
winter, and (e) annual during the
baseline period
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relative error is more than 100% accounting for 30% of
the area of the Huaihe River basin. The simulated summer
precipitation in the central and southern area has a good
simulation performance where the relative error ranges
between ±10%, and the coastal and the northwest of the
area have a larger relative error. As can be seen from the
relative error distribution map of autumn season, the sim-
ulated value is larger than the measured data in most
areas, moreover, the area where the relative error is great-
er than 20% accounting for 51.5% of the basin. The spa-
tial distribution of annual precipitation simulated by
BNU-ESM model is higher than the measured value in
most area, and the places where the relative error is great-
er than 20% accounting for 62% of the basin area. The
coastal area of Jiangsu provinces has the good simulation
results where relative error is less than 10%. Overall, the
simulation result of BNU-ESM model is higher than the
measured value in each season while the simulation per-
formance are poor in the northwest of the basin, and the
difference between the simulated and the measured data
decreases from the northwest to the southeast.

Figure 6 is the spatial distribution map of relative error
between the MME-AM simulated output and the measured
data. The MME-AM model has a poor simulation in spring
and winter, and the simulation results are larger than the mea-
sured data in most areas. Although the relative error in the
northern part of the basin is still larger than 100%, the simu-
lation results are better than the BNU-ESM model. As can be
seen from the spatial distribution map of the relative error in
summer, the relative error in most areas ranges between
−10∼−40% and the simulation effects are worse than the

BNU-ESM model. The precipitation simulation results are
higher than the measured data in autumn, the relative error
in the northwest area is much higher and it ranges between
20 and 70%. The simulated annual precipitation ofMME-AM
model during baseline period shows a decreasing trend from
northwest to southeast, the relative error which is accounting
for 54% of the basin area ranges between ±10%. Overall, the
MME-AM model homogenizes the result, that is, the simula-
tion results in low-precipitation season are higher than the
measured data while in the high-precipitation season are lower
than the measured data. In general, the simulation perfor-
mance of MME-AM model is better than the BNU-ESM
model.

4.3 Spatial calibration

Taking the annual precipitation spatial distribution as an ex-
ample, we calibrate the simulation results of BNU-ESMmod-
el and MME-AM model during validation period using the
Delta method and compare the calibrated results to the mea-
sured data. Figure 7 shows the spatial distribution of relative
error of calibrated BNU-ESM model and calibrated MME-
AM model compared with the measured data, the relative
error obviously decreases after spatial calibration. The relative
error of calibrated BNU-ESMmodel which ranges from −5 to
30% is taking up 70% of area of total area. The calibrated
simulation result of MME-AMmodel is smaller than the mea-
sured data, and the relative error ranges between −10% and 0.
The area where relative error ranges between −5∼−7.5% ac-
counts for 65% of the total area.

Fig. 5 The spatial distribution of
relative error in different time
scales: (a) spring, (b) summer, (c)
autumn, (d) winter, and (e) annual
precipitation simulated by BUN-
ESM model compared with the
measured data during the baseline
period
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5 Simulation of precipitation by BP neural network
during baseline period

5.1 Simulation result of the average rainfall process
in the basin

We take the annual precipitation data from the year of 1960 to
2000 of each climate model as the input data and fit with the
measured annual precipitation series. The training time of the
model internal parameters is about 20,000 times. Figure 8

shows the result of MME simulated by the BP neural network
during training period and validation period. The simulation
effect is much better than the MME-AMmodel, the determin-
istic coefficient is 0.819 during the baseline period and 0.814
during the validation period.

5.2 Spatial distribution result of simulated precipitation

Figure 9 is the spatial distribution map of relative error of
MME-BP model during the validation period compared

Fig. 7 The relative error spatial distribution of annual precipitation simulated the (a) calibrated BNU-ESM model and (b) calibrated MME-AM when
comparing to the measured data during the validation period

Fig. 6 The spatial distribution of
relative error in different time
scales: (a) spring, (b) summer, (c)
autumn, (d) winter, and (e) annual
precipitation simulated by MME-
AM model compared with the
measured data during the baseline
period
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with the measured data. The simulation performance dur-
ing spring season is good while the simulation result of
the whole basin is smaller than the measured data and the
relative error ranges between −2.5∼−7.5%. During the
summer season, the simulated value is less than the mea-
sured data. The places where the relative error ranges
between −15 and −20% account for 54% of the total area.
The relative error in the rest places ranges between −10
and −15%. The simulated precipitation value in autumn is
higher than the measured value, and the relative error
increases from north to south and ranges from 0 to 10%.
The simulated precipitation of the most areas in winter is
lower than the measured data, the places where the rela-
tive error is higher than −10% accounting for 47% of the
total area. As can be seen from the simulation effect of

annual precipitation, the simulated value is lower than the
measured data. The places where the relative error ranges
between −7.5 and −10% account for 76% of the whole
basin. As can be seen from the spatial distribution map of
annual precipitation, the simulation performance of
MME-BP model is similar to calibrated MME-AM model
and better than the calibrated BNU-ESM model.

