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Abstract Extreme drought, precipitation, and other extreme
climatic events often have impacts on vegetation. Based on
meteorological data from 52 stations in the Loess Plateau (LP)
and a satellite-derived normalized difference vegetation index
(NDVI) from the third-generation Global Inventory Modeling
and Mapping Studies (GIMMS3g) dataset, this study investi-
gated the relationship between vegetation change and climatic
extremes from 1982 to 2013. Our results showed that the
vegetation coverage increased significantly, with a linear rate
of 0.025/10a (P < 0.001) from 1982 to 2013. As for the spatial
distribution, NDVI revealed an increasing trend from the
northwest to the southeast, with about 61.79% of the LP
exhibiting a significant increasing trend (P < 0.05). Some
temperature extreme indices, including TMAXmean,
TMINmean, TN90p, TNx, TX90p, and TXx, increased sig-
nificantly at rates of 0.77 mm/10a, 0.52 °C/10a, 0.62 °C/10a,
0.80 °C/10a, 5.16 days/10a, and 0.65 °C/10a, respectively. On
the other hand, other extreme temperature indices including
TX10p and TN10p decreased significantly at rates of

−2.77 days/10a and 4.57 days/10a (P < 0.01), respectively.
Correlation analysis showed that only TMINmean had a sig-
nificant relationship with NDVI at the yearly time scale
(P < 0.05). At the monthly time scale, vegetation coverage
and different vegetation types responded significantly posi-
t ively to precipitat ion and temperature extremes
(TMAXmean, TMINmean, TNx, TNn, TXn, and TXx)
(P < 0.01). All of the precipitation extremes and temperature
extremes exhibited significant positive relationships with
NDVI during the spring and autumn (P < 0.01). However,
the relationship between NDVI and RX1day, TMAXmean,
TXn, and TXx was insignificant in summer. Vegetation ex-
hibited a significant negative relationship with precipitation
extremes in winter (P < 0.05). In terms of human activity,
our results indicate a strong correlation between the cumula-
tive afforestation area and NDVI in Yan’an and Yulin during
1998–2013, r = 0.859 and 0.85, n = 16, P < 0.001.

1 Introduction

Extreme climatic events are defined as significant statistical
deviations for certain climatic factors that meet or exceed spe-
cific lower and upper limit threshold statistical or observed
values (Zheng et al. 2014). The Fifth Intergovernmental
Panel on Climate Change Assessment Report (IPCCAR5)
shows that the globally averaged temperature increased by
0.85 °C (0.65 to 1.06 °C) over the period from 1880 to 2012
(Liao and Chang 2014). There is a general agreement that
global warming may have enhanced the intensity, frequency,
and severity of extreme climatic events over the past century
(Wallace et al. 2014). Compared with average climate trends,
extreme climatic events (e.g., floods and droughts) are often
unusual and unpredictable and would have significant impacts
on human societies and natural ecosystems (Liu et al. 2015a,
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b). With an increase in the extreme climatic events under
future climate change, knowledge of their patterns, structure,
and processes in terrestrial ecosystem, especially vegetation
responses to extreme events, must be understood (Seneviratne
et al. 2012). Therefore, by analyzing vegetation change trends
and response to extreme climatic events, we can improve our
understanding of vegetation vulnerability to climate
fluctuations.

