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Abstract To highlight the compatibility of climate model sim-
ulation and proxy reconstruction at different timescales, a time-
scale separation merging method combining proxy records and
climate model simulations is presented. Annual mean surface
temperature anomalies for the last millennium (851–2005 AD)
at various scales over the land of the Northern Hemisphere
were reconstructed with 2° × 2° spatial resolution, using an
optimal interpolation (OI) algorithm. All target series were
decomposed using an ensemble empirical mode decomposition
method followed by power spectral analysis. Four typical com-
ponents were obtained at inter-annual, decadal, multidecadal,
and centennial timescales. A total of 323 temperature-sensitive
proxy chronologies were incorporated after screening for each
component. By scaling the proxy components using variance
matching and applying a localized OI algorithm to all four
components point by point, we obtained merged surface tem-
peratures. Independent validation indicates that the most sig-
nificant improvement was for components at the inter-annual
scale, but this became less evident with increasing timescales.
In mid-latitude land areas, 10–30% of grids were significantly

corrected at the inter-annual scale. By assimilating the proxy
records, the merged results reduced the gap in response to
volcanic forcing between a pure reconstruction and simulation.
Difficulty remained in verifying the centennial information and
quantifying corresponding uncertainties, so additional effort
should be devoted to this aspect in future research.

1 Introduction

Understanding spatiotemporal climate variation over the past
centuries is extremely important for exploring the variability
of the climate system at different timescales and correspond-
ing responses to external forcings. Climate systemmodel sim-
ulation and proxy records-based reconstruction both provide
insights into the variation of spatial patterns and hemispheric
and continental averages of climatic variables in past times
(Jones and Mann 2004; Jones et al. 1998; Jones et al. 2009).
The Coupled Model Intercomparison Project Phase 5
(CMIP5) and Paleoclimate Modeling Intercomparison
Project Phase 3 (PMIP3) have gathered a large set of last
millennium results from various climate system models and
spatial resolutions. There has been substantial research into
gridded surface temperature reconstruction over the last mil-
lennium based on different types of proxy records (Cook et al.
2013; Mann et al. 2009; Shi et al. 2012; Shi et al. 2015), using
a class of methods referred to as climate field reconstruction
(CFR). Both of these methodologies have laid a solid founda-
tion for further exploration of past climate changes.

The methodology of CFR aims to reconstruct the spatial
pattern and temporal evolution of climatic variables (e.g., tem-
perature and precipitation) in the past, based on the screened
proxy records (Cook et al. 1999, 2010; Tingley & Huybers,
2010a, b; Jones et al. 2009; Mann et al. 1998, 2005, 2008;
Zhang et al. 2004). The problems with these methods have
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been widely discussed (Jones et al. 1998; Jones et al. 2009),
including limited spatial coverage of proxy data and decreas-
ing temporal availability in earlier times. Other difficulties lie
in the uncertainties associated with the calibration method,
especially regarding tree ring-based reconstruction of low-
frequency variations (Briffa et al. 1996; Christiansen 2011;
Christiansen et al. 2009; Esper et al. 2002). State-of-the-art
climate system models can not only provide regular gridded
results for climatology but also physically coordinated simu-
lated results. In addition, these well-developed, coupled cli-
mate system models can faithfully reproduce climate re-
sponses to external forcings, especially at greater spatiotem-
poral scales (Fernández-Donado et al. 2013). However, for
smaller scales, there remain uncertainties, some of which orig-
inate from the impact of simulated internal variability (Deser
et al. 2012; Deser et al. 2014). The internal variability in cli-
mate simulation can be comparable to climate variability at
continental spatial scales and multidecadal centennial time-
scales (Goosse et al. 2005, 2012). However, this internal var-
iability makes it more difficult to analyze actual climatic re-
sponses to external forcings at shorter timescales (Huber and
Knutti 2014) and to identify significant response signals at
global or regional scales (Jones and Mann 2004).

Given both of these approaches are associated with advan-
tages and uncertainties, in recent years, more studies have
emerged which apply data assimilation techniques to combine
the paleo-reconstruction and physical models. Von Storch
(2000) first suggested using data assimilation (DA) in paleo-
climatology studies, and a method of Data Assimilation
Through Upscaling and Nudging (DATUN) was outlined
aiming to nudge the climate model closer to the reconstruc-
tions. Traditional DA approaches were applied to weather
prediction, but since then, several methods have been pro-
posed to assimilate the proxy records in either an online or
offline way. Barkmeijer (2003) proposed a method forcing
singular vectors that use the reconstructed atmospheric pattern
index (e.g., north annular mode (NAM)) and simulated large-
scale information to force the model forecasting. This was
applied to examine the NAM variation from 1790 to 1820
(Widmann et al. 2010). Goosse et al. (2006) first applied the
particle filter-based ensemble-selection approach to combine
the selected simulation samples by weights related to the dis-
tance values of the proxy-based reconstructed data. However,
simulation ensembles were constrained by the reconstruc-
tions. Some newly published research has made great incre-
mental improvements on (1) adopting real reconstruction re-
sults, such as PAGES-2k reconstructed temperature series
(Goosse 2016; Matsikaris et al. 2015); (2) applying forward
modeling and sequential ensemble Kalman Filter techniques
(Acevedo et al. 2016); and (3) considering time-averaged data
assimilation algorithms, which were performed in an offline
way (Steiger and Hakim 2016; Steiger et al. 2014). These
studies treated the existing proxy reconstructions as direct