6 Future climate prediction

In this paper, possible climate changes in the future are ana-
lyzed by the six kinds of calibrated climate models, the cali-
brated MME-AM model and the MME-BP model. We em-
phatically analyze the prediction result of high performance

Fig. 9 The spatial distribution of
relative error in different time
scales: (a) spring, (b) summer, (c)
autumn, (d) winter, and (e) annual
precipitation simulated by MME-
BP model compared with the
measured data during the
validation period

Fig. 8 Comparisons between the
measured data and MME-BP
output during the training period
and validation period
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model named calibrated BNU-ESM, calibrated MME-AM,
and MME-BP. The prediction period is from the year of
2011 to 2100.

6.1 Linear trend and annual distribution of precipitation
in future climate change

Table 2 shows the predication results of the linear trend of
annual precipitation in the Huaihe River basin during
2011–2100. The annual average precipitation of all
models shows an increasing trend and the magnitude of
variation is significantly different from 12.3 to 107.5 mm/
100a. The magnitude of variation of calibrated BCC-
CSM-1.1 model and MME-BP model are relatively small
which are about 12.3 and 20.2 mm/100a, respectively.
The calibrated MPI-ESM-LR has the largest variation
with 107.5 mm/100a. The variation of calibrated BNU-
ESM model is close to the average variation which is
67.9 mm/100a.

Figure 10 shows the change between annual distribu-
tions of predicted precipitation by each calibrated model
during future three time periods and the monthly precipi-
tation during baseline period. During the time decade of
2020s, the precipitation shows a decreasing trend in the
month of July, August, and October while that in the rest
of months shows an increasing trend. For example, the
50% quantile of precipitation in July and August are
−18.6 and −11.7%, respectively. During the time decade
of 2050s, the precipitation of each month shows an in-
creasing trend except for the month of January, June to
August, and October. During the time period of 2080s, the
precipitation of each month shows an increasing trend
except for the month of July to September. Overall, in
different future time periods, the monthly precipitation
during June to October decrease or increase in a minimum
range, which may reduce the pressure of flood control in
the Huaihe River basin. The maximum increased periods
of precipitation during different time period are different.
During 2020s, the precipitation in February increased to
the largest extent which is 27.9 in 50% quantial. During

2050s, the precipitation in April increased to the largest
extent which is 40.2 in 50% quantial. During 2080s, the
precipitation in December increased to the largest extent
which is 55.7 in 50% quantial.

6.2 Change of precipitation during the future climate
decade

We analyze the prediction result of calibrated BNU-ESMwith
high simulation performance, calibrated MME-AM, and
MME-BPmodel, and the seasonal changes between predicted
precipitation in different decades and precipitation during
baseline period in the Huaihe River basin during the twenty-
first century are shown in Table 3. The annual precipitation of
calibrated BNU-ESM model, calibrated MME-AM, and
MME-BP model all shows an increasing trend during the

Table 2 The linear trend of annual precipitation in Huaihe River basin
predicted by each model from Tables 2011 to 2100

Model Precipitation
variation

Model Precipitation
variation

mm/100a mm/100a

BCC-CSM-1.1 12.3 MPI-ESM-LR 107.5

BNU-ESM 67.9 MRI-CGCM3 105.5

MIROC-ESM 91.1 MME-AM 72.8

CNRM-CM5 82.7 MME-BP 20.2

Mean 70

Fig. 10 The annual distribution of precipitation in the next three time
periods of a 2020s, b 2050s, and c 2080s
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decades of 2020s, 2050s, and 2080s. The variation rate of
annual precipitation predicted by calibrated BUN-ESMmodel
during future periods ranges from 2.86 to 8.31%. Precipitation
variation rate of calibrated BNU-ESM during spring has large
magnitude which ranges from 7.7∼16.86%. The precipitation
variation rate in summer season decreases in 2020s and 2050s
while increases by 6.23% during 2080s. In autumn, the vari-
ation rate increases by 6.19 and 14.5% during 2020s and
2050s, respectively, and it decreases by 1.73% during 2080s.
In winter season, except for a slight decrease in 2050s, pre-
cipitation increases significantly during 2020s and 2080s.

