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Abstract The spatial and temporal characteristics of drought are
investigated for Luanhe River basin, using monthly precipitation
data from 26 stations covering the common period of 1958–
2011. The spatial pattern of drought was assessed by applying
principal component analysis (PCA) to the Standardized
Precipitation Index (SPI) computed on 3- and 12-month time
scales. In addition, annual SPI and seasonal SPIs (including
spring SPI, summer SPI, autumn SPI, and winter SPI) were also
defined and considered in this study to characterize seasonal and
annual drought conditions, respectively. For all seven SPI cases,
three distinctive sub-regions with different temporal evolutions
of droughts are well identified, respectively, representing the
southeast, middle, and northwest of the Luanhe River basin.
The Mann-Kendall (MK) trend test with a trend-free
pre-whitening (TFPW) procedure and Sen’s method were
used to determine the temporal trends in the annual and
seasonal SPI time series. The continuous wavelet trans-
form (CWT) was employed for further detecting the peri-
odical features of drought condition in each sub-region.
Results of MK and Sen’s tests show a general tendency of
intensification in summer drought over the entire basin,
while a significant mitigating trend in spring drought. On
the whole, an aggravating trend of inter-annual drought is
discovered across the basin. Based on the CWT, the
drought variability in the basin is generally dominated
by 16- to 64-month cycles, and the 2- to 6-year cycles
appear to be obvious when concerned with annual and
seasonal droughts. Furthermore, a cross wavelet analysis

was performed to examine the possible links between the
drought conditions and large-scale climate patterns. The
teleconnections of ENSO, NAO, PDO, and AMO show
significant influences on the regional droughts principally
concentrated in the 16- to 64-month period, maybe re-
sponsible for the physical causes of the cyclical behavior
of drought occurrences. PDO and AMO also highlight a
noteworthy correlation with drought variability on a de-
cadal scale (around 128-month period). The findings of
this study will provide valuable references for regional
drought mitigation and water resource management.
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1 Introduction

Drought is not only a natural phenomenon but also a devas-
tating disaster worldwide (Lorenzo-Lacruz et al. 2010;
Ujeneza and Abiodun 2015). Drought commonly starts with
a shortage of precipitation over an extended period of time,
and its occurrence and evolution are controlled by many fac-
tors which are dependent on the atmosphere and the hydro-
logic processes (Mishra and Singh 2010; Li et al. 2013a). The
distribution and characteristics of droughts are highly irregular
in both spatial and temporal dimensions (Wu et al. 2008;
Potop and Soukup 2009). Therefore drought conditions with
complex physical causes are more difficult to identify and assess
than other natural hazards (Paulo et al. 2012; Hosseinzadeh
Talaee et al. 2014).

Avariety of indices have been developed with the objective
of detecting andmonitoring droughts (Heim 2002;Mishra and
Singh 2010; Vicente-Serrano et al. 2012). The Standardized
Precipitation Index (SPI) developed by Mckee et al. (1993)
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has become the most widely used drought index due to its
computational simplicity and versatility (Bonaccorso et al.
2003; Livada and Assimakopoulos 2007; Edossa et al.
2010). The SPI, simply the standard normal value, is trans-
formed from precipitation time series in a probabilistic man-
ner. It can be calculated at varying time scales and permits to
compare drought severity across time and space. The multi-
scale strength allows SPI to monitor meteorological and agri-
cultural drought at shorter time scale (1–3 months), as well as
hydrological and water resource droughts at longer time scales
(e.g., 6 and 12 months) (McKee et al., 1995; Szalai et al.,
2000; Paulo and Pereira, 2006).