With increasing interest about global climate change, there
is much concern about the relationship between vegetation
growth and climate change (Miao et al. 2012; Zhang et al.
2016a, b). The effects of climate change (e.g., trend, fluctua-
tion, and extreme events) on vegetation growth are diverse
(Tan et al. 2015). There are numerous studies that focus on
the change in vegetation coverage due to trends and fluctua-
tions in climate (Piao et al. 2011; Sun et al. 2015a, b), but few
of them have discussed the impact of extreme climatic events
on vegetation growth (Liu et al. 2016). Recently, some re-
searchers have studied the relationship between vegetation
and extreme climate conditions. For example, John et al.
(2013) assessed the response of vegetation (grassland and de-
sert biome) to extreme climate events on the Mongolian
Plateau from 2000 to 2010 and showed that the desert biome
is more vulnerable than the grassland biome in dry years.
Hilker et al. (2014) studied the sensitivity of vegetation dy-
namics to rainfall and El Niño events. Their results indicated
that there is a close relationship between vegetation growth,
annual precipitation, and El Niño events in the Amazon
rainforest. Liu et al. (2013) assessed vegetation extremes and
sensitivity to climate extremes at a global scale from 1982 to
2006 and showed that severe precipitation extremes have a
clear correlation with declines in temperate broadleaf forest
and temperate grassland. In China, studies about vegetation
response to extreme climatic events, especially in vulnerable
ecological regions such as the Loess Plateau (LP), are few.
IPCCAR5 documented that the atmospheric temperature in-
creased by 1.38 °C from 1960 to 2009 in China. This rate of
increase is greater than the global value (i.e., 0.72 °C from
1951 to 2012) (Stocker 2013). A rapid increase in temperature
is likely to lead to an increase in the intensity, frequency, and
severity of extreme climatic events (Reichstein et al. 2013).
Extreme climatic events not only affect vegetation coverage,
but also alter the relationship between vegetation features and
climatic (Liu et al. 2016). Thus, it is necessary to assess veg-
etation coverage and its relationship with extreme climatic
events in extremely vulnerable regions of China.

Since the early twenty-first century, a series of policies such
as the Grain to Green Program (GGP) and the Grazing
Withdrawal Program have been launched in the sensitive
and fragile ecological regions of China (Lü et al. 2015). The
effects of such policies became a major concern of society.
The LP, which is located in the middle reaches of the Yellow
River, is dominated by cultivated vegetation, forest, and

grassland (Xiao 2014). The region not only is pilot region of
the ecological engineering construction projects, but also is a
fragile ecological environment that is sensitive to climate
change (Xiao 2014). The LP has attracted much research at-
tention because of extreme soil and water loss, as well as
implementation of the GGP over the past decades when cli-
mate conditions and anthropogenic activities with the LP
changed dramatically (Xin et al. 2008; Zhang et al. 2013a, b;
Sun et al. 2015a, b). From 1951 to 2008, temperature in-
creased at a rate of 0.02 °C/a and rainfall decreased at a rate
of 0.97 mm/a (Lü et al. 2012). Because the GGP was imple-
mented in the LP in 1999, 16,000 km2 of rain-fed cropland
was converted to planted vegetation from 2000 to 2010 (Feng
et al. 2016). Previous studies have indicated that the number
of extreme climatic events increased during that time, and
precipitation, temperature, and human activities had important
impacts on vegetation coverage in the LP (Li et al. 2010; Sun
et al. 2016). However, few studies have been conducted to
quantitatively analyze the relationship between vegetation
growth and extreme climatic events in the LP, especially when
it comes to analyzing the relationships of different vegetation
types with extreme climatic events.

In this context, this study attempts to analyze the spatio-
temporal changes of vegetation cover and response to extreme
climatic events in the LP from 1982 to 2013. The specific
objectives of this study are to (1) assess spatiotemporal chang-
es of vegetation in the LP from 1982 to 2013; (2) quantitative-
ly analyze the changing trend of extreme climatic events in the
LP from 1982 to 2013; and (3) investigate the relationships
between vegetation coverage, vegetation types, and extreme
climatic events and ecological restoration activities.

2 Materials and methods

2.1 Study area

The LP is located in the middle reaches of the Yellow River,
North China (104°54′–114°33′E, 33°43′–41°16′N), and
covers an area of approximately 624,000 km2. The TaiHang
Mountains, RiYue Mountain, QinLing Mountains, and Yin
Mountain are situated to the east, west, south, and north of
the LP, respectively (Fig. 1). This region is dominated by a
temperate continental monsoon climate, and the average an-
nual precipitation ranges from 150 mm/a in the northwest to
800 mm/a in the southeast. The annual precipitation of 55 to
78% occurs between June and September in the form of rain-
storms (Liu et al. 2016). The annual average temperature
ranges from 4.3 °C in the northwest to 14.3 °C in the south-
east. The total solar heat gain and annual average sunshine are
5.0–6.3 × 109 J/m2 and 2200–2800 h. Potential evaporation
ranges from 865 to 1274 mm (Li et al. 2012). From the north-
west to the southeast, the main soil types change from eolian
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sand and sandy loess to typical loess and clayey loess. The
dominant vegetation types include cultivated vegetation, arti-
ficial forest, rangeland, shrub land, and grassland (Xiao 2014).
The uneven distribution of water availability, climate variabil-
ity, and extensive human activities has resulted in drought
hazards, severe soil erosion, and desertification in the LP.