As can be seen from Fig. 11, the future seasonal and annual
precipitation predicted by calibrated MME-AM model shows
an increasing trend, and the precipitation variation rate in
spring and winter are relative larger than the precipitation
during baseline period. The change rates of annual precipita-
tion range from 3.5 to 8.43%. The change rates of precipita-
tion in spring, summer, autumn, winter seasons are
2.44∼13.99%, 2.67∼5.3%, 2.93∼6.62%, and 5∼22.56%,
respectively.

The precipitation predicted by MME-BP model shows an
increasing trend in annual precipitation which is about
2.12∼5.26%. Among the four seasons of 2020s, precipita-
tion in winter increases obviously, which is increased about
21.97%. In 2050s, except for the autumn precipitation which
will reduces about 10.8%, precipitation in the rest of all
season increases. In 2080s, precipitation in summer and au-
tumn seasons will decrease about 1.31 and 10.39% compar-
ing to the baseline period. The precipitation in spring and
winter season is increased largely which is about 13.99 and
9.53%, respectively. A comprehensive overview of the pre-
diction results by the three models in the future climate
change, the future annual precipitation shows an increasing
trend. The future precipitation of some season is decreased
in different time period, mainly concentrate in summer and
autumn seasons.

6.3 Spatial distribution of future precipitation

Figure 12 illustrates the spatial distribution of precipitation
variation between precipitation predicted by calibrated
BNU-ESM, calibrated MME-AM, and MME-BP models
and precipitation during the baseline period. It can be seen
that the variation of precipitation gradually increases from
northwest to the southeast, and the increased amplitude of
precipitation on the right bank is larger than the left bank,
while that on the downstream is larger than that on the up-
stream. The future precipitation in the most area of the Huaihe
River basin increase during each time period except for the
precipitation in 2020s predict by the MME-BP model which
reduces about 10 mm. As can be seen from the results during
2020s, the predict precipitation results of the three models
increase from the northwest to the southeast of the basin.
The prediction variation of calibrated BNU-ESM model is
relatively concentrated, the places which increased about

Fig. 11 Variations of precipitation predicted by different models in the
future decades: a 2020s; b 2050s; c 2080s

Table 3 Precipitation change rate simulated by three models at
different time scales during the future time periods

Model Time period Precipitation variation rate (%)

Spring Summer Autumn Winter Annual

BNU-ESM 2020s 7.70 −2.59 14.50 13.87 4.17

2050s 10.32 −1.09 6.19 −0.41 2.86

2080s 16.86 6.23 −1.73 25.59 8.31

MME-AM 2020s 2.44 3.96 2.93 5.00 3.50

2050s 8.33 2.67 6.62 12.99 5.40

2080s 13.99 5.30 5.52 22.56 8.43

MME-BP 2020s 2.69 1.54 0.27 21.97 5.26

2050s 1.34 2.77 −10.28 20.40 3.98

2080s 13.99 −1.31 −10.39 9.53 2.12
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40∼60 mm take up 64.4% of the area of the Huaihe River
basin. The precipitation in the places which are located in
the northwest of the Huaihe River basin decreases about
−10-0 mm, these regions cover 8% of the Huaihe River basin.

During the time period of 2050s, the precipitation predicted
by calibrated MME-AM has the largest increase amplitude
ranges from 20∼120 mm, these places cover 50.6% of the area
of the Huaihe River basin changes between 40 and 60mm. the
precipitation variation results predicted by calibrated BNU-
ESM and MME-BP are mainly concentrated in 20–40 mm,

accounting for 42.9 and 47.2% of the whole basin,
respectively.

In 2080s, the spatial distribution of precipitation variation
predicted by calibrated BNU-ESM model is similar to the
calibrated MME-AM which mainly concentrates between 60
and 100mm and these regions cover 53 and 61% of the area of
the Huaihe River basin. The spatial distribution of precipita-
tion variation predicted by MME-BP model mainly concen-
trates between 40 and 80 mm, accounting for 70.9% of the
Huaihe River basin (Table 4).