targets or constraints, so as to either nudge the model dynam-
ically or recombine the simulated members. From the perspec-
tive of data assimilation techniques, the uncertainties of recon-
struction were not considered specifically (or were considered
in a static and simple way). The reported results of most recent
studies were mainly based on the pseudo-proxy frame.
However, it is important to consider the uncertainties of real
proxy records. Although the newly developed merging
scheme based on the optimal interpolation (OI) algorithm of
Chen et al. (2015) considered uncertainties from the scaling
process of tree ring chronologies with the variance matching
(VM) method, there were two weaknesses of the combined
approach: (1) merging was accomplished based on
Community Climate System Model version 4 (CCSM4) sim-
ulation, and this method uses statistics of simulation results
within a fixed time window to estimate the background error
covariance matrix. In this way, climate variability within that
window was included in the calculated background error co-
variance matrix (Evensen 2003); and (2) with the application
of the OI algorithm in local form, the radius for searching
nearby tree ring sites was also fixed which may blur the var-
iability at different timescales. Therefore, these variabilities
should be treated individually in an adaptive way, and the
search radius should depend on the timescale in some way.
Some new proxy-based temperature reconstruction studies
with a scale decomposition method have provided greater in-
sight into climate change at various timescales (Shi et al. 2011;
Xing et al. 2016; Zheng et al. 2015).

In the present study, using proxy records, the merging meth-
od developed by Chen et al. (2015) is further improved in three
regards: (1) the model-simulated temperature (background)
field is replaced by fully forced members of a Last
Millennium Ensemble (LME) simulation of the National
Center for Atmospheric Research Community Earth System
Model (CESM version 1.1) (Otto-Bliesner et al. 2015); (2) the
proxy records must also be screened at various levels. An
ensemble-based merging is done for the components of differ-
ent timescales (inter-annual, decadal, multidecadal). Eventually,
the corresponding variability for temperature evolution is ob-
tained; and (3) the radius of local search, which determines the
proxy records used for a certain grid, is quantified by multiple
merging trails ahead of time. Verification tests were also con-
ducted to show the potential application of this method.

This paper is organized as follows. Section 2 introduces (1)
three datasets, instrument data, proxy records and climate
model (CESM) simulation ensemble samples, together with
some corresponding processes (e.g., using the RegEM algo-
rithm to fill the proxy record within the same period as the
instrument data span, and removing bias for the simulation
ensemble members), and (2) a merging method based on the
simulated ensemble members, including timescale decompo-
sition and the OI algorithm. Since the latter algorithm is ap-
plied within a localized area, the scheme for quantifying the
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appropriate search radius is also introduced in this section.
Section 3 presents the validation results with independent test-
ing carried out by separating the data into calibration and
verification sets. Climate variability for different timescales
of merged results was compared to analyze improvement rel-
ative to the original model simulation. Surface temperature
response to external volcanic forcing is evaluated and
discussed. In the final section, principal conclusions and pros-
pects are presented.

2 Data and methods

2.1 Instrument data and proxy records

The Climatic Research Unit time-series (CRU TS v2.1), glob-
al gridded monthly 0.5° × 0.5° land surface temperature
dataset (Mitchell and Jones 2005), from 1901 to 2000 was
used to (1) calibrate the proxy records and (2) validate the
merged results and quantify parameters within the merger
frame. The annual mean surface temperature anomalies were
extracted and interpolated onto 2° × 2° longitude-latitude tar-
get grids (blue dots in Fig. 1) with a bilinear scheme. The
Berkeley Earth Surface Temperature dataset (BEST) (Rohde
et al. 2013) was used to evaluate improvement in merged
results and was interpolated by the same interpolation scheme
onto 2° × 2° regular grids. Before using the interpolated
dataset, anomalies were readjusted with respect to the refer-
ence period 1951–1980.

Three types of proxy records were collected, i.e., tree ring
chronologies, lake sediment records, and ice core data. The

candidates mainly came from the PAGES-2k network
(Ahmed et al. 2013), among which only records reported as
positively correlated with temperature were incorporated in
this analysis. There were also other chronologies, gathered
from the China Meteorological Data Sharing System Service
and the literature. All these collected records were initially
decomposed into typical components on inter-annual, decad-
al, multidecadal, and centennial timescales. Then, the correla-
tion coefficients were calculated between these proxy compo-
nents and the corresponding instrument components (i.e.,
CRU components). Only the components with significant cor-
relations were adopted (see Sect. 2.3). A total of 323 proxy
records were ultimately selected for merging (see Tables s1,
s2, and s3 in the Supplementary Material), including 317 tree-
ring (including types of total ring width and maximum late-
wood density), 6 ice core, and 2 lake sediment chronologies.
Before merging, all these proxy records were normalized. The
ice core and sediment records with lower temporal resolution
were interpolated into annual resolution using spline func-
tions. For convenient computing and comparison, we used
the RegEM algorithm (Mann et al. 2008; Mann et al. 2009;
Schneider 2001) to fill in missing values in proxy chronolo-
gies during the overlap period (1901–2000).

2.2 Model simulation dataset

We used ten fully forced runs from ensemble simulation re-
sults of the CESM (version 1.1) LME simulation (Otto-
Bliesner et al. 2015) as the background field. In the LME
experimental design, there are 30 members including ten runs
with full forcing and other 20 runs driven by a single forcing

(a)

Year (A.D.)

