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Abstract Spatial precipitation datasets that are long-term
consistent, highly resolved and extend over several decades
are an increasingly popular basis for modelling and monitor-
ing environmental processes and planning tasks in hydrology,
agriculture, energy resources management, etc. Here, we pres-
ent a grid dataset of daily precipitation for Austria meant to
promote such applications. It has a grid spacing of 1 km, ex-
tends back till 1961 and is continuously updated. It is con-
structed with the classical two-tier analysis, involving separate
interpolations for mean monthly precipitation and daily rela-
tive anomalies. The former was accomplished by kriging with
topographic predictors as external drift utilising 1249 stations.
The latter is based on angular distance weighting and uses 523
stations. The input station network was kept largely stationary
over time to avoid artefacts on long-term consistency.
Example cases suggest that the new analysis is at least as
plausible as previously existing datasets. Cross-validation
and comparison against experimental high-resolution obser-
vations (WegenerNet) suggest that the accuracy of the dataset
depends on interpretation. Users interpreting grid point values
as point estimates must expect systematic overestimates for
light and underestimates for heavy precipitation as well as
substantial random errors. Grid point estimates are typically
within a factor of 1.5 from in situ observations. Interpreting
grid point values as area mean values, conditional biases are

reduced and the magnitude of random errors is considerably
smaller. Together with a similar dataset of temperature, the
new dataset (SPARTACUS) is an interesting basis for model-
ling environmental processes, studying climate change im-
pacts and monitoring the climate of Austria.

1 Introduction

Spatially comprehensive datasets of essential climate vari-
ables are an important source of information for many moni-
toring, modelling and planning tasks. Knowledge on the spa-
tial distribution of observed precipitation, for example, is of
primary interest for river runoff management, hydropower
generation, drinking water supply, agriculture and natural haz-
ard prevention. Often, applications build on ready-made grid
datasets used as input to environmental models, such as for
modelling river runoff and drought risk (e.g. Blöschl et al.
2013; Haslinger et al. 2015; Parajka et al. 2015), for simulat-
ing vegetation and crop growth (e.g. Kapeller et al. 2012) or
for calculating snow cover and glacier mass balance (e.g. Huss
et al. 2008; Olefs et al. 2013). Requirements on the character-
istics and quality of grid datasets vary between applications.
However, with the growing interest into longer term climatic
variations (possibly trends) and their effects on the environ-
ment, temporal coverage and long-term consistency become
more and more important. Today, many applications call for
grid data that satisfies high standards in long-term consistency
while still offering the high spatial (kilometer scale) and tem-
poral (daily) resolution necessary to model relevant processes.

Construction of precipitation grid datasets that accommo-
date both the requirements on long-term consistency and high
resolution is faced with the challenge of finding a decent com-
promise: On one hand, reproduction of the high short-range
variability of precipitation calls for a high station density to
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sample the small-scale distribution comprehensively and to
reliably estimate the statistics of precipitation-topography re-
lationships by spatial interpolation procedures (e.g. Bénichou
and Le Breton 1987; Daly et al. 1994; Prudhomme and Reed
1998; Gottardi et al. 2012; Mergili and Kerschner 2015). On
the other hand, variations of the station network over timemay
introduce temporal inconsistencies in a grid dataset (e.g.
Hofstra et al. 2010; Becker et al. 2013; Frei 2014), which
could be avoided by interpolation from a temporally invariant
network of high-quality stations (e.g. Schmidli et al. 2002;
Schöner and Dos Santos Cardoso 2004; Hamlet and
Lettenmaier 2005). The associated loss of information will,
however, compromise the resolution of fine-scale precipita-
tion patterns and topographic effects on the precipitation
climate.

For the territory of Austria, several precipitation grid datasets
have been constructed in the past with different spatiotemporal
characteristics: (1) For the StartClim dataset, Schöner and Dos
Santos Cardoso (2004) applied the AUREHLY (Analyse
utilisant le relief pour l’hydrométéorologie) procedure and re-
sidual kriging to about 70 continuous high-quality station se-
ries. The dataset has daily resolution and extends over the pe-
riod 1948–2007. The AUREHLY method (Bénichou and Le
Breton 1987) is a regression-based interpolation technique that
uses elevation as well as principle components of the
neighbourhood topography as predictors. (2) Hasenauer et al.
(2003) applied the Daymet method (Thornton et al. 1997),
which combines local multiple linear regression with a
Gaussian distance weighting. The dataset is primarily intended
for ecosystem modelling over Austria, has daily time resolu-
tion, starts in 1960 and has been updated until 2012. The un-
derlying station network varies from about 190 to 300 stations.
(3) The GPARD-1 dataset (Hofstätter et al. 2015) was con-
structed by interpolating the ratio between daily measurements
and a climatological background for 223 stations. For the inter-
polation, a smooth surface was fitted approximating the
scattered data, with emphasis on smooth but anisotropic gradi-
ents in the optimisation. An adapted PRISM PRISM (P
arameter-elevation Relationships on Independent Slopes
Model) approach (Daly et al. 1994, 2008) using as many as
1400 stations was employed as climatological background.
The dataset extends over the period from 1951 to 2006. (4)
The HYRAS dataset (Rauthe et al. 2013) was constructed for
the territory of Germany and the surrounding hydrological
catchments, including large parts of Austria. It is based on up
to 6200 stations (most of which in Germany), extends over the
period 1951–2006 and was constructed by a combination of
multi-linear regression with topogeographic predictors and in-
verse distance weighting. (5) The Alpine Precipitation Grid
Dataset (APGD; Isotta et al. 2014), a pan-Alpine dataset, is
based on about 5500 observations and covers the period
1971–2008. It was created with a combination of PRISM for
the long-term monthly mean and a modified version of

SYMAP for daily relative anomalies (Shepard 1984; see also
Frei and Schär 1998). (6) The pan-European grid dataset E-
OBS (Haylock et al. 2008) exhibits a spatial resolution of
0.25°, starts in 1950 and is regularly updated. The analysis
combines climatological mean fields estimated by thin-plate
smoothing splines (Hutchinson 1998) with daily anomaly fields
determined by kriging (see also Hofstra et al. 2008). E-OBS uses
over 2300 stations, 18 of which are located within Austria. (7)
Unlike the so far mentioned datasets, INCA (Integrated
Nowcasting through Comprehensive Analysis; Haiden et al.
2011) is not solely based on station data but also integrates in-
formation from a model-based data assimilation. INCA is the
operational analysis and nowcasting system of the Austrian me-
teorological service ZAMG (Zentralanstalt für Meteorologie und
Geodynamik) and covers many more climate variables. The
analysis for precipitation uses inverse distance squaredweighting
of up to 1100 station measurements and, for the period since
2006 integrates climatologically scaled radar data. INCA is sub-
ject to considerable variations in data input and several changes
in algorithms. Unless otherwise mentioned (i.e. expect for
datasets (5) and (6)), all datasets have a grid spacing of 1 km.

Despite these many data sources, a precipitation grid
dataset for Austria, suitable for applications with high require-
ments in temporal consistency, spatial resolution and near
real-time availability, is missing. Such a dataset is highly de-
sirable, given the interest into decadal variations of the precip-
itation climate and the need for monitoring these continuously.
The aim of this paper is to present the development of a new
grid dataset that can fill this gap. The dataset focusses on daily
precipitation totals, exhibits a grid spacing of 1 km over
Austria, extends back to 1961 and will be continuously up-
dated. Its creation takes advantage of methodical develop-
ments and insights in the interpolation of precipitation in
mountain regions. The approach builds on the common two-
step practice with climatological background fields and daily
anomaly fields. For the development of the climatological
background fields, we utilise topographic predictors at several
space scales carefully selected with exploratory cross-
validation experiments. To increase the reliability of estimates
at high elevation, the estimation of the climatological back-
ground fields also integrates data from totaliser devices. A
particular ambition in our development is to ensure a high
level of long-term consistency by minimising adverse effects
from a temporally varying station network. To this end, a
largely invariable network of input stations is used. Some
efforts have been made in a comprehensive evaluation of the
resulting dataset, to derive a range of summary statistics on the
accuracy of the dataset and to point to limitations that may be
critical to consider by users in quantitative applications.