Nowadays, there seems to be a consensus about the
fact that global warming results in increases in the fre-
quency, duration, and severity of droughts at regional
scales and the strong evidence for the exacerbating effects
of intensified human activities (e.g. Wen et al. 2011;
Russo et al. 2013; Li et al. 2013a). In this content, the
spatial and temporal variability of droughts is anticipated
to be more significant, leading to a higher risk of drought
and more difficulties in water resource planning and man-
agement. Thus, it is necessary to realize how drought
conditions vary in time and space at a regional scale.
Accordingly, a large number of hydrologists worldwide
have evaluated the spatial and temporal patterns of
droughts using drought indices and statistical methods
(such as principal component analysis (PCA) and cluster
analysis (Santos et al. 2010; Martins et al. 2012; Capra
and Scicolone 2012; Wang et al. 2015a), continuous
wavelet transform (CWT) (Liu et al. 2013; Li et al.
2013b), Mann-Kendall (MK) trend test (Vargas et al.
2011; Vicente-Serrano et al. 2014), Sen’s slope estimator
(Gocic and Trajkovic 2013; Da Silva et al. 2015), and
Fourier analysis (Moreira et al., 2015).

In recent years, the correlations between regional
droughts and large-scale atmospheric circulation patterns
have received significant attention. Considerable re-
searches have revealed that the evolution of droughts in
time and space can be explained in terms of climate
anomalies such as the El Niño Southern Oscillation
(ENSO), the North Atlantic Oscillation (NAO), and the
Atlantic Multidecadal Oscillation (AMO) and the Pacific
Decadal Oscillation (PDO) (e.g., Özger et al. 2009; Yin
et al. 2009; Chen et al. 2013; Oglesby et al. 2012; Zhang
et al. 2013). Several studies have provided evidence of
noticeable associations between the large-scale climate
oscillations and drought variability in northern China.
For example, Ma (2007) pointed out that warm (cold)
PDO phases favor drought (wet) conditions in North
China by using correlation analysis. Su and Li (2012)
analyzed possible teleconnections between large-scale cli-
mate indices and drought occurrences during 1868–2010
in Beijng which is located in northern China and found

significant correlations between the drought occurrences
and four climate patterns (Arctic Oscillation (AO), ENSO,
NAO, and PDO). Wang et al. (2015b) investigated effects
of large-scale climate patterns on hydrological drought at
different time scales over Luanhe River basin, China, in-
dicating significant linkages of ENSO and AMO to the
drought conditions. The cross wavelet analysis, a bivariate
extension of wavelet analysis with several appealing qual-
ities, is proven to be a useful tool to study the relation-
ships between two time series in hydrology, contributing
to the identification of forcing mechanisms (Schaefli et al.
2007; Özger et al. 2009; Labat 2008; Labat 2010). Hence,
to better understand the drought teleconnections in re-
sponse to large-scale climatic patterns, the cross wavelet
analysis is expected to provide relevant information.

This study focuses on the Luanhe River basin located
in North China, which is of great importance for water
supply to Tianjin city. The Luanhe River basin is a
semi-arid and semi-humid area with a vulnerable eco-en-
vironment. During the last decade, it is observed that the
area has experienced more frequent and more intensive
droughts, resulting in diminished water resource availabil-
ity and reduced carrying capacity of the ecosystems (Li
and Feng 2007; Gao 2012; Wang et al. 2015b). In addi-
tion to climate changes, the growing water demands
caused by population increase and the rapid development
of economics and society are continuing to aggravate this
deteriorating condition (Ma et al. 2010; Wang et al. 2013).
The characterization of the spatial and temporal variability
of the droughts can be very useful for an adequate water
resource management at regional scale. Several studies
have been undertaken to depict the drought characteristics
in the Luanhe River basin (e.g., Ma et al. 2013; Yang
et al. 2013). However, a comprehensive assessment of
spatial and temporal patterns of droughts in the Luanhe
River basin is still lacking. Moreover, the detailed links
between large-scale climate anomalies and regional
droughts are seldom investigated, calling for more studies
to understand the atmospheric dynamics that modulate
drought occurrence and severity over the region.

