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Abstract Investigation of the impact of climate change on
water resources is very necessary in dry and arid regions. In
the first part of this paper, the climate model Long Ashton
Research Station Weather Generator (LARS-WG) was used
for downscaling climate data including rainfall, solar radia-
tion, andminimum andmaximum temperatures. Two different
case studies including Aji-Chay and Mahabad-Chay River
basins as sub-basins of Lake Urmia in the northwest part
of Iran were considered. The results indicated that the
LARS-WG successfully downscaled the climatic vari-
ables. By application of different emission scenarios
(i.e., A1B, A2, and B1), an increasing trend in rainfall
and a decreasing trend in temperature were predicted for
both the basins over future time periods. In the second
part of this paper, gene expression programming (GEP)
was applied for simulating runoff of the basins in the
future time periods including 2020, 2055, and 2090. The
input combination including rainfall, solar radiation, and
minimum and maximum temperatures in current and prior
time was selected as the best input combination with
highest predictive power for runoff prediction. The results
showed that the peak discharge will decrease by 50 and
55.9% in 2090 comparing with the baseline period for the
Aji-Chay and Mahabad-Chay basins, respectively. The results

indicated that the sustainable adaptation strategies are
necessary for these basins for protection of water resources
in future.
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1 Introduction

Changing climate in different regions is due to increasing
concentration of greenhouse gases and changing general
circulation (Kaleris et al. 2001). Water resources have been
facing severe challenges during the last decades all over the
world. This condition is intensified by decreasing trend of
precipitation and increasing trend of temperatures. It is
expected that most of the regions in the world will expe-
rience a negative impact of climate change on water re-
sources and freshwater ecosystems (Intergovernmental
Panel on Climate Change, IPCC 2007). However, the
characteristics of the impact may vary from one region
to another. The prediction was done by the most general
circulation models (GCMs) that indicated an increase in
the number and occurrence of huge climatic variation
(i.e., precipitation) in different regions over the world.
Such climatic variations can affect the situation of water
resources in the near future.

Various hydrological models have been applied for quanti-
fying the impact of hydrologic climate change by using GCMs
information. However, the spatial resolution between the out-
put of GCMs and the required data for hydrological models is
not sufficient, and it has always been a challenge. For
addressing this type of problem, regional climate models
(RCMs) and statistical downscaling methods (SDSMs)
have been developed. The main problem of RCMs is that
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they are computationally expensive. So, they are applicable in
some special regions. Furthermore, application of RCMs in a
small watershed is problematic, and some scenarios defined at
watershed scales are necessary.

The SDSM was developed to overcome the aforementioned
problems. SDSM plays the role of an intermediate between
GCMs or RCMs with other variables (represent the small scale
such watersheds). SDSM is computationally cheap and simple
runoff model (Srikanthan and McMahon 2001). Long Ashton
Research Station Weather Generator (LARS-WG) is classified
in the category of SDSM. Some successful applications of
LARS-WG were reported by Semenov et al. (1998), Khan
et al. (2006), Zarghami et al. (2011), Hassan et al. (2014), and
Parajuli et al. (2016).

In recent years, many researchers focused on the impact of
climate change on the runoff by using RCMs and SDSM in
different scales. Chiew et al. (1995) investigated the impact of
climate change on runoff and soil moisture of Australian basins.
Matondo et al. (2004) evaluated the impact of climate change
on hydrology and water resources in Swaziland. They used 11
GCMs for assessing the climate changes, and three of them
were found to simulate the observed precipitation very well in
the region. Jiang et al. (2007) compared the hydrological impact
of climate change simulated by different hydrological models in

the Dongjiang basin, China. Zheng et al. (2007) utilized an
RCM for modeling water resources changes. Fujihara et al.
(2008) applied dynamically downscaled data for hydrologic
modeling and assessing the impact of climate change on
water resources of a basin in Turkey. Fatichi et al. (2011) used
a weather generator for modeling of future climate scenarios.
Chang et al. (2014) investigated the impact of climate change
and human activities on runoff in Weihe River Basin in China.
Nkomozepi and Chung (2014) studied the impacts and
uncertainty associated with climate change on water resources
in the Geumho River Basin, Republic of Korea. The results
indicated that climate change will lead to lower water
resources levels in future compared to current situation. Lu
et al. (2016) applied an integrated statistical and data driven
framework for flood risk analysis under climate change. The
results revealed that the maximum monthly and annual
streamflows would both increase at the middle and end of this
century. In another study, Vallam and Qin (2016) presented a
combined LARS-WG andmulti-site rainfall simulator RainSim
approach to investigate flow regimes under future conditions in
the Kootenay Watershed, Canada.