The presented precipitation dataset accompanies an
existing grid dataset of daily minimum and maximum air tem-
perature on the same grid, over the same period and with
similarly high requirements in long-term consistency (Hiebl
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and Frei 2016). Together, these datasets constitute the official
Aus t r i an spa t i a l c l ima t e da t a s e t SPARTACUS
(Spatiotemporal Reanalysis Dataset for Climate in Austria).

2 Data

The derivation of daily precipitation fields is effected in the
familiar two-step approach with separate procedures for the
mean monthly climatology (background fields) and the daily
relative anomaly fields (e.g. Haylock et al. 2008; Becker et al.
2013; see later Sect. 3). Accordingly, two different observa-
tional datasets had to be created: one with mean monthly
precipitation sums (Sect. 2.1) and one with daily precipitation
sums (Sect. 2.2). In both cases, a compromise had to be made
between maximum spatial coverage and continuous temporal
coverage. This choice is outlined in the subsections below. A
daily precipitation sum is defined here as the precipitation
depth accumulated between 7 a.m. of the respective day and
7 a.m. of the following day, consistent with the standard read-
ing time in Austria.

2.1 Mean monthly precipitation sums

Mean monthly precipitation sums form the basis of our
climatological background fields. They were derived from
daily station data obtained from several data providers.
From all available stations, only those were considered
further, which covered at least 20 years within the period
1961–2014. This selection resulted in 251 daily precipita-
tion series from ZAMG, 879 from the Austrian provincial
hydrographical services and 1365 from institutes in
neighbouring countries. The 30 years of 1977–2006 had
the best data coverage in this resulting dataset, and this
period was, therefore, chosen as a reference period for our
climatological background. To ensure approximate consis-
tency of the resulting station normals, monthly averages
for stations that did not fully cover the reference period
were adjusted. The adjustment was estimated by
regressing, individually, the relative anomalies of the in-
complete records against five high-correlated stations ex-
tending over the entire period since 1961.

As additional data source, monthly precipitation data from
119 totalisers were included in our climatological dataset. In
the topographically complex terrain of Austria, totalisers offer
valuable information at high elevations, which are underrep-
resented by conventional rain gauge networks (see also
Gottardi et al. 2012). Moreover, in the high Alpine areas of
Austria, totalisers were found to provide more reliable obser-
vations of monthly precipitation sums compared to conven-
tional ombrometers (Auer et al. 2000).

Altogether, our climatological dataset encompasses 2614
station normals for each calendar month (Fig. 1). One

thousand one hundred thirty conventional stations are within
the national borders of Austria. Eight hundred fifty five of
these cover a continuous 30-year period, while the remaining
275 stations cover 24.6 years on average. The effective refer-
ence period 1977–2006 is covered completely by 697 stations,
and the remaining 433 station series cover 21.3 years on
average.

In addition to the operational quality control conducted at
each of the data providing institutions, we tested all data series
for the possibility that interrupted operations were erroneously
coded by zero values. To this end, cases with continuous zero
reports over a full calendar month were compared to
neighbouring stations. The zero reports were substituted by
missing values, unless there was at least one station with less
than 3 mm (monthly total) and at least three stations with less
than 10 mm within a 50-km distance of the test station. This
procedure identified 920 suspicious station months that were
flagged.

In our dataset, no corrections were made for the measure-
ment bias induced by wind deflection, wetting and
evaporation. The bias has been quantified by Sevruk (1985)
and Richter (1995) in the Alpine region (Switzerland and
southern Germany, respectively) to range between about 7%
at low-elevation or protected stations and up to 25% at wind-
exposed high-elevation stations on an annual average. In sit-
uations with solid precipitation and high wind speed, the mea-
surement error may, however, clearly exceed 50%. As a con-
sequence, wind-exposed locations at high elevations are more
affected, and the measurement bias is generally larger in win-
ter compared to summer.

2.2 Daily precipitation sums

The selection of stations for the daily interpolation step is
motivated by our ambition for long-term consistency and near
real-time updating. To accommodate the first of these require-
ments, stations were included only, if their series covered at
least 95% of all days during the period 1961–2014. This con-
straint was satisfied by 115 stations from ZAMG plus 408
stations from the provincial hydrographical services. The sec-
ond of the above requirements implied restricting to stations
from neighbouring countries that are accessible via SYNOP
exchange. Altogether the daily dataset involves 566 station
series, whereof 523 are located within Austria (Fig. 1).

The level of long-term homogeneity that can be expected in
Austrian daily precipitation series was, among other things,
assessed by Auer et al. (2010). Their results suggest that, for
about 30% of the series, tests do provide some evidence for
inhomogeneities. This must be considered a lower bound of
the fraction of affected stations, given that there are limitations
in break detection. Closer inspection of example series
showed that the correction for breaks is capable of trend re-
versal in precipitation sums and indices. In the construction of
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our dataset, stations and periods, for which homogenised data
are available, are included (Auer et al. 2010). Up to 2015, this
applies to 4% of the observational station data used here.
These efforts imply that inhomogeneities may still be present
at least in roughly 25% of the stations incorporated.

Further efforts to improve data quality were made: (1)
Where possible, gaps in most recent daily data are filled by
aggregation of values from hourly and subhourly data sources.
(2) Gross errors within this dataset were identified and suspi-
cious values removed. Again, possibly erroneously coded Bdry
periods^ were checked and eliminated. Moreover, a spatial
consistency check was conducted to identify isolated dry and
wet reports following suggestions of Scherrer et al. (2011).

Figure 1 reveals uneven station distribution over the study
region. Sparser data coverage is obvious over parts of
Salzburg and Styria. Moreover, there is a clear overrepresen-
tation of low-elevation regions. Only 2.5% (13 stations) of the
available observations are at altitudes above 1500 m a.s.l.,
whereas 21% of the area of Austria is at elevations above this
threshold.

3 Interpolation

The daily precipitation fields of our grid dataset were con-
structed in a two-step process:

& Derivation of fields of climatological mean precipitation for
each calendar month (background fields). The climatology
represents conditions of the 30-year reference period 1977–
2006 and was obtained by kriging with external drift
(KED), using a set of topographic predictors (Sect. 3.1).

& For each day, calculation of relative anomalies of station
observations with respect to the climatology of the respec-
tive calendar month. Fields of these anomalies were then

derived by spatial interpolation, using an adapted version
of the angular distance weighting algorithm SYMAP.
Finally, multiplication of the anomaly field with the perti-
nent background field (Sect. 3.2).

As mentioned in the introduction, the two-step approach is
common to many procedures of spatial precipitation analysis
(e.g. Haylock et al. 2008; Rauthe et al. 2013; Isotta et al. 2014;
Hofstätter et al. 2015). Details within each of the two steps
may, however, vary considerably. The main purpose of sepa-
rating the climatological from the daily timescale is to reduce
systematic errors that may result from the non-representative
vertical distribution of the observing stations (see, e.g.Masson
and Frei 2014). Imprints of the topography on precipitation at
scales not resolved by the station network are difficult to iden-
tify on a day-by-day basis due to large spatial variations. A
climatological reference in the daily interpolation imposes
such fine-scale patterns from the long-term mean. Even
though these patterns may be of limited representativity for a
particular day, the procedure ensures that the resulting daily
dataset encapsulates major fine-scale effects and, hence, is
consistent with an estimate of the climatology.

The grid of our spatial analysis is a regular 1-km mesh in
the metric coordinate system ETRS89/Austria Lambert. The
digital elevation model adopted in our analysis is from the
global Shuttle Radar Topography Mission (SRTM) model
(Farr et al. 2007), with elevations on the metric grid obtained
by averaging the original 3″ (90 m) resolution SRTM values
over the 1-km grid pixels.