On these grounds, the main goal of the present re-
search is to systematically determine the spatial and
temporal characteristics of drought condition over the
Luanhe River basin. Specifically, this study intends (1)
to identify sub-regions characterized by distinct drought
behaviors using the PCA with varimax rotation and the
SPI at various time scales; (2) to detect temporal trends
and periodical features of droughts in the identified sub-
regions by the MK trend test with a trend-free pre-whit-
ening (TFPW) procedure, the Sen’s slope estimator and
the CWT; and (3) to investigate the possible association
of the individual drought variability with large-scale cli-
mate indices applying the cross wavelet analysis.
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2 Study area and data

2.1 Study area

Luanhe River basin is located on the northern part in the Haihe
River basin, China (Fig. 1), largely defined by 115° 30′ E to
119° 15′ E longitude and 39° 10′ N to 42° 30′ N latitude. It is
about 33,700 km2 in drainage area, in which mountainous
regions account for nearly 98% with the rest 2% as plains.
The topography of the basin significantly descends from
northwest to southeast, along with the elevation ranging from
2205 to 2 m. This basin has a typical temperate continental
monsoon climate. Its average temperature and average poten-
tial evapotranspiration are around −0.3–11 °C and 950–
1150 mm/year, respectively. The amount of precipitation
within the basin is unevenly distributed in both time and
space. The mean annual precipitation varies from less than
400 mm, in the northwest, to more than 700 mm, in the south-
east. About 70–80% of the annual precipitation is received
during the period of June to September, which exhibits a high
seasonal variability.

The Luanhe River basin bears the heavy responsibility of
water supply for Tianjin city, the largest opening coastal city in
North China. However, the basin has witnessed serious
drought events with high intensity and prolonged duration in
recent years, such as multi-year droughts for 1980–1984 and
the consecutive drought during 1997–2005 (Li and Feng
2007; Ma et al. 2013; Yang et al. 2013). The frequent and
severe droughts have inflicted devastating impacts on socio-
economic development and eco-environment of the basin and
have further deteriorated water resources availability in the
Tianjin city. Thus, an improved understanding of the spatial
and temporal behavior of droughts is of paramount impor-
tance to formulating a regional water resources management
strategy.

2.2 Data

In this study, 54 years (January 1958 to December 2011) of
monthly precipitation data was collected from 26 rain-gauging
stations in the Luanhe River basin. The original dataset were
provided byHydrology andWater Resource Survey Bureau of
Hebei Province. There were a few missing precipitation data
in the dataset, and they were estimated by using linear regres-
sion equations which were fitted to the available monthly data
observed at the station and at a nearby reference station
(Bonaccorso et al. 2003; Vicente-Serrana 2006). As shown
in Fig. 1, the 26 stations represent a good spatial coverage
over the study area. Some information related to the selected
stations (including location, elevation, and annual average
precipitation) are provided in Table 1.

The Southern Oscillation Index (SOI) is a standardized
index based on the observed sea level pressure differences

between Tahiti and Darwin, Australia, used for measuring
the large-scale fluctuations in air pressure occurring between
the western and eastern tropical Pacific during El Niño and La
Niña episodes. The monthly data covering the period 1951–
2015 is downloaded from the website (http://www.cpc.ncep.
noaa.gov/data/indices/soi).

The North Atlantic Oscillation (NAO) is one of the most
prominent teleconnection patterns in all seasons (Barnston
and Livezey 1987). The NAO index is based on the surface
sea level pressure difference between the subtropical (Azores)
high and the subpolar low. Time series data for monthly mean
NAO index from 1950 to 2015 is downloaded from the
website (http://www.cpc.ncep.noaa.gov/products/precip/
CWlink/pna/nao.shtml).

The Pacific Decadal Oscillation (PDO) is a shift in the
temperature pattern of the North Pacific Ocean which occurs
on a 20- to 30-year cycle. The PDO Index is defined as the
leading principal component of North Pacific monthly sea
surface temperature variability, available monthly from 1900
to 2015 in the website (http://research.jisao.washington.edu/
pdo/PDO.latest).

The Atlantic Multidecadal Oscillation (AMO) is the long
time scale variability of sea surface temperatures in North
Atlantic with a 65–80-year cycle (Kerr 2000). The AMO in-
dex is defined as the detrended, regionally averaged, summer
sea surface temperature anomalies over the North Atlantic
Ocean (0–60° N, 7.5–75° W) (Enfield et al. 2001). The
monthly AMO index from 1856 to 2015 is downloaded from
the NOAA Earth System Research Laboratory (http://www.
esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO).