(b)

(c)

Fig. 1 a The target 2° × 2° degree grid over the land of the Northern
Hemisphere (dark blue dots), tree rings (green pies), sediment records
(orange pies), and ice core series (light blue pies). b The absolute number

of proxy data for each 2° latitude belt of the Northern Hemisphere. c
Availability of proxy records over the last millennium
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(total solar irradiation, volcanic eruptions, greenhouse gases,
land use and land cover, orbital variations and anthropogenic
sulfate aerosols). The simulation period was 850 to 2005, and
resolution was ∼2° for atmosphere and land process compo-
nents and ∼1° for ocean and sea ice components. The differ-
ence from experiments with full forcing was in small, random
perturbations imposed on an initial air temperature field.
Similarly, annual mean surface temperature was extracted
from the simulated monthly data, and then interpolated into
a regularized 2° × 2° target latitude-longitude grid box (Fig. 1)
to maintain consistency with the interpolated CRU dataset.

2.3 Multiscale approach and proxy record screening

For more effective use of the proxy records and extracting
climate variability at different timescales, the ensemble empir-
ical mode decomposition (EEMD) method was used in a hi-
erarchical way (Huang and Wu 2008; Wang et al. 2010; Wu
and Huang 2009). The EEMD method was developed from
the empirical mode decomposition (EMD) method aiming to
obtain the independent components at different typical pe-
riods. EEMD/EMD has been widely used in geo-scientific,
climatic, and related studies, typically as a novel method to
explore climate change at various timescales and extract in-
trinsic nonlinear trends (Franzke 2012; Franzke 2014; Ji et al.
2014). In this study, there were three main steps to decompose
the target series into given timescales, and those series mainly
refer to the model-simulated temperature series, instrument
series on a specific grid, or a normalized proxy chronology
series (Fig. 2a). In the first step, the target series was
decomposed into several intrinsic mode functions (IMFs)
and residuals. According to the EMD algorithms, for a partic-
ular time series, the number of IMFs (including the residuals)
is certain, and this is determined by the series length. In the
second step, power spectral analysis was applied to diagnose
the main period for each IMF. For the final step, according to
the diagnosed period, the obtained IMFs were reduced to four

components with typical timescale, inter-annual (<10 years),
decadal (10–30 years), multidecadal (30–90 years), and cen-
tennial (>90 years). One target time series can be written as the
sum of components (Eq. 1).

Seri tð Þ ¼ ∑
h¼1

Ni

imf h tð Þ þ resi ¼ ∑
4

j¼1
comp j tð Þ ð1Þ

where Ni is the total number of IMFs for the ith target time
series [Seri(t)]. Subscript j denotes the timescale of each com-
ponent [compi(t)]: j = 1 for annual scale, j = 2 for decadal
scale, j = 3 for multidecadal scale, and j = 4 for centennial
scale. These components of model simulation and instrument
data were expected to contain more physical meaning and
reveal climate change at multiscales. Therefore, the compo-
nents at a certain timescale were used as merging candidates.

To construct the proxy networks for the four typical time-
scales, correlations between the proxy components (inter-
annual, decadal, multidecadal, and centennial) and the coun-
terparts of instrument data were estimated and corresponding
significance was tested. Allowing for the completeness of in-
strument data and availability of proxy records over 1901–
2000, we chose a 60-year period (1921–1980) to calculate
correlation coefficients to screen the proxy components for
all four timescales, using only those that passed significance
tests. Given the reduced degrees of freedom for each series
during screening, Monte Carlo red noise simulation (Mann
et al. 2007; Mann et al. 2008) was used to quantify the thresh-
old of correlation (see Appendix 1), and only the significant
series were screened out. This approach can not only identify
climate response recorded in proxy chronologies at varying
temporal and spatial scales but also make better use of the
proxy records for each component. The conventional scaling
method of VM (Jones et al. 1998; Juckes et al. 2007; Lee et al.
2008; Shi et al. 2011) was used to scale the proxy components
in order to transform the dimensionless indices to surface tem-
perature components based on the interpolated CRU series at

Proxy series

CRU Ts

LME simulation 

EEMD

Power spectral analysis

Inter-annual 
Decadal 
Multi-decadal 
Centennial

Typical components

Proxy components

CRU components 

LME components 

Screened proxy networks &
Reconstructed components of temperature  

Optimal Interpolation algorithm EMM results

(a)

(b)
(1)

(2)

IMFs
(1)

(2)

(3)

Uncertainties

Fig. 2 a Process of obtaining
components of typical timescales
by applying EEMD and power
spectral analysis. b The main
merging process to produce the
EMM results. Together with the
uncertainties estimated through a
Bleave-one-out^ process, the
reconstructed typical temperature
components were used as inputs
for the OI algorithm
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the nearest grid, following the EEMD process. The four typ-
ical proxy networks and scaled temperature components were
used as Bobservation^ candidates for the merging process. For
each component, uncertainty was estimated with scaled veri-
fication results of the Bleave-one-out^ process (Shi et al.
2011). This type of uncertainty was further used as values of
observation error variance matrix in the merging process.