3.1 Mean monthly background fields

The derivation of the climatological background fields for our
precipitation analysis over Austria is based on KED
(Schabenberger and Gotway 2005; Diggle and Ribeiro

Fig. 1 Station networks used for the generation of the precipitation grid
dataset. Data from all depicted stations (black and blue dots, light blue
triangles) were used for the interpolation of mean monthly precipitation
(background fields). Data from a station subset (black dots only) were
employed for the interpolation of daily precipitation sums. Dots denote

conventional rain gauges; triangles denote totalisers. Subregions for the
interpolation of mean monthly precipitation sums are divided by blue
lines. The stations of WegenerNet used for evaluation (region
highlighted by red frame) are indicated by red dots. Grey contours
denote terrain altitude (in metres above sea level)
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2007). KED is a geostatistical interpolation model consisting
of a deterministic component, which describes the target var-
iable as a linear combination of known spatial fields (hereafter
denoted as Bcovariates^ or Bexternal drift^) and a stochastic
component, which models the residuals as a randomGaussian
field with a parametric spatial covariance function. KED is
related to regression kriging and is a popular framework for
interpolation in climatology, due to its high flexibility and the
possibility to integrate auxiliary spatial information (e.g.
Goovaerts 2000; Hengl et al. 2007; Perčec-Tadić 2010;
Aalto et al. 2012; Frei et al. 2015).

Masson and Frei (2014) have examined different configu-
rations of KED for the interpolation of seasonal mean precip-
itation in a north–south section across the Alps that also
contained parts of Austria. Their experiments showed that
the inclusion of informative spatial covariates and the model-
ling of spatial covariance, both, lead to a considerable reduc-
tion of interpolation errors. Moreover, model configurations
with sets of covariates that encompass several space scales of
the underlying topography were in advantage over configura-
tions with only one, the 1-km scale. In our application of
KED, we closely follow the procedure described in Masson
and Frei (2014), but we reinvestigate the specification of a set
of covariates that is informative generally over all of Austria.
Again, the experiments conducted for that purpose are similar
to those of Masson and Frei (2014), and results are described
further below.

To allow for varying relationships of mean precipitation
with topography, KED is applied in this study individually
for each calendar month and separately for 12 similar-sized
rectangular subregions (see Fig. 1). The number of stations per
subregion ranges from 95 to 467 with an average of 310. The
results for the subregions are then combined by gradual merg-
ing over a 40-km boundary zone. To better comply with the
assumptions of Gaussian residuals and stationary variance,
KED is applied with square root-transformed data, followed
by a numerical back-transformation of results (see, e.g. Erdin
et al. 2012).

For the stochastic component, we choose an exponential
semi-variogram with a range and sill parameter plus a nugget
effect. The nugget effect is included to account for measure-
ment uncertainties and short-range variability that may be re-
lated to the local environment of the measurement device (see
also Goovaerts 2000; Perčec Tadić 2010; Masson and Frei
2014). The nugget to sill ratios in individual subregions vary
from 6 to 22% in February to 3 to 17% in August and seem to
depend on station density and topographic-climatic complex-
ity of the subregions. All parameters, those of the semi-
variogram and the drift coefficients, are simultaneously esti-
mated by restricted maximum likelihood using the R package
geoR (see Diggle and Ribeiro 2007).

To identify an informative (and parsimonious) configura-
tion of the deterministic component of KED, an exploratory

experiment with several different sets of topographic covari-
ates is performed. The testing is done similarly to that in
Masson and Frei (2014) but for all the rectangular subdomains
(see Fig. 1). Topographic elevation as well as east–west and
north–south gradients of the topography, all at several differ-
ent space scales, are considered as constituents in different sets
for the external drift. Candidate covariates at scales other than
the original 1-km resolution are obtained from spatially fil-
tered versions of the elevation field, derived using a
Gaussian filter with different window widths. The sets of co-
variates that are compared in this experiment are listed in
Table 1 (column 1). Covariate sets with elevation and gradi-
ents are labelled as eg, sets with only elevation as e. The scales
included in the set are indicated by integer numbers separated
by hyphen, e.g. the set eg1-9 includes elevation and two gra-
dient fields (north–south, east–west), all three of them at the
original 1-km scale and at the smoothed 9-km scale. The
number of covariates in this example is 3 × 2 = 6 (Table 1,
column 2). In cases when several scales were included, the
finer scale fields are taken to be the residuals from the coarser
scale fields in order to avoid colinearity in the resulting com-
bined set. Scales considered in our experiment range from the
original 1-km up to a 17-km smoothing.

Table 1 summarises results obtained with each of the dif-
ferent configurations of the external drift. The numbers in
columns 3 and 4 are the error scores used in Masson and
Frei (2014) (see their Eqs. (4) and (5)), namely relative bias
(ratio of the average of predicted versus the average of ob-
served values) and the relative mean root transformed error
(rel. MRTE, ratio of mean squared error versus spatial vari-
ance calculated with root-transformed values) from a station-
by-station cross-validation. Columns 5 and 6 represent values
of the AIC and BIC, common likelihood-based model selec-
tion criteria, where smaller numbers indicate better perfor-
mance. All the numbers listed are averages of the scores from
the individual experiments in each subregion and each calen-
dar month.

In summary, the results of our exploratory analysis (Table 1)
suggest that among all elevation-only, single-scale covariate
sets (e1 to e17), a smoothing at the 5-km scale (e5) delivers
the best result. A further reduction of interpolation errors can be
achieved when combining the 5-km elevation with the shortest
scale elevation covariate (e1-5). Combination of three smooth-
ing levels (e.g. e1-5-9) does not reduce interpolation errors
further. If topographic gradients are included in the external
drift (eg1 to eg9), errors at all smoothing levels are reduced
compared to the pertinent elevation-only model. Finally, in-
cluding elevation and gradients at several smoothing levels
(e.g. eg1-5) seems to be of advantage and—in most cases—
improves the scores of the single-scale models. Again, models
with three scales are at best marginally better than models with
two scales. This is not too surprising, considering that even
coarser space scales begin to be resolved by the station network
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explicitly. Among all our experiments, the external drift with
elevation and gradients at the 1 and the 5-km space scale (eg1-
5) shows the smallest error measures on average. A stratifica-
tion of the analysis in Table 1 by calendar month revealed that
this set of covariates has the smallest rel. MRTE and AIC
throughout the year. Also, BIC was smallest except in summer.
As for the variation in space, best performing drift models
differed between subregions with no contiguous geographical
pattern. Quality measures were likely non-robust given the lim-
ited number of cross-validation samples in individual subre-
gions. Based on these analyses, we decided to choose the set
eg1-5, encompassing six covariate fields in total, in all the KED
models for all the subregions and calendar months. A geo-
graphically uniform drift model was also preferred to avoid
excessive discontinuities of the predictive model at the subre-
gion borders. Note that the coefficients are estimated individu-
ally per subregion and month, so that the deterministic compo-
nent of KED, despite the structural constraint, is flexible to vary
between subregions and seasons.

Figure 2 illustrates the selected predictors for a map section
in central Austria. The graphs reveal the highly different space
scales included in the two components. Both of the covariate
sets involve patterns at scales that are not explicitly resolved

by the station network. The distribution of long-term mean
precipitation for two example months (February and August)
as deduced byKED using these covariates is depicted in Fig. 3
(left column). Both of the examples reveal fine-scale patterns
introduced by the covariates, yet with a slightly different ap-
pearance, evinced, for example, in a stronger elevation depen-
dency in February compared to August.