2.2 Data

The GIMMS NDVI3g dataset was downloaded from the
NOAA-Advanced Very High Resolution Radiometer
(AVHRR) for the period from 1982 to 2013. GIMMS
NDVI3g has a spatial resolution of 1/12° and a temporal res-
olution of 15 days (Fensholt and Proud 2012; Guay et al.
2014). The GIMMS NDVI3g dataset has been optimized to
minimize the effects of the differences in sensor design be-
tween the AVHRR/2 and AVHRR/3 instruments as well as
volcanic eruptions (Pinzon and Tucker 2014; Liu et al.
2015a, b). The monthly GIMMS NDVI3g dataset was calcu-
lated by using maximum value composite (MVC) technique,
and the maximum annual NDVI was calculated to detect the
spatiotemporal variation of vegetation in the LP. A vegetation
map of the LP was digitized from a 1:1,000,000 scale map of
vegetation in China (Hou 2001). Vegetation types in the LP
include needle-leaf forest, broad-leaved forest, shrub land,
cultivated vegetation, steppe, meadow, marshy grassland,
and desert. In this study, we focused on cultivated vegetation,
forest (needle-leaf forest and broad-leaved forest), grassland
(steppe, meadow, and marshy grassland), and shrub land. In
addition, meteorological data (daily maximum air tempera-
ture, daily minimum air temperature, and daily precipitation)
from 53 meteorological stations were downloaded from the

China Meteorological Data Sharing Service System (http://
data.cma.cn/) for the period of 1982 to 2013. It should be
noted that the NDVI value for each meteorological station
was calculated as the mean value of its 3 × 3 neighbors.

In this study, 12 indices of extreme climate events (2 pre-
cipitation indices and 10 temperature indices) (Zhang et al.
2005) were selected to analyze extreme climate changes in
the LP (Table 1). Extreme climate indices were generated by
the Commission for Climatology (CCl)/Climate Variability
and Predictability (CLIVAR)/Joint WMO-IOC Technical
Commission for Oceanography and Marine Meteorology
(JCOMM) Expert Team (ET) on Climate Change Detection
and Indices (ETCCDI) (http://cccma.seos.uvic.ca/ETCCDI)
(You et al. 2011). The indices were calculated by the
RClimDex software and widely used in the study of extreme
climate events. The indices were calculated by the RClimDex
software. Values for daily maximum air temperature, daily
minimum air temperature, and daily precipitation data have
been quality controlled.

2.3 Methodology

The metrics of Theil–Sen (TS) median slope and Mann–
Kendall (MK) were used to detect the change trends and sig-
nificance of the trend in NDVI and climate extremes time
series during 1982–2013 (Stow et al. 2003). The noise with
parametric uncertainty present in the regression equation can
be avoided by TS-MK method. The slope is calculated as
follows:

Slope ¼ Median
NDVI j‐NDVIi

t j−ti
ð1Þ

Fig. 1 Distribution of meteorological stations and vegetation types in LP, China
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where Slope is the trend of NDVI, tij is the year number, and
NDVIi and NDVIj are the mean NDVI in the ith and jth year.
When Slope > 0, the time series of NDVI shows an increasing
trend; when Slope < 0, the time series of NDVI presents a
decreasing trend. If |Z| > 2.56, the trend is extremely signifi-
cant increase or decrease (P < 0.01). If |Z| is greater than 1.96
and less than 2.56, the trend is significant increase or decrease
(P < 0.05). If |Z| is greater than 1.65 and less than 1.96, the
trend is weakly significant increase or decrease (P < 0.1).

Pearson correlation coefficient was used to calculate the
correlations between NDVI and extreme climate indices. It
is calculated as follows (Peng et al. 2012):

R ¼
∑
n

i¼1
NDVIi−NDVI

� �
Pi−P

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
NDVIi−NDVI

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
Pi−P

� �2
r ð6Þ

where R is the Pearson correlation coefficient, NDVIiand

NDVI are the NDVI value in year or month i and the average
NDVI value, respectively. Pi and P are the value of extreme
climate index in year or month i and the average value of
extreme climate index.