2.4 OI algorithm and validation

The OI algorithm-based merging method (MM) for combining
the climate model simulation and tree-ring chronologies was
applied by Chen et al. (2015), where only one set of model
simulation (CCSM4) (Landrum et al. 2013) was used to recon-
struct surface temperatures over North America. Technically,
the improvement of the OI algorithm applied in this study
mainly lies in two aspects: (1) the estimation of the background
error covariance matrix and (2) the searching radius for local
proxy data. A background error covariancematrix was coarsely
estimated in Chen et al. (2015) that simulated temperature
within the fixed 30-year window chosen as an ensemble. Our
current research gathered the ensemble of last millennium sim-
ulation (i.e., LME) and applied an ensemble-based merging
method (EMM, Fig. 2b), for which the background error co-
variance matrix was calculated from the simulated ensemble
members. For the components at various timescales, the matri-
ces were computed independently and the structure was up-
dated dynamically with time (see Appendix 2). By updating
the optimal weights simultaneously, the OI algorithm (Gandin
& Hardin 1965) was applied to merge the simulated ensemble
mean and reconstructed components of four typical timescales
individually. The purpose of EMM is to merge the climate
model simulations with proxy data at multiscales, so as to
construct a new platform tomerge different types of proxy data.
In addition, the improved OI algorithmwas applied locally, i.e.,
within the area defined by a diagnostic Boptimal^ radius.

To seek an objective radius, we designed several groups of
merging trials with linearly increasing distances in advance.
These were set for different components to exhaustively dis-
cover the optimal search radius. The difference in root mean
square error (RMSE) relative to CRU between the trial results
and LME simulation was used as the metric. The rule was that,
for each target grid, the distance corresponding to the mini-
mum RMSE was set as the optimal search radius, and the
RMSE for the merged results with trial radius had to be small-
er than the RMSE of the original LME simulation. These trials
were performed for the period 1921–1980, when the proxy
records were scaled. The linear increment of radius candidates
for attempts were set as follows: for the inter-annual compo-
nent, 500–2000 km with 100-km interval; for the decadal
component, 500–3000 km with 200-km interval; for
multidecadal and centennial components, 500–4500 and
500–5000 km, both with 500-km interval.

By applying the diagnostic radius, independent validation
was used to validate the inter-annual, decadal, and
multidecadal components. The screened proxy components
were first scaled for 1951–2000, and the temperature anoma-
lies were merged with the background field, i.e., LME simu-
lation for 1911–1950. Therefore, the instrument data from this
period became independent of the data used to scale the proxy
components, and the error statistic and RMSE were derived.

For the centennial component, the period for validation
was not sufficiently long to validate it directly. Considering
that (1) IMFs decomposed by EEMD are basically zero-mean,
and the system bias should only exist in the residual term (i.e.,
Bresi^ term in Eq. 1 in Sect. 2.3) contained in the centennial
component, the purpose of validation is to test the capability
of the merging method to reduce uncertainty rather than the
bias for monotonic time series; and (2) merger of the longest
component was achieved with the full-period (1911–2000),
calibrated candidates of both the proxy records and back-
ground field, the bias against the CRU component was re-
moved. Thus, in this study, wemainly focus on the validations
for inter-annual, decadal, and multidecadal components.

3 Results and discussion

3.1 Calculated optimal radius

Optimal radii for all the grids were derived from the prelimi-
nary experiments for four typical components as stated in the
last section. The zonal mean curves of calculated radius
(Fig. 3) indicated larger distances at both low and high lati-
tudes than at mid-latitudes, especially for 30°–50° N. This
pattern is very similar to the previous result of a regression-
based method (Jones et al. 1998) that defined a correlation
decay distance varying from 1000 to 3000 km. The optimal
radius for the inter-annual and decadal components mainly fell
within this range and longer-timescale components
(multidecadal and centennial) were larger. Physically, the
barotropic atmospheric state over lower latitude areas is more

Centennial
Decadal Inter-annual

Multi-decadal

Fig. 3 Zonal mean optimal search radius (km) calculated for inter-
annual, decadal, multidecadal, and centennial components over the
lands of the Northern Hemisphere
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likely to show homogeneous temperature patterns at longer
timescales, during which the impact of ENSO oscillations at
inter-annual timescale would be canceled out. For the higher
latitude area, the ocean state and related phenomena (e.g.,
Atlantic Meridional Overturning Circulation and interactions
between the ocean circulation and sea ice changes) tend to
exhibit variabilities at longer timescales (e.g., multidecadal
and centennial). Therefore, the surface temperature should also
display a more homogeneous state. Additionally, the polar area
became more sensitive to global warming, and thus, longer-
termwarming should bemore common in higher latitude areas.
Thus, the difference in the radius (high values over high
latitudes and lower values over mid-latitudes) for the lower-
frequency components (decadal, multidecadal, and centennial
modes) would be more obvious than inter-annual modes.

The search radius in this study determines the selection of
nearby proxy data directly, and the optimal values should rep-
resent a compromise between two aspects. The first is the
complex topography. Because the underlying topography
and ground properties directly impact local temperature co-
variance with places far away, the spatial correlation should be
constrained within the local area (Hasler et al. 2011;

Lookingbill et al. 2003). The second aspect lies in the actual
availability of distributed proxy records for the target grid,
which requires that the scanning process be somewhat longer.
The calculated optimal radius for different components can
also be treated as compatible with the temporal and spatial
variabilities of surface temperature.

3.2 Validation of merged results

As described in Sect. 2.4, the difference of RMSE relative to
instrument data between LME and validated EMM results and
correlation for the three typical components (inter-annual,
decadal, multidecadal) over 1911–1950 is shown in Figs. 4
and 5. It is evident that the inter-annual component displays
greater improvement than the other components.