In the recent years, artificial intelligent (AI) paradigms
including artificial neural networks (ANNs), adaptive neuro-
fuzzy inference system (ANFIS), support vector machine

Fig. 1 Location of the study area in Iran. a Overall position. b In respect to Lake Urmia
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(SVM), and gene expression programming (GEP) methods
have been used in water science and hydrology (Savic et al.
1999; Firat and Gungor 2007; Wang et al. 2009; Nourani et al.
2014; Mehdizadeh et al. 2017). GEP, as a branch of genetic

programming (GP), involves computer programs of different
sizes and shapes encoded in linear chromosomes of fixed
lengths. In the structure of GEP, the chromosomes are simple
entities and the expression trees are exclusively the expression
of their respective chromosomes (Ferreira 2006). Among AI,
the GEP has the capability in presentation of relationship be-
tween dependent variable (target) and independent variables
(inputs). This advantage is very important in modeling of var-
ious phenomena. Describing literature review related to GEP
is beyond the scope of this study and only some studies are
presented here.

Aytek and Alp (2008) utilized GEP for modeling rainfall-
runoff process. Guven and Aytek (2009) introduced GEP for
determining the stage-discharge relationship. Hashmi et al.
(2011) applied GEP for downscaling of watershed precipita-
tion. The results showed that GEP could be used in the process
of precipitation downscaling. Kisi et al. (2013) compared the
efficiency of ANNs, ANFIS, and GEP in rainfall-runoff
modeling. Hashmi and Shamseldin (2014) used GEP in order
to regionalize the flow duration curve. Zorn and Shamseldin
(2015) estimated the peak of flood for Auckland region using
GEP model. Zounemat-Kermani et al. (2017) applied GEP
and decision tree methods for estimation of air demand in
bottom outlet conduits of dams.

In this paper, the authors try to investigate the impact of
climate change on runoff in two selected case studies from the
northwest part of Iran. In the first part of the study, LARS-WG
model was applied in order to downscale the climatic vari-
ables including temperature, rainfall, and solar radiation. In
the second part of the study, the GEP model was used for
prediction of runoff based on different input combinations
extracted from the climate model.

2 Material and methods

The framework of this study includes two major steps. In the
first step, the GCM data for two case studies under different
emission scenarios downscaled. In the second step, the
impacts of climate change on the runoff using GEP model
were assessed. In the following sections, the study area, data,
and methods are illustrated.

2.1 Case studies and used data

For investigation on the impact of climate change on runoff,
two case studies including Aji-Chay and Mahabad-Chay
River basins are selected, which are located in the northwest
part of Iran. Figure 1 represents the geographical location of
the Aji-Chay River and Mahabad-Chay River basins and the
gauge stations.

Aji-Chay River basin, as one of the main sub-basin of Lake
Urmia, is located between 37° 42′ and 38° 30′ north latitude

Fig. 2 The flowchart of GEP (see Aytek and Kisi 2008)

Table 1 Statistical parameters of the daily data sets for the two
case studies

Basin Data set Unit Xmean Xmin Xmax SX CV CSX

Aji-Chay T-Min C 7.5 −21.6 28.0 9.4 1.3 −0.1
T-Max C 18.4 −9.2 40.6 11.5 0.6 −0.2
R mm 0.7 0.0 37.0 2.4 3.5 5.7