3 Results

3.1 Temporal variations of vegetation coverage

3.1.1 Variations in annual NDVI

Between 1982 and 2013, the annual NDVI for the LP in-
creased at a rate of 0.025/10a (P < 0.001). This rate was much
higher than the annual rate for all of China (i.e., 0.002/10a
during 1982–2012) (Liu et al. 2015a, b). It also exceeds the
increase in growing season for Xinjiang (i.e., 0.003/10a from
1982 to 2012) (Du et al. 2015). From 1982 to 1999, NDVI
increased at a rate of 0.017/10a, but the rate of increase from
2000 to 2013 was much higher at 0.08/10a (Fig. 2a). These
results show that the implementation of the GGP may have
more clear impacts in the LP compared with these other
regions.

3.1.2 Temporal variations of different vegetation types

Figure 2b shows the inter-annual NDVI variations for differ-
ent biomes in the LP. Annual NDVI values from 1982 to 2013
for cultivated vegetation, forest, grassland, and shrub land
exhibited significant linear increases in of 0.028/10a, 0.012/
10a, 0.027/10a, and 0.02/10a (P < 0.001), respectively.
Forested vegetation had the highest NDVI values, ranging
from 0.7658 to 0.8530. Grasslands had the lowest NDVI
values, ranging from 0.3878 to 0.5603.

3.2 Spatial variations of vegetation coverage

3.2.1 General characteristics of NDVI

Generally, annual NDVI values for the LP decreased gradual-
ly from southeast to northwest. Low NDVI values were found

Table 1 Descriptions of selected precipitation and temperature indices

Index Descriptive name Definitions Unit

RX1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm

RX5day Max 5-day precipitation amount Monthly maximum 5-day precipitation mm

TMAXmean Daytime temperature Monthly mean value of daily maximum temperature °C

TMINmean Nocturnal temperature Monthly mean value of daily minimum temperature °C

TN10p Cold nights Percentage of days when TN < 10th percentile Days

TN90p Warm nights Percentage of days when TN > 90th percentile Days

TNn Min Tmin Monthly minimum value of daily minimum temperature °C

TNx Max Tmin Monthly maximum value of daily minimum temperature °C

TX10p Cool days Percentage of days when TX < 10th percentile Days

TX90p Warm days Percentage of days when TX > 90th percentile Days

TXn Min Tmax Monthly minimum value of daily maximum temperature °C

TXx Max Tmax Monthly maximum value of daily maximum temperature °C
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in Yulin (Shaanxi); Yike Zhao League (Inner Mongolia);
Guyuan and Wuzhong (Ningxia); and Dingxi, Qingyang,
and Baiyin (Gansu), primarily because these regions are main-
ly grassland and desert. High NDVI values were distributed
throughout the central and southern regions of Shaanxi be-
cause these areas are covered by forest and shrub land
(Fig. 3a). We also calculated the frequency histogram for
NDVI. Areas with NDVI values greater than 0.5 account for
57.41% of the whole area (Fig. 3b).

3.2.2 NDVI change trend

In order to analyze the NDVI change trend in the LP, we used
the TS-MK calculation method. Results showed that the
NDVI change trend was highly variable from 1982 to 2013.
The NDVI in most areas increased (89.66 vs 10.34%)
(Fig. 3c). Areas of highly significant increases, significant
increases, and weak significant increases accounted for
49.79, 12.30, and 6.07% of the LP, respectively. By contrast,

Fig. 2 Interannual variations in NDVI over LP during 1982–2013

Fig. 3 Spatial distribution, frequency graph, trend, and significance of NDVI in LP during 1982–2013
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in 0.58, 0.85, and 0.61% of the LP, NDVI values decreased
significantly at the P = 0.01, 0.05, and 0.1 levels, respectively.
Spatially, areas with significant variation in NDVI were main-
ly found in the north and middle parts of the region (Fig. 3d).