The climate model could not reproduce the high-frequency
variability of phase transition within strict calendar years,
which is believed to be impacted by internal variability. By
merging the proxy records, the inter-annual component can
alleviate this shortcoming in EMM. The improvement of
EMM results (increased correlation with independent instru-
ment data and negative RMSE differences) was mainly across

(a1)

(b3)

(a3)

(b2)

(a2)

(b1)

Fig. 4 a1–a3 Correlation coefficients between the merged results and
instrument CRU data for inter-annual (left), decadal (middle), and
multidecadal (right) components. b1–b3 Correlation between LME and

CRU data at corresponding components (inter-annual, decadal,
multidecadal) during 1911–1950 AD. The stippled grids indicate the
95% significant level given by the Monte Carlo simulation
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the western part of Europe, the west coast and eastern portion
of North America, and the polar region of Siberia (Figs. 4 (a1,
b1) and 5a). The area with positive significant correlation
coefficients at mid-latitudes increased by 15–20% (Fig. 6a).
The standard deviation of the errors with respect to CRU at
proxy sites over the entire Northern Hemisphere (NH) de-
clined by ∼0.15 °C. A significance test for correlation was
conducted using Monte Carlo red noise simulation. There
was less improvement for longer timescales (decadal and
multidecadal), with increases of significant correlation area
of 5–15% (decadal, Fig. 6b) and 5–10% (multidecadal,
Fig. 6c). In addition, the zonal average RMSE reduction

(Fig. 6d, blue and green curves) for decadal and multidecadal
periods became less significant as well. It is reasonable to infer
that the merging procedure is more likely to highlight infor-
mation at shorter timescales. First, fewer available proxy re-
cords could be merged at longer timescales. For example, for
the decadal component, 110 records were used for merging,
about half those used for the inter-annual timescale (209).
Second, the inherent long-term climate variabilities were
much weaker than those in the short term. Finally, although
studies have extensively addressed the capability of proxy
data recording of long-term climate change signals, especially
regarding tree-ring chronologies (e.g., tree ring density and

(a) (c)(b)

Fig. 5 Difference of root mean square error (RMSE) between components of EMM and LME simulation for a inter-annual, b decadal, and c
multidecadal components during the validation period (1911–1950). Zero values have been masked out

(a)

(b)

(c)

(d)

Inter-annual

Decadal

Multi-decadal

Fig. 6 Proportion of area along zonal belts with significant positive
correlation of both the EMM components (red) and LME simulation
(blue) relative to instrument data for a inter-annual, b decadal, and c

multidecadal components. d Zonal averaged RMSE difference for inter-
annual (red), decadal (blue), and multidecadal components (green)
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width), there remain substantial uncertainties in analyzing rel-
atively long-term variability (Christiansen 2011; Christiansen
and Ljungqvist 2011; Esper et al. 2002). We extracted the
validation results over three regional domains, Europe (35°
to 70° N–10° to 40° E), North America (22.5° to 77.5° N–

42.5° to 67.5° W), and eastern Asia (23° to 54° N–60° to 160°
E). It is clear that, for all three domains, the error range of
EMM results (red lines in Fig. 7) became smaller than those
of LME simulation (blue lines). Several factors led directly to
error reduction: (1) the good quality of proxy records used in
this study, which have been reported or proved to have corre-
lations with temperature; (2) the climate response at different
timescales was highlighted by the process of mode decompo-
sition; and (3) the effectiveness of proxy components screen-
ing. As Table 1 has shown, for the results over North America,
the standard deviation of errors for the inter-annual compo-
nent (0.16 °C) is much larger than that of the multidecadal
component (0.01 °C). Such a contrast became smaller in the

(a1)

(b1) (b2)

(d1)

(c1)

(a2)

(c2)

(d2) (d3)

(c3)

(b3)

(a3)

Fig. 7 Row plots present the statistical error distribution of both LME
(blue curve) and EMM (red curve) on the proxy sites over North America
(a1–a3), East Asia (b1–b3), Europe (c1–c3), and the Northern

Hemisphere (d1–d3) for the components of inter-annual (left column),
decadal (middle column), and multidecadal (right column)

Table 1 Regional (NA, EA, and EU) and Northern Hemispheric
statistical standard deviation (°C) of errors for each component of LME
and EMM validation results

Region Results IA D MD

North America LME 0.88 0.55 0.21

EMM 0.72 0.43 0.20

Reduction 0.16 0.12 0.01

Eastern Asia LME 0.73 0.41 0.27

EMM 0.62 0.32 0.17

Reduction 0.11 0.09 0.1

Europe LME 0.87 0.52 0.33

EMM 0.76 0.45 0.28

Reduction 0.11 0.07 0.05

Northern Hemisphere LME 0.94 0.51 0.27

EMM 0.79 0.40 0.22

Reduction 0.15 0.11 0.05

Reduction is referred to that of LME values minus EMM values in this
table

Table 2 Scheme for combining the merging results

Combination
schemes

Inter-annual Decadal Multidecadal Centennial

LME LME_IA LME_D LME_MD LME_C

Mixed-IA EMM_IA LME_D LME_MD LME_C

Mixed-IAD EMM_IA EMM_D LME_MD LME_C

Mixed-IADMD EMM_IA EMM_D EMM_MD LME_C

Full-EMM EMM_IA EMM_D EMM_MD EMM_C

LME_*: components of the ensemble mean at inter-annual (IA), decadal
(D), and multidecadal (MD); EMM_*: the merged components