SH hour 7.8 0.0 13.5 3.9 0.5 −0.7
Q m3/s 5.2 0.005 97.1 2.9 1.4 2.7

Mahabad-Chay T-Min C 7.0 −19.4 26.4 8.2 1.2 −0.3
T-Max C 19.3 −8.2 42.0 11.1 0.6 −0.2
R mm 1.1 0.0 68.0 4.0 3.6 6.2

SH hour 8.0 0.0 13.6 3.8 0.5 −0.7
Q m3/s 6.8 0.09 206.9 13.0 1.9 4.1

T-Min minimum temperature, T-Max maximum temperature, R daily
rainfall, SH sunshine hours, Q runoff
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and 45° 40′–47° 53′ east longitude and has a total area of
12,790 km2. The altitude varies from 1270 to 3400 m. The
variables of the daily rainfall, minimum temperatures, maxi-
mum temperatures, and sunshine hours were used as input of
LARS-WG model. The model automatically converts the
sunshine hours to solar radiation.

In Aji-Chay River basin, the climatic variable data obtained
from Tabriz synoptic station and the hydrometric data of the
Aji-Chay River at the Vanyar station for the period 1982–2010
were used.

Another case study, Mahabad-Chay River basin, the forth
large sub-basin of Lake Urmia, is located in the south of Lake

Urmia (between 36° 22′ and 37° 10′ N latitudes and between
44° 45′ and 45° 56′ E longitudes). The weather data related to
Mahabad synoptic station and runoff data for Koutar
hydrometric station was used in this case study. The his-
torical data include a period of 23 years (1988–2010). For
both case studies, the selected weather and runoff data
have good quality.

Figure 1 shows the overall location of basins in Iran and the
location of both stations respect to Lake Urmia. With
considering the recent drought over Lake Urmia, the
largest lake in the Middle East and the sixth largest salt-
water lake on Earth due to climate change, dam

Table 2 Different input
combinations for runoff
prediction by GEP

No. Input combinations

1 R(t)

2 R(t), Tmean(t)

3 R(t), Tmax(t), Tmin(t)

4 R(t), Tmax(t), Tmin(t), SR(t)

5 R(t), R(t − 1), Tmax(t), Tmax(t − 1), Tmin(t), Tmin(t − 1)

6 R(t), R(t − 1), Tmax(t), Tmax(t − 1), Tmin(t), Tmin(t − 1), SR(t), SR(t − 1)

Fig. 3 Monthly mean and standard deviation of observed and simulated weather data (Aji-Chay River basin). a Minimum temperature. b Maximum
temperature. c Rainfall. d Solar radiation
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construction over the upstream, agricultural consumption,
etc., the results of current research can be useful in this
matter. The statistical parameters of daily data sets (X) are
presented in Table 1. In this table, Xmean, Xmin, Xmax, SX,
CV, and CSX denote the mean, minimum, maximum, stan-
dard deviation, coefficient of variation, and skewness co-
efficient values of each variable, respectively. It is appar-
ent from the table that the daily rainfall and runoff data
have highly skewed distributions and high variations for
the both basins.

2.2 Description of LARS-WG

The weather generator models simulate the climatic variables in
two steps. In the first step, rainfall event and its intensity were
simulated and then, other remaining variables such asminimum
and maximum temperature, solar radiation, humidity, and wind
speed were simulated (Johnson et al. 1996). LARS-WG as a
downscaling model was introduced by Racsko et al. (1991).
Daily time series of maximum and minimum temperatures,
solar radiation, and precipitation can be generated by LARS-
WG. Semenov et al. (2010) stated that the LARS-WG can be
applied for observed daily climatic data for a special site in
order to compute the parameters of fitted distribution to cli-
matic data.

In the LARS-WG, rainfall modeling and probability of
rainfall occurrence are done using semi-empirical method
and Markov chain. Furthermore, the modeling of solar radia-
tion and temperate is done based on semi-empirical method
and Fourier series, respectively (Semenov et al. 2002;
Zarghami et al. 2011).