3.2 Daily anomaly fields

The spatial analysis of daily precipitation anomalies (percent-
age of the daily sumwith respect to the climatological mean in
the pertinent calendar month) builds on the angular distance
weighting scheme SYMAP (Shepard 1984). SYMAP has fre-
quently been applied for spatial precipitation analysis at
monthly and daily timescales (e.g. Legates and Willmott
1990; Xie et al. 1996; Frei and Schär 1998; Hamlet and
Lettenmaier 2005; Becker et al. 2013). Here, an adapted ver-
sion of the algorithm is applied, which enhances the flexibility
when the density of station data varies across space or over
time (Frei and Schär 1998). In this modification, the search
radius is adjusted to the local station density, by selecting,
among a sequence of possible radii, one that includes at least

Table 1 Error measures and
model selection criteria for
interpolation experiments with
kriging with external drift using
different sets of topographic
covariates

Experiment Number of
predictors

Rel. bias
(B)

Rel. MRTE (E) Akaike information
criterion (AIC)

Bayesian information
criterion (BIC)

e1 1 1.00 0.071 1848 1867

e3 1 1.00 0.067 1828 1847

e5 1 1.00 0.067 1824 1843

e7 1 1.00 0.069 1833 1852

e9 1 1.00 0.072 1846 1865

e11 1 1.00 0.076 1860 1879

e13 1 1.00 0.078 1871 1890

e15 1 1.00 0.081 1883 1902

e17 1 1.00 0.084 1894 1913

e1-3 2 1.00 0.068 1826 1849

e1-5 2 1.00 0.067 1820 1843

e1-9 2 1.00 0.067 1822 1845

e1-3-5 3 1.00 0.067 1821 1848

e1-5-9 3 1.00 0.067 1820 1846

eg1 3 1.00 0.071 1846 1872

eg3 3 1.00 0.066 1820 1847

eg5 3 1.00 0.065 1815 1841

eg9 3 1.00 0.072 1841 1867

eg1-3 6 1.00 0.066 1818 1856

eg1-5 6 1.00 0.065 1811 1849

eg1-9 6 1.00 0.067 1813 1851

eg1-3-5 9 1.00 0.066 1810 1860

eg1-5-9 9 1.00 0.065 1806 1856

The numbers listed represent an average over all the subregions (blue lines in Fig. 1). The selected experiment is
highlighted in bold type. See Sect. 3.1 for details
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3 but not more than 30 stations. The factor for the relative
strength of angular weighting in relation to distance weighting
is set to 3, implying that the angular weight is not allowed to
attain more than the threefold value of the distance weight.
From the interpolated field of relative anomalies, the final
distribution of the daily precipitation sum is obtained by mul-
tiplication with the monthly background climate field. Note
that SYMAP does not formally account for the intermittence
of daily precipitation. Dry and wet observations are not dis-
tinguished methodologically. This, and the limitations of the
station network to resolve small-scale pattern, will lead to
smoothing effects that will be further investigated in Sect. 5.2.

For illustration, Fig. 3 depicts the relative anomaly fields
and the pertinent fields of daily precipitation sums for two
exemplary days: one with stratiform precipitation along the
northern edge of the Alps (03 February 2010) and the second
for a summer day with a large convective cell in the interior of
the Alps (26 August 2009). Note that the imprint of fine-scale
patterns from the climatology varies between the two cases.

Many of the local maxima/minima in the stratiform case are
found in areas between stations. They represent systematic
topographic enhancement estimated in the climatology. In
contrast, the amplitude and shape of the local maximum in
the convective case are mostly determined by the station
values themselves with the background climatology having
a more modest influence.

4 Example results

The new precipitation grid dataset for Austria encompasses
about 21,000 fields of daily precipitation sum covering the
period since 1961. In addition, monthly, seasonal and annual
precipitation sums as well as anomalies with respect to the
reference period 1961–1990 have been calculated from the
daily fields. The dataset is updated on a daily basis. Together
with the already existing dataset of daily temperature (Hiebl
and Frei 2016), the new results constitute a data source that is

Fig. 2 Topographic covariates (elevation, north–south gradient and west–
east gradient) at two different space scales (at 1 and 5 km in the top and bottom
row, respectively) chosen as external drift ofKED in the interpolation ofmean

monthly precipitation. The panels show conditions over a section of the study
region in central Austria (see inset). Note that the 1-km covariate is defined as
a residual with respect to the pertinent 5-km fields
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suitable for applications, where long-term consistency is es-
sential. The SPARTACUS dataset provides the basis for spa-
tial climate monitoring at ZAMG.

The purpose of this section is to illustrate selected results of
our new grid dataset and to provide a qualitative comparative
assessment. In Sect. 4.1, results from the present analysis are
compared to some of the other grid datasets for Austria.
Section 4.2 will illustrate an application, where the new
dataset is explored for a climatology and trends of two prom-
inent indices of daily precipitation. A quantitative evaluation
of the dataset will be described in Sect. 5.

4.1 Daily precipitation

Figure 4 compares examples of daily precipitation fields from
SPARTACUS with pertinent fields from other precipitation
grid datasets, including StartClim, Daymet, GPARD-1, E-
OBS and INCA, all of which were shortly introduced in
Sect. 1. The cases were selected because of their distinct me-
teorological situation without considering the possible plausi-
bility of the fields beforehand. The cases are briefly discussed
individually.

& Continental cyclone, 06 August 1985 (Fig. 4a): A pro-
nounced low-pressure area over Central Europe leads to
heavy rainfall throughout Austria. All five available
datasets reproduce the general pattern in a similar manner.
E-OBS does not reproduce as much regional detail as the

other datasets due to its coarser grid spacing. Daymet and
StartClim exhibit very smooth structures. Both datasets
are subject to border effects, namely a decrease of precip-
itation sums in some border-near regions, probably related
to the lack of stations outside the study region. GPARD-1
(shown) and SPARTACUS provide very similar patterns.
Finer, strongly topography-related structures are visible in
GPARD-1.

& Orographic lifting at the northern edge of the Alps
(BNordstau^), 31 July 1977 (Fig. 4b): A classical Vb-
track cyclone (Van Bebber 1891) causes heavy precipita-
tion from Vorarlberg to western Lower Austria leading to
flooding and mudslides. In E-OBS (v. 12.0, shown), the
area with heavy precipitation is confined to the western
part of the Northern Alps. All other datasets extend this
area further to the east. Daymet shows a very sharp tran-
sition between areas with heavy and with no precipitation,
probably due to the binary precipitation (on/off) model in
the interpolation and gross errors in the station data.
StartClim predicts a stronger spread of precipitation to
the south of the Alpine main crest compared to the other
analyses. GPARD-1 and SPARTACUS exhibit similar
patterns again, but GPARD-1 estimates a stronger increase
of precipitation with height, resulting in more extreme
precipitation sums at high altitudes.

& Orographic lifting at the southern edge of the Alps
(BSüdstau^), 01 September 1965 (Fig. 4c): This case rep-
resents a meteorological condition, where gradual rise of

Fig. 3 The background fields (mean monthly precipitation in millimeter)
for February (top) and August (bottom) (left column). Two examples of
daily anomaly fields (percent of mean monthly precipitation) for a
February day (top) and an August day (bottom) (center column). The

final fields of daily precipitation for the two example days (right
column). Circle symbols represent the original station observations. The
maps show the same section as that in Fig. 2
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humid warm air over previously advected cold air led to
very large precipitation amounts along the southern border

of Austria. The case caused catastrophic flooding in
Carinthia and East Tyrol. Areas on the northern side of

Fig. 4 Comparison of daily precipitation analyses in Austria as derived
by SPARTACUS and several existing gridded datasets (in millimetre).
The depicted cases represent distinct meteorological situations. a
Continental cyclone, 06 August 1985. b Orographic lifting at the

northern edge of the Alps, 31 July 1977. c Orographic lifting at the
southern edge of the Alps, 01 September 1965. d Alpine cut-off low, 07
August 2002. e Convective activity, 23 July 2006
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the Alps remain mostly dry. E-OBS concentrates the area
with highest precipitation amounts along the south-eastern
part of Austria’s southern border (to the Karawanks range)
and shows less precipitation along the south-western part
(in the Carnic Alps), in stark contrast to the distributions in
other datasets. The distributions from GPARD-1 and
SPARTACUS are very similar. Daymet (shown) exhibits
an overall quite similar pattern to SPARTACUS but has
heavier precipitation in central parts of Austria (northern
Styria). Areas with more pronounced topographic fine-
scale structure and with stronger horizontal gradients co-
exist in Daymet. StartClim simulates mostly dry condi-
tions in East Tyrol, clearly misinterpreting the situation
in comparison to the other datasets.