770 X. Chen et al.



results for Europe and eastern Asia. Twomain causesmight be
inferred. One is that a larger proportion (near half) of the
maximum latewood density (MXD) chronologies were used
in North America, and these MXD chronologies tend to show
a better response to the relatively high-frequency (inter-
annual) temperature variability, especially for temperature var-
iations over the growing season (April–September). However,
climatic changes on long timescales recorded in density chro-
nologies (not regional curve standardization chronologies) are
likely to be underestimated, as discussed in previous studies
(Briffa et al. 2004; Briffa et al. 1996). This chronology utility
for North America might somewhat explain the greater im-
provements for the inter-annual component. The other causes
concerning the availability of instrument data should also be

considered. One is that the number of observation stations in
eastern Asia was smaller than in North America and Europe
(Mitchell and Jones 2005), especially for years prior to 1951.
This difference might have caused uncertainties in validation
of the inter-annual component over eastern Asia. The other is
the representativeness of the instrument dataset, as inMichells
et al.’s (2005) study, where the regions with no station obser-
vations would be filled using stations within the correlation
decaying distance; thus, the longer-term variabilities should
be more realistic.

3.3 Surface temperature improvement in merged results

Merged surface temperature variability over the past centuries
for each timescale was obtained using the full-period (1901–
2000) components calibrated by instrument data. Since the
EMM could be treated as a mixture of simulation and proxy
records, we compared the datasets combining different com-
ponents from the ensemble mean of LME and EMM, so as to
further evaluate the effect of the assimilation. Thus, four sets
of merged results were generated. As Table 2 shows, there
were mixed results consisting of the same four typical com-
ponents as the ensemble mean of LME with components re-
placed by those of EMM only at certain scales. By calculating
the correlation coefficients of the combined annual resolved
series with CRU for the entire land area of the NH (1° N–87°
N), NH extratropics (31° N–87° N), and the polar areas (61°
N–87° N) (Table 3), the improvements showed some spatial
preference in extra-tropical and Arctic areas. Correlations with
CRU for both the merged results (this term refers to the mixed
datasets in Table 2) and LME across the Arctic were lower
than those for the entire NH or extra-tropical NH. This is
reasonable because some modeling studies have shown that
it remains a major challenge to simulate climate change in the
Arctic region using coupled climate models (Holland and Bitz
2003; Vavrus et al. 2012), especially for calculating poleward
heat transfer by ocean and atmosphere and related sea ice
change in a long-duration simulation (Jungclaus et al. 2014;
Zhang 2015). This directly affects the surface energy balance
in the Arctic and generates further uncertainty in simulated
surface temperatures (Pithan and Mauritsen 2014). The vali-
dation results in Figs. 4 and 5 reveal that bymerging the proxy
records in the Arctic region, the merged surface temperature
clearly shows RMSE reduction and enhanced correlation
(e.g., north of Europe, Siberia, and Alaska). It should be
stressed that the correlation of the average temperature time

Table 3 Correlation coefficient
between regionally averaged time
series of merged results and
CRUTS (1921–1980)

Zonal Belt LME Mixed-IA Mixed-IAD Mixed-IADMD Full-EMM

Northern Hemisphere (1° N–87° N) 0.688 0.722 0.737 0.730 0.717

Extra-tropical area (31° N–87° N) 0.671 0.720 0.734 0.729 0.719

Arctic region (61° N–87° N) 0.459 0.525 0.541 0.542 0.540

(a)

(b)

(c)

Fig. 8 Regional series of temperature anomalies (°C) relative to 1951–
1980, the area-weighted series of a North America, b Eastern Asia, and c
Europe.Mixed results are referred to the BMixed-IA,^ BMixed-IAD,^ and
BMixed-IADMD^
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series of merged data increased greatly with respect to the
LME (Table 3), although only the inter-annual component
was replaced in the original LME in the combination scheme
Mixed-IA. It is reasonable that the combination results of
Mixed-IADMD always displayed a higher correlation than
that of Mixed-IA (Table 3) over NH, extra-tropical and the
polar areas. In the validation results, the inter-annual compo-
nents displayed a more significant improvement over mid-
latitudes (Fig. 6), while the other longer-term components
(decadal and multidecadal) show a higher proportion of

improved area over higher latitudes (north of 60° N) that
would be merged into the Mixed-IADMD and Mixed-IAD.
In addition, the correlation of Mixed-IADMD was slightly
higher than that of Full-EMM, which should be also related
to the processing of centennial components as discussed in
Sect. 2.4 (Fig. 8).