3 Method

3.1 Standardized precipitation index

The Standardized Precipitation Index (SPI) developed byMcKee
et al. (1993, 1995) has become the most popular drought index
because of its simple calculation, robustness, and versatility. As a
probability-based and standardized index, the SPI is spatially
invariant in its interpretation, allowing comparison across differ-
ent locations within the same region (Guttman 1997; Bordi et al.
2004; Vicente-Serrano et al. 2014).

Moreover, the SPI has the capability to monitor drought
conditions over various time scales, facilitating impact assess-
ments of both short- and long-term drought. Generally, the SPI
calculated at 1 month is considered as a meteorological
drought index (Hayes et al. 1999). The SPI on a shorter time
scale (3 or 6 months) is adequate for depicting drought events
affecting agricultural practices, while on longer time scales
(12 or 24 months), it can better replicate hydrological and
water resource droughts, important to water supply
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management interests (Vicente-Serrano and López-Moreno
2005; Paulo and Pereira 2006; Mishra and Singh 2010).

For a given location and an individual month, the SPI at w-
month time scale (represented as SPIw in this study) is calcu-
lated based on the running series of precipitation accumulated
over w months. According to McKee et al. (1993), a two-
parameter gamma distribution is used for fitting the empirical
probability distribution of the accumulated precipitation. The
fitted cumulative distribution is then transformed into a stan-
dardized normal distribution by employing the approximate

conversion provided by Abramowitz and Stegun (1965). The
standardized normal variables (with zero mean and unit vari-
ance) are the values of SPIw. Positive SPI values indicate wet
conditions, and negative values indicate dry conditions.

In this study, the SPI index is also defined annually for each
season and for the hydrological years of 1958–1959 to 2010–
2011. For the Luanhe River basin, spring is from March to
May, summer is from June to August, autumn is from
September to November, winter is from December to
February, and hydrological year is from June to May of the

Table 1 Detailed information
about the 26 rain-gauging stations Station Location Ele AP Station Location Ele AP

E N (m) (mm) E N (m) (mm)

Yudaokou 116° 58' 42° 02' 1400 420.33 Xinglong 117° 29' 40° 25' 620 525.46
Zhenglanqi 116° 01' 42° 11' 1360 355.1 Qijia 118° 06' 41° 27' 610 539.02
Waigoumenzi 116° 37' 41° 51' 1250 418.98 Pingquan 118° 42' 40° 59' 540 522.36
Baichengzi 116° 28' 42° 17' 1230 334.3 Bolounuo 117° 18' 41° 05' 540 513.07
Banjieta 117° 30' 41° 52' 1070 449.48 Xiahenan 117° 42' 41° 18' 520 513.22
Goutaizi 117° 05' 41° 33' 980 472.33 Hanjiaying 117° 50' 40° 56' 490 502.35
Qipanshan 117° 40' 42° 01' 950 465.57 Xiaoxishan 117° 56' 41° 11' 490 510.12
Miaogongshuiku 117°50' 41° 43' 940 514.92 Sandaohezi 117° 42' 40° 58' 460 517.88
Weichang 117° 46' 41° 54' 870 449.43 Sangou 118° 15' 41° 02' 430 524.14
Jiutun 117° 23' 41° 17' 850 521.06 Liying 117° 44' 40° 36' 420 637.29
Xuanjiangyingzi 116° 52' 41° 23' 830 502.68 Chengde 117° 56' 40° 58' 350 512.01
Baihugou 117° 26' 41° 34' 830 486.68 Xiabancheng 118° 10' 40° 47' 350 546.2
Zhangsanying 117° 45' 41° 34' 640 493.18 Kuancheng 118° 30' 40° 37' 300 636.81