In order to generate data using LARS-WG, firstly, the char-
acteristics of each station (i.e., the name, geographical infor-
mation, altitude, and the daily climatic data) should be defined
as an inputs of model. Then, the model analyzed the data, and
the outputs can be summarized in a text file, which including
the statistical characteristics of historical data in the form of
mean monthly and seasonal data. The model with the respect
to the trend of observed data can be regenerated for a given
period, and finally, by comparing the simulated and observed
data, the performance of the model can be evaluated. After
evaluation of model efficiency, for each station, the data
set of future horizons based on climate change scenarios
with respect to the output of GCMs can be generated
(Semenov et al. 2002).

In this study, the latest version (5.5) of LARS-WG (http://
www.rothamsted.ac.uk/mas-models/larswg/download) was
applied for downscaling weather data. In this version,
different information related to GCMs is provided. In the
current study, the Hadley Centre coupled model (HADCM3)
is utilized through the downscaling process. One attractive
feature of the HADCM3 model is that, unlike the other
models, HADCM3 requires no flux adjustments. Such
adjustments could potentially impact aspects of climate
variability, and so are undesirable (Dong and Sutton
2005). LARS-WG applies different statistical tests for
comparing the data generated by the weather generator
with historical data during the baseline period. The tests
were implemented for the direct generation of synthetic ob-
served data to test how well the LARS-WG is performing in

Table 3 Bias andMAE values for weather data in Aji-Chay River basin

Variable Bias MAE

Rainfall −0.212 2.078

Minimum temperature −0.003 0.129

Maximum temperature 0.045 0.242

Solar radiation 0.118 0.182

Fig. 4 Relative change in rainfall and absolute change in temperature during 2011–2030 in respect to the baseline in Aji-Chay River basin using
different scenarios (B1,A1B and A2) a) rainfall b) temperature
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reproducing the characteristics of the observed data. The t
test was used for evaluating the monthly means of weath-
er data. For each month, F tests were utilized on the var-
iances of all the daily values for the month across all the
year and on the variances of monthly mean values for the
different years. The chi-squared test was utilized for com-
paring distribution of the wet and dry periods (Semenov
et al. 1998). The value of “significance level” was chosen
as 5%.

Bias and mean absolute error (MAE) were utilized for
comparing the simulated data by LARS-WG and observed
data (in the baseline period). Bias and MAE relationships
are as follows

Bias ¼ 1

N
∑ N

i¼1 Si−Oið Þ ð1Þ

MAE ¼ 1

N
∑ N

i¼1 Si−Oij j ð2Þ

where i is the number of month, and Si and Oi are the simu-
lated and observed values, respectively. More details about
LARS-WG can be found in Semenov and Barrow (1997)
and Semenov et al. (1998).

2.3 Impact simulation by gene expression programming

GEP was first introduced by Ferreira in 1999 (Ferreira 2001).
GEP, as an extension of GP, is a search paradigm that involves
computer programs such as mathematical expressions and de-
cision tress. GEP is a genetic algorithm (GA) that applies pop-
ulations of individuals and chooses them proportionally to fit-
ness and introduces genetic variation by application of some
genetic operators. In GEP, the individuals are encoded as linear
strings with fixed length (the genome or chromosomes) which

are then presented as nonlinear entities of different sizes and
shapes (i.e., pars tress) (Ferreira 2001; Kisi and Sanikhani
2015). Figure 2 schematically presents the fundamental steps
included in GEP.

In this study, a powerful soft computing model,
GeneXpro Tools 4.0 was used to predict runoff using
GEP. Runoff prediction by application of GEP includes
some major steps (i.e., select appropriate fitness func-
tion, select terminal and function sets, choose chromo-
somal structure, and select the rate of generic operators).
In the first step, fitness function was selected. The fit-
ness (mi) of an individual program (i) is described by
Eq. 3.