3.3 Change trends for the climate extreme indices

The variations for the 12 climate extreme indices in the LP
from 1982 to 2013 are shown in Fig. 4. The linear trends for
RX5day, TMAXmean, TMINmean, TN90p, TNn, TNx,
TX90p, and TXx have increased at rates of 0.77 mm/10a,
0.52 °C/10a, 0.62 °C/10a, 8.7 days/10a, 0.01 °C/10a,
0.80 °C/10a, 5.16 days/10a, and 0.65 °C/10a, respectively.
Six of the extreme temperature indices (TMAXmean,
TMINmean, TN90p, TNx, TX90p, and TXx) all increased
significantly at the 0.01 level. By contrast, the linear trends
for RX1day, TX10p, TXn, and TN10p decreased at rates of
0.25 mm/10a, 2.77 days/10a, 0.53 °C/10a, and 4.57 days/10a,
respectively. Only two extreme temperature indices (TX10p
and TN10p) decreased significantly at the 0.01 level.

3.4 Correlation between NDVI and climate extreme
indices

Climate change has led to more frequent extreme events that
have significant impacts on vegetation cover. Correlations be-
tween annual NDVI values and the climate extreme indices
were calculated for the LP (Table 2). RX1day, RX5day,
TMAXmean, TMINmean, TN90P, TNx, TX90p, and TXx
had positive relationships with NDVI. In contrast, TN10p,

TNn, TX10p, and TXn had negative relationships with
NDVI. However, only TMINmean exhibited a significant re-
lationship with NDVI (P < 0.05). It was shown that tempera-
ture increasing at nighttime was greater than daytime in LP
(Zhao et al. 2016).

Correlations between NDVI and extreme events have not
been found to be significant at the annual scale, indicating that
warm or moist weather is not a prerequisite for faster vegeta-
tion growth (Liu et al. 2015a, b). In order to understand the
relationship between the vegetation cover and extreme events,
we analyzed the correlations between NDVI and the 12 cli-
mate extreme indices on amonthly basis. The results indicated
that RX5day, RX1day, TMAXmean, TMINmean, TNx, TNn,
TXn, and TXx had a dominant effect on the NDVI, while
TN10, TN90, TX10p, and TX90p did not. Correlations be-
tween NDVI and RX5day, RX1day, TMAXmean,
TMINmean, TNx, TNn, TXn, and TXx were significant
(P < 0.01) (Fig. 5). Monthly NDVI values generally
responded positively to extreme precipitation and temperature
index values. It was indicated that the change trend of NDVI is
similar to extreme precipitation and temperature.

Because TN10p, TN90p, TX1p0, and TX90p had non-
significant relationships with NDVI at the monthly time scale,
certain extreme temperature indices (TMAXmean,
TMINmean, TNn, TNx, TXn, and TXx) and extreme precip-
itation indices (RX1day and RX5day) were selected to repre-
sent typical extreme climate indices. At the biome scale, dif-
ferent biomes to extreme precipitation and temperature indices
were also detected (Table 3). For example, 65, 65, 66, and
62% of the vegetation dynamics in grassland, shrub land,

Fig. 4 Liner trend in climate extreme indices in the LP during 1982–2013
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farmland, and forest could be explained by RX5day. The
strongest correlations were found between all the vegetation
types and extreme temperature indicates (TMAXmean,
TMINmean, TNn, TNx, TXn, and TXx) (P < 0.01). For ex-
ample, TMINmean explained 84, 88, 89, and 89% of the veg-
etation dynamics in grassland, shrub land, farmland, and for-
est, respectively.

Considering that vegetation responds differently to climate
extremes in different seasons, the correlations between NDVI
and the climate extreme indices for different seasons were
calculated (Table 3). All of the precipitation extremes
(RX1day and RX5day) and temperature extremes
(TMAXmean, TMINmean, TNn, TNx, TXn, and TXx) exhib-
ited significant positive relationships with NDVI in the spring
and autumn (P < 0.01). However, relationships between
NDVI and RX1day, TMAXmean, TXn, and TXx were not

significant in summer, and none of the correlations between
NDVI and the temperature extremes were significant in win-
ter. NDVI exhibited significant negative relationships with
precipitation extremes (RX1day and RX5day) in winter
(P < 0.05) (Table 4).