& Alpine cut-off low, 07August 2002 (Fig. 4d): A high-level
trough moving across Austria and the upglide of warm
and humid air upon cooler air beneath cause very heavy
precipitation especially in Upper and Lower Austria. In
combination with a second event 4 days later, the case
led to catastrophic flooding. In this case and taking into
account the coarser resolution, E-OBS is in good agree-
ment with the other datasets. Daymet again exhibits strong
horizontal gradients. StartClim (shown) estimates stronger
increases of precipitation with altitude in western and
southern Austria compared to the other datasets.
GPARD-1 and SPARTACUS draw a detailed and consis-
tent picture, with SPARTACUS being somewhat
smoother.

& Convective activity, 23 July 2006 (Fig. 4e): A flat pressure
distribution and unstably layered warm air characterise
this hot summer day with scattered thunderstorms. The
analysis from INCA (available from 2006 onwards,
shown) provides a richly structured pattern with many
cells of high-intensity convective rainfalls. The high spa-
tial resolution seen in INCA is due to the incorporation of
radar data. The characteristics of the pattern are quite var-
iable though. The distribution is much smoother in inner
Alpine regions, a possible reason of which may be that the
visibility of the radar is shadowed at low elevations there.
Other examples of the INCA precipitation analysis show
artificial radial structures close to radar locations. Again,
these are related to the difficulties of radar-based precipi-
tation estimation in complex terrain. Due to its coarse
resolution and the limited station data available, E-OBS
does not recognise the small-scale character of the precip-
itation pattern. Also, Daymet and StartClim exhibit
strongly smoothed patterns, though less so compared to
E-OBS. StartClim misses important details such as the
rainfall activity in the north of Austria. GPARD-1 and
SPARTACUS reproduce the pattern seen in INCA, with
all the larger scale features incorporated, but with a
smoother appearance. Isolated small convective cells like
that in Upper Austria (see INCA) are not registered by the

station network and are, therefore, missing in all station-
only-based analyses. It is unclear, whether all the small-
scale features in the radar composite, evident in INCA,
were truly associated with rainfall at the ground.

4.2 Climate analysis

Here, we illustrate the utility of the developed grid dataset for
climatological analyses by investigating the spatial distribu-
tion and long-term variation of two popular indices that char-
acterise the climate of daily precipitation. These are the wet
day frequency, defined as the annual number of days with at
least 1 mm of precipitation, and the wet day intensity, defined
as the average daily precipitation sum on all wet days of the
year (see also Klein Tank et al. 2009).

The occurrence of wet days (Fig. 5a) reveals remarkable
spatial variations that contribute to the climatic diversity of
this small country. Along the northern rim of the Alps and,
in parts, also along the main Alpine crest (especially the Hohe
Tauern range), the mean wet day frequency is as large as
180 days per year, corresponding to a wet day every second
day on average. This is not true for parts of inner Alpine Tyrol
(the Ötztal Alps), where valleys are particularly dry. The most
pronounced horizontal gradient is found from the summits of
the Hohe Tauern (forming the border between the state of
Salzburg with Carinthia and East Tyrol) towards the nearby
dry southern valleys. The smallest number of wet days is
recorded in north-eastern Austria, where, locally, there are
only 75 wet days on average per year, corresponding to
one day out of five only.

The distribution of wet day intensity looks quite different
(Fig. 5c). Average intensities are small (4 to 8 mm) in the
northern and eastern forelands as well as in the Ötztal Alps.
Values are larger (8 to 14 mm) along the northern rim of the
Alps, and maximum values (14 to 20 mm) are observed in the
Southern Alps (Carnic Alps and Karawanks). Together, the
analyses for the two indices reveal a contrast between a
Bfrequent-moderate^ precipitation climate along the Northern
Alps and an Bepisodic-heavy^ precipitation climate along the
Southern Alps. These climatological differences have implica-
tions for many geological, hydrological, ecological and glaci-
ological processes, and the SPARTACUS dataset provides a
profound basis to incorporate these high-frequency (daily) cli-
mate characteristics in modelling studies of these processes.

Trends in the two precipitation indices over the period
1961–2014 are assessed in a grid point by grid point trend
analysis of the annual index values. In the case of the number
of wet days, this assessment is made using logistic regression,
an extension of classical least-squares regression for binomial
count data (see, e.g. McCullagh and Nelder 1989; Frei and
Schär 2001). The null hypothesis Bprobability of wet days has
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not monotonically changed^was tested at the 5% significance
level, correcting for overdispersion. The magnitude of the
trend is expressed as the ratio of odds (the fraction of wet
day to dry day probability) between the end and the beginning
of the period. In the case of wet day intensity, the trend anal-
ysis was made with the non-parametric Mann-Kendall trend
test (e.g. Mann 1945; Kendall 1948) again at the 5% signifi-
cance level. The magnitude of change is expressed by the
Theil-Sen slope (change in millimetre per 54 years; Theil
1950; Sen 1968). The set of p values at the grid points were
subjected to a meta-test controlling the false discovery rate
(see Benjamini and Hochberg 1995; Wilks 2016).

Results for the annual frequency of wet days (Fig. 5b)
show a fairly scattered picture of increases and decreases
that are statistically significant in only small contiguous
regions. The proportion of statistically significant grid
points is small (2.0%, i.e. similar to the significance lev-
el), and hence, the results should not be interpreted as
evidence for a long-term change in this index. Some of
the patches may also be due to residual inhomogeneities
in the station data.

The trend analysis for annual wet day intensity (Fig. 5d)
suggests that this index has increased in the study period
over large parts of Northern Austria. The trend is statistically
significant for a considerable fraction of the grid points in
this region (16.4% over all of Austria). For the rest of the
country, there are no larger contiguous regions with positive
or negative trends. More detailed analyses show that the
regional increase in wet day intensity is evident in all sea-
sons, except winter, and is especially pronounced in autumn
along the northern rim of the Alps.

There are many more precipitation indices for which a cli-
matology and trend analysis would be of interest. The two
examples illustrate the utility of the new grid dataset for such
analyses. Constructing the dataset from an almost continuous
station dataset has helped to avoid unrealistic patches of large-
amplitude trends, often seen in other grid datasets and
resulting from variations in the underlying station density over
time. Still, care should be exercised in the interpretation of
small-scale structures on a trend map, considering that only
few of the station series incorporated in our dataset are
homogenised for instrumental changes and station relocations.
However, significant trends over larger scale contiguous re-
gions, i.e. involving many stations, are unlikely pure artefacts
from residual inhomogeneities in the underlying station data.

5 Evaluation

In this section, we thoroughly evaluate the precipitation grid
dataset in order to obtain a quantitative understanding of the
dataset’s accuracy and to illustrate its potential and limitations
for users. In accordance with the two main steps of the pro-
duction (cf. Sect. 3), we conduct leave-one-out cross-
validations both for the construction of the background fields
(mean monthly precipitation, Sect. 5.1) and that of the daily
precipitation fields, which constitute the final grid dataset
(Sect. 5.2).

A general caveat of leave-one-out cross-validation is that it
quantifies error statistics for the special case when grid point
estimates are interpreted as precipitation at the point scale, the
scale of the verifying measurements. In fact, this interpretation

Fig. 5 a Mean annual number of wet days (≥1 mm) during the period
1961–1990.bLong-term trend (1961–2014) in annual number of wet days,
expressed as the odds ratio of a logistic regression of the annual counts. c
Mean annual precipitation intensity (mean precipitation on wet days)

during the period 1961–1990. d Long-term trend (1961–2014) in annual
precipitation intensity, expressed as the Theil-Sen linear trend slope.
Hatching in b and d denotes areas, where trends are significant, using a
meta-test controlling the false discovery rate at 5% (see Wilks 2016)
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is rather uncommon. Most users will interpret grid point esti-
mates as area means (typically over a grid pixel) or will even
spatially aggregate grid points to form catchment mean
values. For these more common interpretations, cross-
validation errors are rather pessimistic accuracy measures.
Therefore, in addition to classical cross-validation, we quan-
titatively compare the grid dataset to independent observation
data from an experimental station network in a small section
of our study region. The very dense spacing of stations in that
network allows an evaluation at scales larger than the point
scale (Sect. 5.3).