mi ¼ ∑ N
j¼1 S− A ijð Þ−Bj

�� ��� � ð3Þ

where S is the selection range,A(ij) is the value predicted by the
individual program (i) for fitness case (j) (from between fit-
ness cases), and Bj is the target value for fitness case (j). In this
study, root relative squared error (RRSE) and relative ab-
solute error (RAE) were chosen as suitable fitness func-
tions for Aji-Chay and Mahabad-Chay River basins, re-
spectively. In the second step, terminal set (T) and func-
tion set (F) are selected. In this paper, the terminal set is
including climatic variables (i.e., rainfall, maximum tem-
perature, minimum temperature, solar radiation) in current
and prior time steps. The selection of functions set is
depending on the nature and complexity of the problem.
In this study, different combinations of functions were
used including basic arithmetic operators (+, − , × , ÷)
and some mathematical functions were as follows:
lnx; ex; x2; x3;

ffiffiffi
x

p ffiffiffiffiffi
; x3

p
; sinx; cosx; arctan xð Þ� �

:

Selecting the chromosomal architecture is the third step. In
the next step, the type of linking function (i.e., addition,

Table 4 Validation results of
different GEP basic and linking
functions for the parse tree
(Aji-Chay River basin)

Definition RMSE (m3/s)

F1 {+, − , × , ÷} 1.44

F2 {+, − , × , ÷ , ln , ex} 1.30

F3 fþ;−;�;�; ffi;p ffi
3
p
; x2; x3g 1.36

F4 fþ;−;�;�ln; ex; ffi;p ffi
3
p
; x2; x3g 1.23

F5 fþ;−;�;�ln; ex; ffi;p ffi
3
p
; x2; x3; sinx; cosx; arctgxg 1.16

Linking functions

Addition 1.16

Multiplication 1.22

Subtraction 1.26

Division 1.31
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subtraction, multiplication, and division) is selected. The final
step is choosing the generic operators and their values
(Ferreira 2006). The values allocated to each parameter are summarized as

follows: number of chromosomes, 30; head size, 8; number of
genes, 3; mutation rate, 0.044; inversion rate, 0.1; one point
recombination rate, 0.3; two point recombination rate, 0.3;
gene recombination rate, 0.1; gene transposition rate, 0.1; IS
transposition rate, 0.1; and RIS transposition, 0.1 (Kisi et al.
2015; Kisi and Sanikhani 2015). It is notable that these values
are the default values provided by GeneXpro Tools.

2.4 Input combinations and performance criteria

In this study, different input patterns were considered for the
investigation of the impact of climate change on runoff using
GEP model. Various input combinations including rainfall
(R), minimum temperature (Tmin), maximum temperature
(Tmax), mean temperature (Tmean), and solar radiation (SR) in
current (t) and prior time (t − 1) were applied in GEP model.
The input combinations are presented in Table 2.

For runoff prediction in different future horizons (i.e., 2020,
2050, and 2090) over the basins, historical data were used for
training (calibration) of the models. Among the available data,
70% of data was used for training and the remaining 30% of
data was used for validation of the models. Finally, the
runoff prediction in future periods was made by applica-
tion of the best input combinations during training and
validation periods.

The performance of models was assessed with respect to
determination coefficient (R2) and root mean squared error
(RMSE) statistics. RMSE can be defined as follows

Table 5 The performance criteria of GEP models using different input
combinations in runoff simulation (Aji-Chay River basin)

Pattern no. Training Validation

R2 RMSE (m3/s) R2 RMSE (m3/s)

1 0.54 2.34 0.45 2.43

2 0.64 2.01 0.60 2.23

3 0.76 1.76 0.71 1.89

4 0.84 1.62 0.81 1.74

5 0.88 1.30 0.84 1.34

6 0.91 1.11 0.89 1.16

Fig. 5 Expression tree obtained by GEP model (Aji-Chay River basin)

Fig. 6 The comparison of observed and simulated runoff hydrographs in
different future horizons in Aji-Chay River basin

Table 6 The percent of relative decrease of runoff in different future
horizons comparing to baseline period (Aji-Chay River basin)

Variable 2011–2030 2046–2065 2080–2099

Mean discharge 19.8 41.5 58.7

Peak discharge 15.4 34.0 50.0
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 Qo−Qeð Þ2
r

ð4Þ

where N is the number of data sets, and Qo and Qe are the
observed and predicted runoff values, respectively.