To evaluate the merged combination results more objec-
tively, another set of instrument data, the BEST, was adopted
for comparison. Although there remains some uncertainty be-
tween different instrument datasets (Harris et al. 2014; Rohde

Table 4 Correlation coefficients between series of results of EMM and LME relative to the time series of instrumental data (1921–1980)

Region Instrumental datasets LME Mixed-IA Mixed-IAD Mixed-IADMD Full-EMM

North America CRUTs 0.151 0.249 0.297a 0.328a 0.337a

BEST 0.089 0.210 0.274a 0.292a 0.299a

Eastern Asia CRUTs 0.282a 0.366a 0.399a 0.402a 0.392a

BEST 0.178 0.248 0.277a 0.291a 0.266a

Europe CRUTs −0.082 0.274a 0.372a 0.378a 0.375a

BEST −0.090 0.256a 0.354a 0.358a 0.355a

a Ninety-five percent confidence level

(a) (b)

(c) (d)

Fig. 9 Comparison of the same-
sign rate (SSR) of EMM_IA (a,
b) and LME_IA (c, d) inter-
annual component over the land
20° N north with BEST (left
column) and CRU (right column)
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2013), it is important to evaluate the merged results with an
independent benchmark. In Table 4, the mixed results and
Full-EMM, with different combination schemes, also exhibit
higher correlations with BEST and the increment of correla-
tions are significant as well. Because the climate model-
simulated results tend to be influenced by the phase of internal
variability, the improvements from merging proxy records
should be measured by how often the phase transition was
actually corrected. Although we have quantified the error
ranges, the incorporated series were error contaminated. We
have to acknowledge that there remained errors in proxy-
scaled temperature components, since the scaled VM could
not get rid of these, which produce a compatible variance. It
would be clearer to stress the correction by merging with the
phase transition metric, not just the reduced values of error. In
this sense, we examined the same-sign rate of the inter-annual
variability (EMM_IA) by comparing the normalized series on
each grid with instrument data (CRU and BEST) for the peri-
od 1921–1980 (Fig. 9). Two target series were normalized,

and the same-sign rate was calculated by counting the same-
sign pairs. It was more convenient to examine the same-sign-
rate, with zero-mean inter-annual component; otherwise, the
trend term (longer-term variability) might blur the phase tran-
sition. The same-sign rate spatial pattern is very similar to the
correlation and RMSE patterns for the inter-annual compo-
nent of validation results. The greatest improvement was over
Europe, where the average LME-simulated temperature series
was poorly correlated with the instrument measurements
(Table 4). The improvement over western and southern
Europe was greater, by 20–30% in Spain and areas north of
the Mediterranean Sea.

3.4 Volcanic response

A great number of studies have addressed the capability of
model simulation and proxy-based reconstruction in estimat-
ing the response to volcanic eruptions (Anchukaitis et al.
2012; D’Arrigo et al. 2013; Mann et al. 2012; Stine and

 (a2)  (a3)(a1)

(b1)  (b2)  (b3)

Fig. 10 The spatial pattern of surface temperature anomaly response
differences to three typical volcanic eruptions 1815 (left), 1783
(middle), and 1641 (right). a1–a3 Between EMM results and LME

simulations. b1–b3 Between Mann09 reconstruction and LME
simulation. The reference period is 1951–1980
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Huybers 2014; Tingley et al. 2014). The issue of volcanic
response at short timescales remains open for both climate
model simulation and proxy-based reconstruction (Driscoll
et al. 2012; Solomon 2011). We compared the EMM results
(combination of all merged components) and spatiotemporal
reconstruction of Mann et al. (2009) (Mann09 hereafter) for
three typical post-sixteenth century volcanic eruptions, i.e.,
1815 (Tambora), 1783 (Laki), and 1641 (Parker). This was
because prior to 1600, only a third of proxy records are avail-
able. According to the volcanic reconstruction of Gao et al.
(2008), Tambora was the strongest among the three eruptions.
Three-year average surface temperature anomalies (the erup-
tion year and subsequent 2 years) were calculated for the LME
simulation, EMM results, and Mann09 reconstruction.
Differences between EMM and Mann09 relative to LME are
shown in Fig. 10. Spatial patterns of the differences of EMM
were similar to those of Mann09 for the eruptions in 1783
(Fig. 10, middle) and Parker (Fig. 10, right). Moreover, the
magnitude of EMM became smaller than that of Mann09.
This means that the innovation was not as great as the discrep-
ancy between pure simulation and reconstruction (Mann09),
especially for Tambora and Parker, both of which were in
tropical regions. The average NH surface temperature (north
of 20° N) response of Mann09, EMM, and LME to the
Tambora eruption cooling was −0.73, −1.78, and −2.01 °C,
respectively. For the Parker eruption, these were −0.51, −1.35,
and −1.53 °C. It can be inferred that the EMM results can
reduce the discrepancy of the response between the pure sim-
ulation and empirical method-based reconstruction.
Estimation of volcanic response by the EMM provides new
insights by combining proxy reconstruction and model simu-
lation in a statistical way. This is because the merging is
achieved for different scales, and so the innovation is reflected
as a combination of those scales. As shown in Fig. 10 (a1–a3),
the innovation for all land grids contain combinations of all
the components. Inter-annual and decadal scale innovation
tended to be in certain local or regional areas and other areas
retained LME-simulated values. In addition, to avoid the use
of false information, the local OI only used proxy-scaled ob-
servation points within the range of optimal radius. Therefore,
in areas with favorable improvement of short-term variability,
we strongly believe that a more objective response has been
achieved. Nevertheless, it remained difficult to provide a fully
optimized picture of the volcanic response.