5.1 Mean monthly background fields

The accuracy of the 12 mean monthly background fields
(Sect. 3.1) is quantified by systematic leave-one-out cross-
validation, restricted to the subset of 1249 Austrian stations.
In this evaluation, error statistics are calculated based on the
logarithm of ratios between predicted (yi) and observed (oi)
mean monthly precipitation sums. Log transformation ensures
that multiplicative underestimates and overestimates are
equally penalised. Back-transformation allows the statistics
to be interpreted as relative errors. The bias

B ¼ exp
1

N
∑i log

yi
oi

� �� �� �
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informs about the systematic error component. The root mean
squared error fraction
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can be regarded as the Baverage multiplicative error .̂ Root mean
squared error fraction (RMSF) will usually be dominated by
random errors, except in areas with large biases. For both, B
and RMSF, a value of 1 indicates optimal performance.

Evaluation results stratified by altitude band and climato-
logical season are listed in Table 2. Biases are very small.

Across all categories, values are within ±2%. This result is
particularly satisfying for the topmost elevation band, where
systematic errors can easily be incurred from inaccurate or
non-representative models of the small-scale precipitation to-
pography relationship (see, e.g. Masson and Frei 2014).
RMSF takes a value of 1.11 when averaged over all stations
and seasons implying an average relative error of 11%. Errors
are typically smaller in summer and autumn (1.07 and 1.09,
respectively) compared to winter and spring (1.15 and 1.11).
The spatial patterns of mean monthly precipitation are more
gradual in summer compared to the pronounced altitudinal
variations in winter. Larger measurement errors in winter
may also contribute to this contrast. Throughout the four sea-
sons, there is a gradual increase of RMSF from low to high
altitude bands, with smallest values for stations below 500 m
a.s.l. in summer (1.06) and largest values for stations above
1500m a.s.l. in winter (1.23). The larger spatial variance in the
precipitation climate within the Alps and at high altitudes and
the decrease of station density with elevation are factors re-
sponsible for this remarkable contrast in interpolation
accuracy.

5.2 Daily fields

The actual daily gridded precipitation dataset (Sect. 3.2) is
evaluated here in slightly more detail to uncover some of the
systematic effects of spatial interpolation that users should be
aware of. The leave-one-out cross-validation was calculated
for a period of 10 years (2005–2014, 3652 days) and for the
subset of 523 stations within Austrian borders. Several aspects
of the correspondence will be examined, including the mis-
match between dry or wet conditions (intermittence), typical
quantitative errors during wet episodes as well as errors in
reproducing long-term variations.

Figure 6 shows box plots of the relative interpolation error (yi/
oi, the ratio of predicted versus observed precipitation) as a func-
tion of precipitation intensity. For this purpose, the ratios are
binned into classes defined in terms of quantiles of the distribu-
tion of observed daily precipitation (x-axis). Ratios are only

Table 2 Cross-validation errors for the mean monthly background fields

Altitude band n B RMSF

DJF MAM JJA SON Year DJF MAM JJA SON Year

<500 m 475 1.00 1.00 1.00 1.00 1.00 1.10 1.07 1.06 1.06 1.07

500–1000 m 443 1.02 1.01 1.00 1.01 1.01 1.14 1.10 1.06 1.09 1.10

1000–1500 m 185 1.02 1.01 1.00 1.01 1.01 1.19 1.14 1.08 1.11 1.14

>1500 m 146 0.99 1.00 1.00 1.01 1.00 1.23 1.18 1.12 1.14 1.17

All 1249 1.01 1.01 1.00 1.01 1.01 1.15 1.11 1.07 1.09 1.11

Bias (B) and root mean squared error fraction (RMSF), stratified by altitude bands and seasons. n is the number of stations per altitude band. (See Sect.
5.1 for details)
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consideredwhen estimated and observed precipitation is larger or
equal 1 mm per day. The y-axis is log-transformed to ensure
symmetry for the same relative overestimates and underesti-
mates. Offsets of the boxes against relative errors of 1 (no error)
indicate tendencies for systematic underestimation and overesti-
mation in the respective intensity class. The vertical extent of the
boxes is a measure of error spread in the respective class. Results
are shown separately for winter and summer.

The box plot reveals a characteristic feature in the error
structure that is common to most interpolation procedures,
namely a tendency for small precipitation intensities (left hand
boxes) to be overestimated and for large precipitation intensi-
ties (right hand boxes) to be underestimated. This conditional
bias is a manifestation of the smoothing effect of spatial inter-
polation. A local precipitation maximum (minimum) is likely
to be underestimated (overestimated). The effect may be quan-
titatively significant, in that grid point values tend to underes-
timate heavy precipitation by about 20% (boxes on the right).
The conditional biases are larger in summer compared to win-
ter, particularly at low intensities. The more constrained spa-
tial extent of convective precipitation invokes more serious
Bsmearing-out^ effects. It is important for users to bear in
mind that the SPARTACUS precipitation grid dataset (like
most other interpolation-based datasets, see, e.g. Isotta et al.
2014) is conditionally biased when grid point values are
interpreted as point estimates. Associated biases in the fre-
quency distribution may be relevant in applications. It may
be somewhat appeasing, though, that the magnitude of the
conditional biases reduces when grid point estimates are
interpreted as area mean values rather than point values.

In the following, the accuracy of the daily grid dataset is
summarised by four skill measures that characterise different
aspects of the correspondence between grid point estimates

and station observations in the cross-validation set. The first
two focus on the distinction between dry and small events
versus moderate and intense events. For this binary evalua-
tion, a threshold of 3 mm is chosen. As frequency bias, we
define the ratio of predicted versus observed frequencies of
events above this threshold. It quantifies systematic errors in
the occurrence of moderate and intense precipitation without
regard to spatiotemporal correspondence. The latter is quanti-
fied by means of the Hanssen-Kuipers (HK) discriminant, a
frequently used skill score for binary deterministic forecast
evaluation (see, e.g. Wilks 2011). HK is sometimes referred
to as Pierce skill score (see, e.g. Hogan and Mason 2012). HK
can take values between −1 and 1, with HK = 1 representing a
perfect binary forecast and HK < 0 representing forecasts with
less skill than a purely random forecast.

Table 3 lists the two summary measures of the binary eval-
uation as a function of altitude band and season. The frequen-
cy bias reveals that grid point estimates tend to slightly over-
estimate the frequency of events above the 3-mm threshold.
This reflects the conditional bias at low precipitation intensi-
ties, previously seen in Fig. 6. (Note that 3 mm of daily pre-
cipitation roughly corresponds to the 30% quantile of events
larger than 1 mm in Austria.) Consistent with the interpreta-
tion provided previously, the overestimate is slightly larger in
summer than in winter. The frequency bias decreases with
elevation turning into a minor underestimate above 1500 m
above sea level. The spatiotemporal correspondence of events
above the 3-mm threshold attains values of HK around 0.84.
Values for all seasons and altitude bands are above or near 0.8,
indicating a high level of correspondence, far above the score
HK = 0 of a random forecast.