3 Application and results

3.1 Aji-Chay River basin

The monthly mean and standard deviation of observed and
simulated weather data of Aji-Chay River basin for the period
of 1982–2010 are compared in Fig. 3. The MAE and bias
values for each data are also provided in Table 3. It is clear
from the figure and table that the weather data are well simu-
lated by LARS-WG, especially the minimum temperature,
maximum temperature, and solar radiation. For rainfall, there
are some deviations and significant differences in some

months (e.g., May, July, October, and December). It is also
clear from the Table 3 that the rainfall has the highest MAE
(2.078) and bias (−0.212) values. This may be due to the fact
that the strength of the correlation between successive values
varies considerably for the rainfall data, while the auto-
correlation of the temperature (or solar radiation) data is very
strong. Also, highly skewed distribution of rainfall data may
be another reason of this. From Fig. 3c, it is clear that the
maximum difference between the observed and simulated
rainfall is 7.5 mm in May.

Fig. 7 Monthly mean and standard deviation of observed and simulated weather data (Mahabad-Chay River basin). a Minimum
temperature. b Maximum temperature. c Rainfall. d Solar radiation

Table 7 Bias and MAE values for weather data in Mahabad-Chay
River basin

Variable Bias MAE

Rainfall 2.425 4.473

Minimum temperature −0.027 0.172

Maximum temperature −0.113 0.249

Solar radiation −0.062 0.238
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The weather data were predicted by using three different
scenarios of LARS-WG climate model such as B1,
A1B, and A2 for the period of 2011–2030. The relative
change in rainfall and absolute change in temperature
(comparing to historical period) are shown in Fig. 4
for the Aji-Chay River basin. Solar radiation is not pro-
vided in this figure, because the variation of solar radi-
ation is approximately linear and there is not have any
increasing or decreasing trend. The relative change in
solar radiation by application of different scenarios (i.e.,
A1B, A2 and B1) is about 0.97–1.01. From Fig. 4a, it is clear
that the rainfall generally shows decreasing trend especially in
the summer months in which more water is required by the
region. This lacking in rainfall will cause water stress and
reduce the per capita water access. Temperature is another
important parameter which significantly affects droughts.
From Fig. 4b, it is clear that the temperature shows signifi-
cantly increasing trend (0.8 °C) in summer months. Generally,
according to Fig. 4, the Aji-Chay River basin will have less
rain and hotter summers in the period of 2011–2030.
However, there is an increasing trend in rainfall and decreas-
ing trend in temperature for the month of September, October,
and December.

Different GEP functions were tried in the study. The results
of validation of used GEP functions are provided in Table 4. It
is apparent from the table that the optimal GEP model was
obtained by functions set of F5, which is default set in
GeneXpro program and addition linking function. RRSE is
found as the best fitness function in all GEP applications. Kisi
et al. (2013) used GEP models in modeling rainfall-runoff pro-
cess and they also found the RRSE as the best fitness function.
The accuracy of the GEP models for each input combination
(Table 2) is given in Table 5 for the both training and validation

periods. According to Table 5, it is clear that the GEP model
comprising inputs of R(t), R(t − 1), Tmax(t), Tmax(t − 1), Tmin(t),
Tmin(t − 1), SR(t), and SR(t − 1) shows the best accuracy. Using
only rainfall or together with temperature data gives poor accu-
racy in runoff prediction with respect to R2 and RMSE. It is
apparent from Table 5 that adding previous values of rainfall,
temperature, and solar radiation data as inputs to the GEP mod-
el considerably improves the prediction accuracy. The relative
RMSE and R2 differences between the best (6th inputs) and the
worst (1st input) input combinations are 52 and 98% in the
validation period, respectively.