Note: BEle^ means elevation, and BAP^ means annual average precipitation

Fig. 1 Location of the Luanhe
River basin and the 26 rain-
gauging stations
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subsequent year. Let P(t) represent the precipitation measured
at time t (Δt = 1 month in this study). The series P(t) is
subdivided into 12 smaller series Pm(y), one for each month,
in which m = 1 (Jan), 2 (Feb), ..., 12 (Dec) is the month index,
y is the year index, and the time index t = 12(y − 1) + m.
Considering the 54 years (January 1958 to December 2011)
of monthly precipitation data used in this study, the year index
y = 1958, 1959, …, 2011. Therefore, PJan(1958) represents
January precipitation in 1958, and PDec(2011) represents
December precipitation in 2011. The precipitation accumulat-
ed in spring is expressed as PSpr(y) = PMar(y) + PApr(y) +
PMay(y). The procedure of spring SPI (SPIspr) calculation in-
volves fitting a two-parameter gamma distribution to the time
series of cumulative precipitation in spring (PSpr(y)).
According to the approximate conversion (Abramowitz and
Stegun 1965), the cumulative probability of PSpr is then trans-
formed to the standard normal deviation, which is the value of
SPIspr. Thus, SPIspr(y) is the annual series of spring SPI, where
y = 1958, 1959, …, 2011. Analogously, the summer SPI
(SPIsum) and the autumn SPI (SPIaut) are defined as the SPI
calculated based on the 3-month cumulative precipitation se-
ries for summer and autumn (PSum(y) and PAut(y)) respective-
ly, where y = 1958, 1959, …, 2011. The cumulative precipita-
tion in winter is calculated by PWin(y) = PDec(y) + PJan(y + 1) +
PFeb(y + 1), and consequently, the winter SPI (SPIwin) series
covers the period of 1958–2010. The annual SPI (SPIann) is
calculated based on the time series of the 12-month precipitation
total from June to May in the next year (namely the precipitation
accumulated in the whole hydrological year, PAnn(y) = PJun(y) +
PJul(y) +… +PDec(y) +PJan(y + 1) +PFeb(y + 1) +… +PMay(y +
1)), where y = 1958, 1959, …, 2010. In doing so, the samples
used for calculating the seasonal and annual SPI are collected
annually and are subject to the same seasonal effect, consequent-
ly largely reducing the degree of auto-correlation among samples
and appropriately accounting for the seasonal variation (Kao and
Govindaraju 2010).

3.2 Principal component analysis

Principal component analysis (PCA) (Hotelling 1933), which
is defined as a multivariate technique for dimensionality re-
duction, has been widely applied to identifying patterns in
climatic data (e.g., Corte-Real et al. 1998; Raziei et al. 2013;
Gocic and Trajkovic 2014). The non-parametric PCA forms a
set of new uncorrelated variables (named principal compo-
nents or PCs scores) that are linear combinations of the orig-
inal ones (Sharma 1996; Rencher 1998), effectively extracting
useful information from huge or confusing datasets.

As to the standardized normalized variables (e.g., SPI da-
ta), the PCAmethod computes their covariance matrix and the
corresponding eigenvalues and eigenvectors. The principal
components are obtained from the projection of the original
data onto the orthonormal eigenfunctions and are arranged in a

decreasing order according to the values of the associated
eigenvalues. The eigenvectors, properly normalized, are the
loadings that represent the weight of the original variables in
the corresponding principal components, while their eigen-
values give information about the amount of variance ex-
plained by the components. Therefore, the first principal com-
ponent corresponding to the largest eigenvalue explains the
maximum possible variance of the original data, and the sec-
ond principal component with the second highest eigenvalue
explains as much as possible of remaining variance. An or-
thogonal rotation such as Varimax rotation is commonly ap-
plied to the calculated eigenvectors, so that the rotated princi-
pal components (RPCs) with a clearer division could provide
more stable spatial patterns (Richman 1986). The rotated pat-
terns preserve the orthogonality in time and simplify the spa-
tial structure, thus producing more spatially localized loadings
and increasing physical relevance and interpretation of the
results (Kahya et al. 2008; Santos et al. 2010).

In this study, the rotated PCA were applied separately on
the SPI at 3- and 12-month time scale, as well as the annual
SPI and seasonal SPIs, to capture spatial patterns of drought
over the Luanhe River basin. The quality of the PCAs was
tested using the Bartlett’s test of sphericity (Bartlett 1954) and
the Kaiser-Meyer-Olkin (KMO) statistic (Kaiser 1970). The
number of principal components retained for Varimax rotation
was based on the criterion of an eigenvalue larger than 1. The
rotated loadings were then mapped to identify sub-regions
with independent drought variability, and the series of the
associated RPC scores were used for representing temporal
variability of drought condition for each sub-region.