The spatial distribution of the correlations between vegeta-
tion and climate extreme indices across different seasons was
evaluated (Fig. 6). In spring and autumn, the correlations be-
tween vegetation and precipitation and temperature extremes
were significantly positive at most of the meteorological sta-
tions, except for the Lijin station, and the vegetation in the
western region was more strongly correlated with precipita-
tion extremes (Figs. 6, 7, and 8). In summer, there were pos-
itive correlations between vegetation and precipitation ex-
tremes at 98.08% of the meteorological stations, but only
42.31 and 63.46%meteorological stations had significant pos-
itive correlations (P < 0.05). For the temperature extremes,
26.92, 92.31, 90.39, 94.23, 76.92, and 17.31% of the meteo-
rological stations exhibited positive correlations between veg-
etation and TMAXmean, TMINmean, TNn, TNx, TXn, and
TXx, but of those, only 11.54, 65.39, 57.69, 36.54, 17.31, and
9.62% were significantly positive (P < 0.05), which were
distributed mainly in the northwest region of the LP (Fig. 7).
In winter, 3.85% of the meteorological stations had positive
correlations between vegetation and precipitation extremes,
and none of the correlations were significant correlation. For

Fig. 5 Correlations between NDVI and climate extreme indices on monthly time scale, 1982–2013

Table 2 Correlations between NDVI and climate extreme indices on
yearly time scale, 1982–2013

RX1day RX5day TMAXmean TMINmean TN10p TN90p

NDVI 0.141 0.108 0.235 0.351* −0.321 0.241

TNn TNx TX10p TX90p TXn TXx

NDVI −0.155 0.316 −0.235 0.107 −0.290 0.154

Note: *, **Means significant at P = 0.05 and 0.01
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the temperature extremes, 86.54, 42.31, 40.39, 30.77, 86.54,
and 73.08% of the meteorological stations exhibited positive
correlations between vegetation and TMAXmean,
TMINmean, TNn, TNx, TXn, and TXx, but of those, only
28.85, 7.69, 3.85, 3.85, 5.77, and 23.08% were significantly
positive (P < 0.05) (Fig. 9).

3.5 Correlation of vegetation and ecological restoration
activities

Human activities have also been major driving forces in the
LP, and the GGP was implemented in 1999 to control water
loss and soil erosion (Lü et al. 2012). This project may have
been played a key role in vegetation recovery during recent
decades. In 2003, cultivated vegetation was converted to for-
est and grassland in Shaanxi over 5000 km2, and 3000 km2 of
afforestation was planted in Ningxia and Shanxi (Xiao 2014).
Because of the GGP, afforested areas of Shaanxi, Shanxi, and
Ningxia accounted for 15–20% of the national afforested area
in most years, especially in 1999, with the three provinces
accounting for 55.7% of the national afforested area. In
1999–2012, the total afforested area of the three provinces
reached 3.8 × 104 km2 (Xiao 2014). This indicates that the
efforts of the GGP have been generally effective in the LP, the
pilot region of the program. In this study, vegetation cover in
the pilot regions for ecological restoration (Yulin and Yan’an)
exhibited an overall improvement since the implementation of
the GGP. A strong correlation between NDVI and the cumu-
lative afforestation areas was detected during 1998–2013, at
r = 0.859 and 0.85, n = 16, P < 0.001 (Fig. 10). During the last
decades, the LP experienced severe water loss and soil erosion
and produced a high yield of coarse sediment. However, the
sediment transfer from this region to the Yellow River de-
clined from 1.6 to 0.14 billion tons during the recent decade
(Zhao et al. 2013). Therefore, it is suggested that the GGP has
been largely responsible for vegetation greening and the con-
trol of soil and water losses.T
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Table 4 Correlations between NDVI and selected ten climate extreme
indices for different seasons

Spring Summer Autumn Winter

RX1day 0.552** 0.181 0.674** −0.302**

RX5day 0.628** 0.296** 0.721** −0.355**

TMAXmean 0.860** 0.064 0.923** 0.168

TMINmean 0.898** 0480** 0.935** 0.002

TNn 0.874** 0.345** 0.900** 0.069

TNx 0.833** 0.466** 0.913** −0.088
TXn 0.858** 0.199 0.876** 0.094

TXx 0.741** 0.005 0.879** 0.091

Note: **Means significant at P = 0.01
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4 Discussion

Our results show a significant increasing trend (0.025/10a) for
the NDVI in the LP from 1982 to 2013, which is consistent
with previous studies (Sun et al. 2015a, b; Zhang et al. 2013a,
b). This change rate is larger than the change rate in China
(0.007/10a from 1982 to 2011) (Liu and Lei 2015), and it is
also larger than the Tibetan Plateau (0.004/10a from 1982 to
2012) (Du et al. 2016). For the change of climate extreme
indices, our results show a significant increasing trend
(0.52 °C/10a, 0.62 °C/10a, 8.7 days/10a, 0.80 °C/10a,
5.16 days/10a, and 0.65 °C/10a) for TMAXmean,
TMINmean, TN90p, TNx, TX90p, and TXx. Our seasonal
results are consistent with previous studies (Sun et al. 2016;
Zhao et al. 2016).