Fig. 12 The spatial variation distribution of precipitation between three models: (a) BNU-ESM; (b) MME-AM; (c) MME-BP and measured data in
different time periods

Table 4 The area of precipitation variation predicted by three models during future decades

Time period Model name Precipitation variation (mm)

−10 0–20 20–40 40–60 60–80 80–100 100–120 120–140 140–160

2020s BNU-ESM 23.2 64.4 12.1 0.3

MME-AM 5.4 41.1 40.9 11.7 0.9

MME-BP 8 31.1 23.2 28.5 8.2 0.8 0.1

2050s BNU-ESM 18.9 42.9 25.6 12.3 0.3

MME-AM 8.6 50.6 30.7 9.2 1

MME-BP 2.6 47.2 26.4 19.3 3.4 1

2080s BNU-ESM 20.2 27.1 25.9 14.3 11.6 0.8

MME-AM 13.1 33 28 15.5 9.5 0.8

MME-BP 16.5 43.8 27.1 8.5 3.2 0.8
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7 Discussion and conclusion

In this paper, the outputs of six GCMs from CMIP5 are used
to evaluate the precipitation simulation performance on
Huaihe River basin. Besides, two multimodel ensembles are
obtained by arithmetic mean method and BP neural network,
MME-AM and MME-BP, respectively. Thereafter, the delta
method is used to calibrate single climate model data and
MME-AM output and rebuild the future climate series. After
that, we predict the characteristics of precipitation change in
the Huaihe River basin during twenty-first century by using
the calibrated single climate model, calibratedMME-AM, and
MME-BP model. The main conclusions are shown below:

1. The six kinds of global climate models and MME-AM
have a certain simulation performance on precipitation pro-
cess in the Huaihe River basin. The simulation results are
quite different, and the multiyear average precipitation of
four single models and MME-AM are overestimated. The
MME-AM model has a higher correlation coefficient but
did not show the best simulation capability. By using the
Taylor diagram involving three index, standard deviation,
correlation coefficient, and RMSE, the order of simulation
ability on precipitation process of each model is: BNU-
ESM > MME-AM > CNRM-CM5 > MRI-CGCM3 >
MIROC-ESM > BCC-CSM-1.1 > MPI-ESM-LR.

2. An analysis of interannual distribution shows that three
models named BNU-ESM, MME-AM, and MPI-ESM-
LR model are consistent with the measured precipitation
process. The BNU-ESM model has the best simulation
performance, the maximum monthly precipitation of oth-
er models occurred in June which are not the same with
the observed precipitation occurred in July. According to
the spatial distribution of precipitation difference between
the simulated value and measured value, the spatial sim-
ulation capability of MME-AM is better than the BNU-
ESM model.

3. Six kinds of global climate models are used as the input of
BP neural network, and we obtain the output results after
training the BP neural network. The annual mean precip-
itation series simulated by MME-BP model has a good
fitting effect. The deterministic coefficient during the
baseline period and the validation period are 0.819 and
0.814, respectively. The model of MME-BP has good
spatial simulation ability, the spatial distribution deviation
of the simulation results in spring, autumn, and winter
seasons are small. The effect of spatial simulation ability
is ranked as: calibrated MME-AM > MME-BP > MME-
AM > calibrated BNU-ESM > BNU-ESM.

4. The linear trend of future precipitation demonstrates that
the results predict by all models are show an increasing
trend. Among all the models, the calibrated BCC-CSM-
1.1 model and MME-BP model increase slightly. As can

be seen from the annual distribution, the monthly precip-
itation during June to October decrease or increase slight-
ly which may relieve the flood control pressure. The pre-
dicted results of future precipitation based on the model of
calibrated BNU-ESM, calibrated MME-AM, and MME-
BP show that precipitation during 2020s, 2050s, and
2080s tend to increase. The rank of average growth rate
of the three models in each season is: winter > spring >
summer > autumn. The precipitation during winter and
spring increases significantly which can ease the pressure
on water supply. The precipitation during summer and
autumn increases slightly which means the future flood
situation in Huaihe River basin is still grim.

5. The precipitation variation in the twenty-first century pre-
dicted by calibrated BNU-ESM, calibrated MME-AM,
and MME-BP models are distinctive, but there is an
agreement that the precipitation tend to increase in the
future. The increased amplitude on the right bank of the
Huaihe River basin is larger than that in the left bank and
the downstream is larger than the upstream. The ampli-
tude ranges from 0 to 160 mm and increases with the
growing time period, the rank of average increase rate of
the three time periods is: 2080s > 2050s > 2020s.

In this paper, we attempt to use BP neural network to fit a
variety of climate models and apply the outputs results of BP
neural network (MME-BP), the GCMs, and the MME-AM
model to evaluate the simulation performance on precipita-
tion. The simulation results indicate that only a few models
show a better agreement with the observations. Due to the
coarse resolution of the current global climate model, the es-
timation of future climate remain highly uncertainties. There
is room for reducing the uncertainty of regional climate
change prediction.
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