The two other statistics of this evaluation focus on the
accuracy of the grid point estimates for occurrences above

Fig. 6 Box plots of the interpolation error inferred from a systematic
leave-one-out cross-validation. Errors are expressed as ratio between in-
terpolated (at the location of the station) and observed (at the stations)
values. The sample of errors is stratified into bins of precipitation inten-
sity, which are defined in terms of quantiles. The sample includes only

cases with estimated and observed precipitation ≥1mm per day. Box plots
represent the median (bold line), the interquartile range (box) and the 10–
90% quantile range (whisker) of the error distribution. Results are shown
separately for winter (DJF) and summer (JJA)
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the 3-mm threshold. To this end, B and RMSF (as given in
Eqs. (1) and (2)) are calculated for daily precipitation amounts
(restricted to oi ≥ 3 mm per day). Table 4 lists these statistics.
As for the bias, there is a slight underestimation, which likely
reflects the conditional underestimate at the upper tail (see
Fig. 6) but is somewhat compensated by the frequency over-
estimate near the threshold (see Table 3). Despite these small

systematic errors, values of the RMSF indicate partly consid-
erable random errors. Typical average multiplicative errors are
in the order of 1.5. Clearly, the high values are partly due to the
large number of days with precipitation only slightly above
3 mm, where minor absolute errors can be large in relative
terms. The magnitude of relative errors clearly decreases with
precipitation intensity (see Fig. 6). Quite plausibly, the RMSF

Fig. 7 Station-wise bias (B, a)
and root mean squared error
fraction (RMSF, b) for days with
precipitation ≥3 mm

Table 3 Cross-validation statistics for the daily precipitation grid dataset

Altitude band n Frequency bias Hanssen-Kuipers

DJF MAM JJA SON Year DJF MAM JJA SON Year

<500 m 215 1.03 1.04 1.07 1.04 1.05 0.83 0.84 0.83 0.87 0.85

500–1000 m 207 1.03 1.04 1.07 1.04 1.05 0.83 0.83 0.82 0.87 0.84

1000–1500 m 88 1.00 1.02 1.04 1.02 1.02 0.81 0.81 0.81 0.86 0.83

>1500 m 13 0.94 0.97 1.01 0.98 0.98 0.78 0.77 0.80 0.82 0.80

All 523 1.02 1.04 1.06 1.03 1.04 0.83 0.83 0.82 0.87 0.84

Frequency bias and Hanssen-Kuipers discriminant for threshold exceedance of 3 mm per day, stratified by altitude bands and seasons. n is the number of
stations per altitude band. (See Sect. 5.2 for details)
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increases from low to high altitudes and is larger in the con-
vective compared to the other seasons.

A station-wise analysis of B and RMSF, again using the 3-
mm threshold, is depicted in Fig. 7. As for the bias (upper
panel), there is no obvious clustering of stations with positive
or negative values. Values are smaller than 15% (i.e.
0.85 ≤ B ≤ 1.15) for all, except one station (Sonnblick 1.17).
For RMSF on the other hand (bottom panel), the pattern im-
plies that the error is a function of regional station density and
topographic complexity. For example, comparatively small er-
ror values (RMSF near 1) are found in flat regions with dense
station spacing like the Vienna Basin, northern Burgenland and
central Upper Austria. But also in the Klagenfurt Basin, the
Tyrolean Oberland and the Bregenz Forest, the large number
of stations reflects in relatively higher accuracy of the grid
dataset. In contrast, larger errors are found along the northern
border of Tyrol, in Salzburg and Styria as well as Upper
Carinthia, where the station network is comparatively coarser.
Again, station Sonnblick, the highest station in the network,
exhibits the largest relative errors (RMSF = 2.18), much larger
than any other station. The reasons for this are unclear, but error
statistics for this station may be confounded by systematic
measurement biases and relatively larger random measurement
errors at this wind-exposed and snow-rich station. Clearly, the
statistics do not seem to be representative for other mountain
top stations.

To further evaluate the accuracy of the interpolation meth-
od in discriminating dry and wet conditions (i.e. the intermit-
tence of precipitation), Table 5 lists twomeasures that quantify
the level of mismatch. The false alarm index (FAI) is the
fraction of mistakenly predicted wet conditions relative to
the number of observed wet days. The missing index (MI) is
the fraction of mistakenly predicted dry conditions relative to
the number of observedwet days. Here, a threshold of 1 mm is
chosen for the distinction. Table 5 stratifies the error measures
by altitude band and season again. It shows that the degree of
mismatch is in the order of 8 to 15% relative to the occurrence
of wet days. Overprediction of wet conditions (FAI, typically
0.15) is larger than underprediction (MI, typically 0.08),

indicating that the precipitation grid dataset has a tendency
for slightly too large rainfall regions. There are only small
seasonal and altitudinal differences in these error scores; most
notably, the rate of missing wet days is comparatively larger in
winter and at high altitudes. One reason for a too large spatial
extent of rainy areas is the smoothing inherent to this and
many other interpolation methods. This tendency is related
to the excessive frequency of small precipitation amounts seen
in Fig. 6. It has been argued that the level of mismatch could
be reduced by an explicit account of intermittence in interpo-
lation schemes (e.g. Barancourt and Creutin 1992; Haylock
et al. 2008). However, adequate interpretation of the figures in
Table 5 should take into account that there are scale inconsis-
tencies when comparing an interpolation (grid-pixel mean)
against point measurements, which contribute to larger FAI
than MI (see, e.g. Osborn and Hulme 1997). The numbers
may therefore be considered as upper bounds of the true bias
made by the interpolation.

Despite the efforts for high-quality and long-term stability of
the input data, the quality of the final grid dataset may still be
affected by residual inhomogeneities in the station data and den-
sity. Here, we assess this aspect by examining the variation of
mean annual precipitation between two well-separated 5-year
periods with anomalously dry (1982–1986) and wet (1998–
2002) conditions in Austria. The difference serves as a simple
test case of long-term variation. The test is undertaken for the
subset of 44 homogenised Austrian station series. Differences for
this subset are calculated both from the observations and from the
predictions of the interpolationmethod leaving out the data of the
test stations in turn. The correspondence between predicted and
observed differences is quite good (Fig. 8). The average error of
the predicted difference (5.2%) is clearly smaller than the average
difference over all stations (about 15%). There is a respectable
correlation (R2 = 0.54) suggesting that the larger scale spatial
pattern of this difference is reasonably reproduced by the predic-
tion. At individual stations, though, errors may be large. The
largest discrepancy is found for a mountain summit station
(Villacher Alpe). The reasons for this outlier are not clear; other
mountain stations are not similarly biased.We conclude from this

Table 4 Cross-validation statistics for the daily precipitation grid dataset

Altitude band n B RMSF

DJF MAM JJA SON Year DJF MAM JJA SON Year

<500 m 215 0.98 0.99 0.99 0.99 0.99 1.37 1.43 1.55 1.39 1.45

500–1000 m 207 0.97 0.98 0.99 0.99 0.98 1.42 1.45 1.55 1.42 1.48

1000–1500 m 88 0.98 0.97 0.99 0.98 0.98 1.49 1.47 1.56 1.46 1.50

>1500 m 13 0.98 1.00 1.01 1.03 1.01 1.61 1.58 1.56 1.57 1.58

All 523 0.98 0.98 0.99 0.99 0.99 1.42 1.45 1.55 1.42 1.48

Bias (B) and root mean squared error fraction (RMSF) constrained to precipitation events exceeding a threshold of 3 mm per day, stratified by altitude
bands and seasons. n is the number of stations per altitude band. (See Sect. 5.2 for details)
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analysis that pronounced long-term variations of precipitation
should be reasonably represented by our grid dataset, in what
regards the typical magnitude of the variation and its larger scale
spatial pattern. Smaller scale detail may, however, be subject to
residual inhomogeneities and sampling limitations by the station
network. Care should, therefore, be exercised in interpreting
small-scale features in maps of trends and other diagnostics of
interdecadal variation.

5.3 Evaluation using WegenerNet high-resolution data

The Wegener Center for Climate and Global Change of the
University of Graz operates an experimental climate observation
network, the WegenerNet (Kirchengast et al. 2014) around the
town of Feldbach in south-eastern Styria (Fig. 1). The network
measures meteorological parameters at 151 evenly distributed
sites with a typical spacing of 1.4 km, i.e. at a resolution much

denser than current operational climate networks. In this section,
precipitation observations from WegenerNet are used for evalu-
ating the SPARTACUS precipitation grid dataset with respect to
area mean precipitation.