For the correlations between vegetation and climate ex-
treme indices, our results indicated that certain climate ex-
treme indices (RX1day, RX5day, TMAXmean, TMINmean,
TNn, TNx, TXn, and TXx) had stronger impacts on vegeta-
tion at the monthly time scale in the LP. The relationships
between vegetation and climate extreme indices also varied
with seasons. This result is consistent with findings from Tan
et al. (2015). The correlations between vegetation and climate
extreme indices were stronger in spring and autumn than in
summer and winter (Table 4). The efficiency of water use and
plant photosynthesis with temperature increase promotes the
growth of vegetation in spring (Tan et al. 2015). Plant metab-
olism weakens as the available energy decrease in autumn. In
summer, high temperatures may lead to a decline in soil mois-
ture and an increase in evaporation. Rainfall is concentrated

Fig. 6 Spatial distributions of correlations between vegetation and extreme indices in spring

Fig. 7 Spatial distributions of correlations between vegetation and extreme indices in summer
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mainly in the summer in the LP, and frequent heavy precipi-
tation events have considerable impacts on agriculture and soil
erosion (Sun et al. 2016), which are not beneficial to the
growth of vegetation. In winter, deciduous forest and annual
herbaceous vegetation coverage decreases due to phonologi-
cal features rather than climate change (Tan et al. 2015). The
negative correlations between extreme precipitation indices
(RX1day and RX5day) and monthly NDVI values imply that
an increase in precipitation could cause a decrease of NDVI in
winter. Soil temperature would decrease with precipitation,
and soil temperature would probably become a key
constraining factor for vegetation growth (Zhang et al.
2013a, b).

In addition, human activities also play the important role in
the vegetation growth in the LP. In 1999, the Chinese govern-
ment implemented a nationwide ecological recovery program

the GGP, and approximately US $8.7 billion has been invested
to convert previously farmed lands to perennial non-native
vegetation (Feng et al. 2016). Though the GGP, 16,000 km2

of rain-fed cropland was converted to artificial vegetation
(Feng et al. 2016), causing a 21% increase in vegetation cover
from 1999 to 2013 (Fig. 2a). Both forestry statistics and
satellite-derived continuous fields indicated that vegetation
cover on the LP has almost doubled and sediment discharge
into the Yellow River has declined from 1999 to 2013 (Chen
et al. 2015). As result of GGP, ecosystem services also im-
proved on the LP from 2000 to 2010 (Ouyang et al. 2016).
The strong correlation between NDVI and cumulative affor-
estation indicated that the increase in vegetation cover was
driven by the GGP (Fig. 10). Previous modeling studies have
also indicated that the GGP-enhanced carbon stocks in bio-
mass and soils in the LP (Chang et al. 2011; Liu et al. 2014).

Fig. 8 Spatial distributions of correlations between vegetation and extreme indices in autumn

Fig. 9 Spatial distributions of correlations between vegetation and extreme indices in winter
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This showed that the effort in converting croplands on steep
slopes to grassland or forests has been generally effective in
the LP. However, the new planting has caused increased
evapotranspiration (ET) and resulted in water shortages, arti-
ficial forest, and grassland degradation in the arid and semi-
arid regions (Cao et al. 2011). Statistics indicated that the
overall survival rate of artificial forest from 1982 to 2005
was only 24%, and much of the artificial forest in the LP
was made up of Bsmall but old trees^ because of the soil water
deficit (Wang et al. 2007). Therefore, an excessive reliance on
afforestation in arid and semi-arid regions is risky, and farm-
ing and grazing, natural rehabilitation, and other non-intensive
conversion activities should be emphasized in current and
future ecological restoration projects in the LP (Sun et al.
2015a, b).