4 Conclusions and prospects

This work presents a new merging method that combines
climate model (CESM)-simulated surface temperature and
proxy records, using data assimilation techniques from a
multiscale perspective. Because of the strengths and weak-
nesses of the two components of the combination, well-

dated tree-ring and other types of proxy records could be used
to correct inter-annual simulation, which might be obscured
by internal variabilities. Moreover, the climate model-
simulated temperature field at large spatiotemporal scales re-
vealed good performance for lower-frequency (decadal and
multidecadal) variation. Therefore, the scale-separation meth-
od provides a new approach to the aforementioned combina-
tion, which is optimal for reducing the weaknesses of the two
components alone. The local OI method was applied to merg-
ing typical components with optimal radius, which constrains
climate change signals to appropriate spatiotemporal scales
for the background field. The independent validation results
indicate that EMM had a smaller error range than LME for the
inter-annual, decadal, and multidecadal components. RMSE
and correlation in various latitudinal belts and regions both
demonstrated that merging improvement for the inter-annual
component was more substantial than the other components,
especially for vast areas of Europe and the western and eastern
coastal areas of North America. The decadal component for
the area of Siberia near 60° N and several scattered grids over
North America was improved also significantly. By calculat-
ing the SSR for the merged inter-annual component especial-
ly, it was inferred that the phase transition of surface temper-
ature at high frequency was able to be corrected, and the
spatial pattern was very similar to that of the validation results.

The response to volcanic forcing of the merged results in
three typical eruption years (1815, 1783, and 1641) was
inspected. Although the spatial difference of merged results
and LME was similar to that of proxy-based reconstruction,
the magnitude of response was moderate, which indicates that
the discrepancy between the climate model simulation and
pure reconstruction was somewhat reduced. The issue of
how to estimate the response to volcanic forcing either by
improving climate model simulation or further exploring and
inspecting the proxy records remains open.

Finally, for the uncertainties in the merged results, three
key aspects might affect these. The first is the representa-
tiveness of the proxy records. In this study, those records
with significant correlation (tested by the Monte Carlo
method in Appendix 1) with annual mean surface tempera-
ture were used. However, the records might indicate the
temperature changes in some specific months (e.g., growing
season) rather than the annual mean values in reality. We can
anticipate that such a kind of uncertainty would get weaker
in longer-timescale components (multidecadal and centenni-
al scale). The second is the quality of the background field,
which might be impacted by the factors of simulated internal
variabilities, climate forcings, and the model structures.
Third, as a data assimilation methodology (the OI algo-
rithm), the background covariance matrix also played a crit-
ical role to determine how much the innovation (the differ-
ence between the reconstruction and background field)
would be spread to different grids.
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This proposed EMM considers the compatibility of climate
change signals at different timescales and treats them individ-
ually. This provides a platform to combine the proxy records
with diverse temporal resolutions and climate model-
simulated outcomes under different physical frameworks. In
the near future, there should be additional effort in the follow-
ing three areas: (1) before the merging process, the VM scal-
ing method was performed (although it has the potential to
objectively preserve the variance of instrument datasets, the
transfer functions were not constrained to give the best fit for
the CRU in the calibration period); (2) the scale separation-
based merging highlighted the advantage of short-term vari-
ability, but the issue of how to validate the centennial variabil-
ity in real cases remains open; and (3) different types of proxy
records have their own unique advantages in recording cli-
mate change over long periods, which were not assessed spe-
cifically in this work. In the long run, it is critical to explore
the compatibility of long-term variability, using different types
of proxy records and climate model-simulated results over the
last millennium. Additionally, discerning the type of uncer-
tainties in proxy scaling and simulation results would be help-
ful in assimilating diverse proxy records in a more meaningful
way.

As climate models continue to develop and proxy records
become more numerous over land areas in the near future,
more effective combinations of the model simulation and
proxy reconstruction will become increasingly important to
understanding actual climate changes in the past.
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Appendix 1

AMonte Carlo simulation test process was applied to quantify
the significant levels of correlation coefficient for the time
series with reduced freedom (Mann et al. 2007; Mann et al.
2009; Xing et al. 2016). The Monte Carlo simulated series
was generated with the same auto-correlations as the original
series by a first-order auto-regression (AR-1) model plus red
noise. There were 3000 simulated series produced for target

component series, i.e., the four typical components of instru-
ment series (CRU series). This Monte Carlo test was applied
to (1) screen the proxy records candidates and (2) test the
significance of correlation between the segments (the compo-
nents at different timescale) of merged results and instrument
series.

Appendix 2

The localized OI algorithm used in this paper at four typical
timescales used a dynamically updated B matrix within the
same frame as follows in Eq. 2.

Ta
i ¼ Tb

i þ ∑
M

k
Gik To

k−H Tb� �� � ð2Þ

where Ta
i is the analyzed (merged) component at a certain

timescale. Ta
i is the ensemble mean of background. M is the

number of available proxy records within the range with di-
agnostic radius. H is the observation operator, in this study
functions to transfer the nearest value on regular grid to the
proxy sites. G is the gain matrix value for the ith grid and kth
proxy component. The G matrix is the solution of the set of
linear equations (3):

BHT ¼ G Rþ HBHT� � ð3Þ

where the R matrix is Bobservation error covariance matrix.^
In this study, we use the diagonal form of R, which is estimat-
ed by the covariance of scaled proxy components at certain
timescales. B is the background error covariance matrix. B
was not calculated directly and it was stored as BHT (orHB)
implicitly.

When deriving G, as the H operator transferred the nearest
grid value to the scattered proxy site, it is likely that BHT

might become ill-conditioned; in that case, the linear equa-
tions would be solved by the technique of singular value de-
composition (SVD), and the truncated results would be given.
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