In our evaluation, we use 1-day precipitation totals over a
9-year period (2007–2015), aggregated from the original mea-
surements at 5-min intervals. Till 2013, the WegenerNet mea-
surements were affected by heated sensor problems during
snowfall, which meant that part of the data had to be excluded
from the evaluation. Almost one third of the days (31.5%) in
the period was flagged or missing. It is also relevant to note
that the WegenerNet precipitation data is subject to systematic
underestimation. Sungmin et al. (2016) estimate a systematic
difference of 10 to 13% between the measurement devices of
the WegenerNet and those used at conventional climate sta-
tions. This is supported by the observation that the space-time
average over all WegenerNet stations is 12% smaller than the
time mean of the only conventional climate station (Bad
Gleichenberg) in the experimental domain. (The latter station
was the only one used for the interpolation of the grids.)
Therefore, we followed the recommendations of Sungmin
et al. (2016) and applied constant correction factors for differ-
ent WegenerNet stations and periods.

In the following, the difference between SPARTACUS grid
data and WegenerNet observations are quantified for area mean
precipitation over squares with side lengths of 1, 2, 4, 8 and
16 km. For this purpose, the station observations falling into
the pertinent squares of the SPARTACUS grid were spatially
averaged. At the 1-km scale, this comparison still involves the
somewhat unsatisfactory scale mismatch between grid point es-
timates and point observations common to cross-validation. But
at larger scales, the observational reference becomes more con-
sistent with the space scale at which users commonly interpreted
grid data. At the 8-km scale, for example, the observational area
mean value is inferred by averaging over typically 29
WegenerNet stations, which, unless there is only a small fraction
of the area with rain and except for the measurement biases, may
be considered a fairly reliable estimate of the true area mean.

Table 5 Cross-validation statistics on the misclassification of dry and wet conditions by the interpolation method

Altitude band n FAI MI

DJF MAM JJA SON Year DJF MAM JJA SON Year

<500 m 215 0.16 0.16 0.17 0.14 0.16 0.09 0.08 0.07 0.07 0.08

500–1000 m 207 0.16 0.16 0.16 0.14 0.15 0.08 0.07 0.06 0.06 0.07

1000–1500 m 88 0.16 0.16 0.14 0.13 0.15 0.10 0.09 0.07 0.08 0.08

>1500 m 13 0.11 0.12 0.12 0.12 0.12 0.14 0.11 0.08 0.10 0.11

All 523 0.16 0.16 0.16 0.14 0.15 0.09 0.08 0.07 0.07 0.08

A threshold of 1 mm per day is employed for the definition of dry and wet days. Results are stratified by altitude bands and seasons. n is the number of
stations per altitude band. (See Sect. 5.2 for details)

FAI false alarm index, MI missing index

Fig. 8 Relative difference in precipitation between the 5-year periods
1982–1986 and 1998–2002. Results are compared between observations
at 44 homogenised high-quality stations across Austria (x-axis, reference
set) and predictions using the interpolation method but leaving out data of
the respective test station (y-axis, test set)

342 J. Hiebl, C. Frei



Figure 9 depicts the RMSF (see Eq. 2) for the area mean
estimates. Results are shown as a function of space scale (side
length of square) and for six different time scales (number of
days). Only those days/areas were included in the calculation
of RMSF when predicted and observed values were larger or
equal to 3 mm per day. Clearly, RMSF values are becoming
markedly smaller with increasing space and increasing time
scale. At the 1-day time scale, the typical relative error
(RMSF) decreases from 1.49 at the 1-km/point scale to
1.36 at the 16-km space scale, implying a 27% reduction in
interpolation error. (Probably, this decrease is underestimated
here because of the partly corrected systematic offset of the
WegenerNet and conventional observations which is largely
independent of scale.) A similar error reduction can be found
at all time scales. Even more remarkable is the reduction in
error towards longer time scales. At the 1-km resolution,
RMSF decreases from 1.49 at the 1-day time scale to 1.15 at
the 90-day time scale, implying an error reduction by 69%. All
these results suggest that the error statistics inferred by cross-
validation and at the 1-day timescale (depicted in Figs. 6 and
7, and listed in Tables 3 and 4) should be considered pessi-
mistic estimates of the accuracy of the SPARTACUS dataset
for applications that will utilise this dataset at larger space
scales than single points and at larger time scales than single
days.

6 Conclusions

Several precipitation grid datasets have been developed for the
territory of Austria in the past. Limitations in long-term con-
sistency, restrictions in the effective or nominal resolution and/
or the lack of an operational and near real-time updating have
restricted the utility of these existing datasets for many

modern applications. In this study, we have presented a new
dataset aimed at filling these gaps. The SPARTACUS grid
dataset of daily precipitation has a grid spacing of 1 km; it
covers the entire territory of Austria, extends back till 1961
and is regularly updated. A special feature of its development
is a careful selection of the station data that are incorporated
into the different production steps, to warrant, both, high spa-
tial resolution and stable coverage of input data over time. The
dataset is particularly devoted for users addressing questions
of interannual to interdecadal variations and change in a num-
ber of disciplines (e.g. agriculture, hydrology, water resources,
hydropower) and for the climate monitoring and operational
public information services at ZAMG.

In terms of methodology, the dataset adopts the traditional
two-tier analysis with separate interpolations for the mean
monthly precipitation (background fields, kriging with exter-
nal drift) and for the daily relative anomalies (angular distance
weighting, SYMAP). Particularly noteworthy elements of the
analysis scheme are the inclusion of totaliser data to fill in data
gaps at high elevations, the utilisation of a multi-scale set of
topographic predictors and a square root data transformation
to improve compatibility with statistical assumptions.
Example cases suggest that the new analysis is at least as
plausible as previously existing datasets.

It is important that users of the new dataset are aware of
limitations and uncertainties in the new dataset and that efforts
are made in examining implications for the application at
hand. Firstly, all measurements used are affected by a system-
atic bias, the gauge undercatch due to wind deflection and
wetting that causes the spatial analyses to generally underes-
timate precipitation between a few percent in summer up to
several 10% at wind-exposed and snow-rich sites at high ele-
vation. Moreover, inhomogeneities may be present, despite
stationarity of station network and efforts into data quality.
As a result, patterns of long-term variations that are of small
spatial scale should be interpreted with reservations as these
may be from one single station only. Residual inhomogenei-
ties are also likely to be found in high-frequency statistics
(e.g. wet day frequency, threshold exceedance). Users
interpreting the grid points of the dataset as point estimates
must expect conditional biases and considerable random er-
rors. The former manifests in an overestimation of light and
moderate precipitation intensities and an underestimation of
intense and heavy precipitation. The conditional bias is up to
20% but markedly depends on station density and season. In
terms of random error, grid point estimates are typically within
a factor of 1.5 from an in situ (point) observation, larger even
in data sparse regions, at high elevations and in summer,
smaller over flatlands and in autumn and winter. If grid point
values are interpreted as area mean values instead of point
estimates, the magnitude of errors is considerably smaller,
e.g. some 25% smaller for an area mean estimate over a
16 × 16 km square.

Fig. 9 Interpolation error (root mean squared error fraction (RMSF)) as
inferred from the comparison of SPARTACUS grid dataset with
observations at the experimental measurement network WegenerNet.
RMSF is calculated for precipitation events with ≥3 mm and is
displayed at different space scales (side length of a square in
kilometers) and time scales (aggregate in days)
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Regarding longer term (interdecadal) variations, tests let us
conclude that the present grid dataset does reproduce the typ-
ical magnitude and the larger scale spatial pattern of variations
of notable amplitude. Care should, however, be exercised in
interpreting small-scale features in maps of trends and other
diagnostics of interdecadal variation. They may be compro-
mised by residual inhomogeneities and limitations in repre-
sentativity of the station network.

At present, the SPARTACUS precipitation dataset encom-
passes about 21,000 daily grids (since 1961). It is continuous-
ly updated in near real - time. At present, however, some of the
input data (the component from the hydrographic services) is
only available with a delay of several months, which implies
that near real-time analyses will be preliminary and a final
production can only be distributed after 5 months. In tandem
with a similar grid dataset of temperature (Hiebl and Frei
2016), the SPARTACUS datasets constitute state-of-the-art
and official daily spatial climate analyses for Austria.
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