The correlations between some of the extreme climate
indices and vegetation coverage may help identify vulner-
able ecosystems under climate extremes in this area.
However, the spatial resolution of the AVHRR NDVI3g
is coarse, and there were a small number of available me-
teorological stations in our study. Meanwhile, the time-lag
effects of extreme climate indices on variability in vegeta-
tion growth were not detected in this study. Therefore, our
results may reflect only general vegetation coverage dy-
namics in response to extreme climate indices; more spatial
information on the response of vegetation dynamics to ex-
treme climate indices needs to be analyzed in the future.
Previous studies have suggested that climate datasets with
high spatial resolutions may provide an efficient way to
describe the spatial and temporal vegetation changes asso-
ciated with extreme climate indices and climate change.
Such analysis could provide interesting insights if applied
within the LP (Sillmann et al. 2013; Hu et al. 2014).
Multisensor NDVI datasets have been used widely in local
to global scale modeling and analysis, but the outcomes of
these studies suggest that there is considerable bias in
multisensor NDVI records (Tarnavsky et al. 2008). In this

study, we used the longest global time series of vegetation
dynamics and indicated that the overall trend has improved
in the LP. However, the spatial resolutions of the AVHRR
NDVI3g were coarse, and the number of available meteo-
rological stations was limited in our study. Moderate
Resolution Imaging and Spectroradiometer (MODIS
NDVI) is also considered to be an improvement over the
NDVI product. Previous studies showed that the trends of
GIMMS NDVI were similar to MODIS NDVI data for the
Northern Hemisphere areas except for high arctic regions.
Fensholt and Proud (2012) assessed the quality of the
GIMMS3g NDVI data against MODIS NDVI using pixel
wise linear regression analysis. Results indicated that
trends of GIMMS NDVI in overall acceptable agreement
with MODIS NDVI data during 2000–2010. Zhang et al.
(2016a, b) investigated the effectiveness of ecological res-
toration programs on vegetation activities in the BThree
North^ region over the past three decades, using the
NDVI from GIMMS3g and MODIS. Results indicated
the increasing trend of greenness in the Three North re-
gion. Our results may reflect only general vegetation cov-
erage dynamics; the relationships between MODIS NDVI
and climate extremes need to be analyzed in the future.
Nevertheless, although this study does suffer from the
aforementioned drawbacks, our findings are still meaning-
ful for understanding the change trends of climate extreme
and how they impact vegetation growth, for use in
implementing an ecological recovery program and improv-
ing the knowledge of vegetation vulnerability to extreme
climate change and variability.

5 Conclusions

This study analyzed change trends for vegetation cover and
the vegetation response to climate extremes in the LP of

Fig. 10 Correlation of cumulative afforestation with growing season NDVI
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Central China from 1982 to 2013. The major conclusions are
summarized as follows:

(a) Vegetation cover in the LP exhibited significant linear
increase at a rate of 0.025/10a (P < 0.001) from 1982 to 2013.
A sharp increase occurred after 1999 (rate of 0.08/10a) in the
LP. As for spatial the distribution, NDVI values showed an
increasing trend from northwest to southeast, with about
61.79% of the region exhibited a significant increasing trend
(P < 0.05).

(b) The indices TMAXmean, TMINmean, TN90p, TNx,
TX90p, and TXx all increased significantly at rates of
0.77 mm/10a, 0.52 °C/10a, 0.62 °C/10a, 0.80 °C/10a,
5.16 days/10a, and 0.65 °C/10a, respectively. On the contrary,
TX0p and TN10p index values decreased significantly at rates
of 2.77 days/10a and 4.57 days/10a (P < 0.01), respectively.

(c) Ecological restoration programs may have played a key
role in vegetation recovery throughout the LP from 1998 to
2013. And the relationship between NDVI and extreme tem-
perature index (TMINmean) at nighttime is significant yearly
time scale. Correlation analysis found that vegetation cover-
age and vegetation types responded significantly positively to
RX5day, RX1day, TMAXmean, TMINmean, TNx, TNn,
TXn, and TXx at the monthly time scale (P < 0.01).

(d) All of the precipitation and temperature extremes ex-
hibited significantly positive relationships with NDVI in the
spring and autumn (P < 0.01). However, the relationships
between NDVI and RX1day, TMAXmean, TXn, and TXx
were not significant in summer. In winter, vegetation exhibit-
ed a significantly negative relationship with precipitation ex-
tremes (P < 0.05).
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