The equation of the optimal GEP model including sixth
input combination for the Aji-Chay River basin is

Q tð Þ ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R t−1ð Þp

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR t−1ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tmax t−1ð Þ−Tmin tð Þp ð5Þ

A ¼ Bþ
ffiffiffiffiffiffiffiffiffi
R tð Þp

Atan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax tð Þp

Tmin t−1ð Þ−SR t−1ð Þ þ SR tð Þ ð5aÞ

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R t−1ð Þ þ R t−1ð Þ

Ln Tmax t−1ð Þð Þ

s
ð5bÞ

The expression tree of the optimal GEP model for Aji-Chay
River basin is shown in Fig. 5. Figure 6 compares the observed
and simulated runoff hydrographs in different future horizons
for the Aji-Chay River basin. The hydrographs were predicted
with respect to scenario A2 which assumes that the current
socioeconomic situation will continue. Scenario A2 is better
and more conservative than the A1B and B1. It is notable that
the scenario B1 describes a convergent world with global pop-
ulation that peaks will occur in midcentury and decline

Fig. 8 Relative change in rainfall and absolute change in temperature during 2010–2030 in respect to the baseline in Mahabad-Chay River basin using
different scenarios (B1, A1B and A2) a) rainfall b) temperature
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thereafter. Also, A1B, as a sub-set of scenario A1, emphasizes
on a balance on all energy sources (Intergovernmental Panel on
Climate Change, IPCC 2007). It is clear from the Fig. 6 that the
runoff mean and hydrograph peak significantly decrease
by increasing time horizons. Table 6 gives the percent
decrement in mean runoff and hydrograph peak for the
future horizons of 2011–2030, 2046–2065, and 2080–
2099. It can be seen that the decrements in mean and peak
discharges will be as high as 58.7 and 50% at the end of
this century. This result is parallel with the increasing
trend in temperature and decreasing trend in rainfall
shown in Fig. 4. These results imply that new and sus-
tainable adaptation strategies are needed to rescue the wa-
ter supply in this region in the future.

3.2 Mahabad-Chay River basin

Figure 7 illustrates the monthly mean and standard devi-
ation of observed and simulated weather data of
Mahabad-Chay River basin for the period of 1988–2010.
The MAE and bias values of each data are given in
Table 7. Similar to the Aji-Chay River basin, here also,
the weather data are well simulated by LARS-WG, espe-
cially the minimum temperature, maximum temperature,
and solar radiation. Here also, some deviations and signif-
icant differences are clearly seen for rainfall in some months
(e.g., January, February,March, andNovember). It is clear from
Fig. 7 that the maximum difference between the observed and
simulated rainfall is 8.3 mm in January. As seen from Table 7,
the rainfall has the highest MAE (4.473) and bias (2.425)
values.

The predictions of the rainfall and temperature data
by three different scenarios of LARS-WG climate model
such as B1, A1B, and A2 for the period of 2011–2030
are shown in Fig. 8. The figure indicates the relative

change in rainfall and absolute change in temperature
(comparing to historical period) for the Mahabad-Chay
River basin. Solar radiation is not provided in this fig-
ure because the relative change in solar radiation by
application of different scenarios (i.e., A1B, A2, and
B1) is about 0.98–1.01. As can be seen from Fig. 8a,
rainfall generally shows decreasing trend especially in
the summer months alike to previous basin (Aji-Chay).
From Fig. 8b, it is clear that the temperature shows
significantly increasing trend in summer months. It is
clearly seen from the Fig. 8 that the Mahabad-Chay
River basin will have less rain and hotter summers in
the period of 2011–2030 but not as much as Aji-Chay
River basin. The validation results of different GEP
functions are given in Table 8. From the table, it is
clear that the optimal GEP model was obtained by func-
tion set of F3 and addition linking function. In
Mahabad-Chay River basin, relative absolute error
(RAE) is found as the best fitness function in all GEP
applications. Table 9 gives the accuracy of the optimal
GEP models for each input combination in the training
and validation period. It is clear from the table that the

Table 9 The performance criteria of GEP model using different input
combination in runoff simulation (Mahabad-Chay River basin)

Pattern no. Train Validation

R2 RMSE (m3/s) R2 RMSE (m3/s)

1 0.50 2.79 0.53 2.84

2 0.62 2.54 0.59 2.65

3 0.73 2.07 0.72 2.12

4 0.86 1.86 0.83 1.95

5 0.88 1.69 0.85 1.74

6 0.92 1.50 0.90 1.52

Table 8 Validation results of
different GEP basic and linking
functions for the parse tree
(Mahabad-Chay River basin)

Definition RMSE (m3/s)

F1 {+, − , × , ÷} 1.83

F2 {+, − , × , ÷ , ln , ex} 1.73

F3 fþ;−;�;�; ffi;p ffi
3
p
; x2; x3g 1.52

F4 fþ;−;�;�; ln; ex; ffip
;

ffi
3
p
; x2; x3g 1.63

F5 fþ;−;�;�; ln; ex; ffiffi;p ffi
3
p
; x2; x3; sinx; cosx; arctgxg 1.59

Linking functions

Addition 1.52

Multiplication 1.57

Subtraction 1.62

Division 1.71
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GEP model comprising sixth input combination shows the
best accuracy similar to the Aji-Chay River basin. Here
also, using only rainfall and temperature data provides
poor estimates for runoff prediction and adding previous
values of rainfall, temperature, and solar radiation data as
inputs to the GEP model considerably improves the pre-
diction accuracy. The relative RMSE and R2 differences
between the best (6th inputs) and the worst (1st input)
input combinations are 46 and 70% in the validation pe-
riod, respectively.

The equation of the optimal GEP model in predicting
runoff of Mahabad-Chay River basin is

Q tð Þ ¼ Tmax tð Þ−Tmax t−1ð Þð Þ þ Tmax t−1ð Þ
SR tð Þ

þ SR tð Þ R tð Þ−SR t−1ð Þ½ �
26:5þ Tmin t−1ð Þ ð6Þ

The expression tree of the optimal GEP model for
Mahabad-Chay River basin is shown in Fig. 9. The observed
and simulated runoff hydrographs in different future horizons
are compared in Fig. 10. Alike to the Aji-Chay River basin,
here also, the mean runoff and hydrograph peak significantly
decrease by increasing time horizons. The percent decrement
in mean runoff and hydrograph peak is given in Table 10 for
the future horizons of 2011–2030, 2046–2065, and 2080–
2099. It is apparent from the table that the decrements in mean
and peak discharges will be as high as 60.5 and 55.9% at the
end of this century. This result confirms the increasing trend in
temperature and decreasing trend in rainfall as shown in
Fig. 8.

4 Conclusion

In the current paper, the impact of climate change on
runoff was investigated for two basins in northwest part
of Iran. LARS-WG was utilized for downscaling the cli-
matic variables including rainfall, solar radiation, and
maximum and minimum temperatures. The results
showed that LARS-WG could be successfully applied
for downscaling of climatic variables. For both basins,
the generated climatic variables in future horizon (2020)
were compared with baseline period. The results indicated
a decreasing rainfall trend, especially in the summer
months in which more water was needed in the region.
Furthermore, an increasing trend was found for tempera-
ture over the basins. In another part of the study, the GEP
model was applied for prediction of runoff in the future
horizons (2020, 2055, and 2090) by using A2 scenario.
The GEP model whose inputs comprise the rainfall, solar
radiation, and minimum and maximum temperatures in
current and prior time was found to be the best one for
runoff prediction. For Aji-Chay River basin, the mean and
peak discharge were decreased by 58.7 and 50% in the
2090 horizon, respectively. For the Mahabad-Chay River
basin, the decrements in mean and peak discharge will be

Fig. 10 The comparison of observed and simulated runoff hydrographs
in different future horizons in Mahabad-Chay River basin

Fig. 9 Expression tree obtained by GEP model (Mahabad-Chay
River basin)

Table 10 The percent of relative decrease of runoff in different future
horizon comparing to baseline period (Mahabad-Chay River basin)

Variable 2011–2030 2046–2065 2080–2099

Mean discharge 19.6 42.5 60.5

Peak discharge 13.8 36.7 55.9
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as high as 60.5 and 55.9% at the end of this century,
respectively. With respect to dramatic decrease of runoff
in the future, it is necessary to find a solution to prevent
or minimize the negative impact of climate change on
runoff and the role of managers and decision makers in
this matter is very essential in the region.
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