3.3 Mann-Kendall trend test

The Mann-Kendall (MK) trend test (Mann 1945; Kendall
1975) is one of the mostly widely used non-parametric tests
for trend detection in hydrologic time series. This test derived
from a rank correlation test for two sets of observations re-
quires only that the data be independent, and it is less sensitive
to outliers in the data (Hamed 2008). Statistics in this test are
distribution-free because they are depending only on the ranks
of the observation.

Hydrological time series often display statistically signifi-
cant serial correlation. The existence of serial correlation will
increase the probability that the MK test detects a significant
trend, and meanwhile, the presence of a trend will alter the
estimate of the magnitude of serial correlation. In order to
efficiently eliminate the influence of serial correlation on the
MK trend test, the trend-free pre-whitening (TFPW) proce-
dure proposed by Yue et al. (2002) was used in this study.
This procedure involves first removing an identified trend
from the sample data to obtain a detrended series, and then
removing the lag 1 autoregressive (AR(1)) process from the
detrended series to get an independent residual series. After
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employing the TFPW procedure, the MK test is applied to the
series which is the combination of the identified trend and the
modified residual series. For a comprehensive introduction of
the TFPW procedure, refer to Yue et al. (2002).

TheMK test statisticZ is generally used tomeasure the degree
to which a trend is consistently increasing or decreasing.
Compared with the standard normal variate (Z1-α/2) at the desired
significance level α, the significance of the trend is evident if
|Z| > |Z1-α/2|, and the trend is not statistically significant otherwise.
Details of the MK test, as well as the calculation of Z, can be
found, e.g., in Gan (1998) and Kisi and Ay (2014).

3.4 Sen’s slope estimator

Sen’s slope produce developed by Sen (1968) is a simple non-
parametric test for estimating the slope of trend in a sample.
The Sen’s method uses a linear model to determine the slope
and calculates Sen’s slope estimator (denoted by Qmed) to
reflect data trend reflection. The value of Qmed indicates the
steepness of the trend, and details of its calculation can be
found in Sen (1968) and Da Silva et al. (2015). In the Sen’s
Method, single data errors or missing values are allowed, and
the data need not conform to any particular distribution (Afzal
et al. 2011; Yeh et al. 2015).

Sen’s slope estimator has been widely used in hydro-
meteorological time series (e.g., Partal and Kahya 2006;
Tabari et al. 2011) and usually employed for identifying the
true slope of MK trend analysis (Gilbert 1987; Kousari et al.
2013; Atta-ur-Rahman 2016). The Sen’s produce applied fol-
lowing the MK test measures the magnitude of any significant
trend found in the MK test. In this study, the MK and Sen’s
methods were used to determine whether there was an up-
ward, downward, or no trend in SPI data with their statistical
significance.

3.5 Wavelet analysis

Wavelet analysis is becoming a common method for analyz-
ing the time series of hydro-meteorological variables in fre-
quency domain (e.g., Ghil et al. 2002; Labat et al. 2004;
Schaefli et al. 2007; Labat 2008). It exhibits various advan-
tages over the conventional Fourier method in preserving lo-
cal, non-periodic, and multi-scaled features, thus providing a
more powerful way for studying localized intermittent oscil-
lations. What’s more, the wavelet analysis is much preferred
to the Fourier analysis because it is naturally dedicated to non-
stationary signals.

The continuous wavelet transform (CWT) decomposes the
time series into a superposition of stretched and translated
versions of a mother wavelet with flexible resolution in both
frequency and time, expecting to allow the completion of time
scale representation of localized and transient phenomena oc-
curring at different time scales. Compared with other mother

wavelet functions, theMorlet wavelet provides a good balance
between time and frequency localizations and can well de-
scribe the shape of hydrological signals (Lafreniere and
Sharp 2003; Labat et al. 2005).

In the present study, the continuous Morlet wavelet trans-
form was used to establish a significant distinction between
random fluctuations and periodic regions in the RPC scores.
The characteristic periods of oscillation can be determined
based on the wavelet power spectrum. Due to finite-length
time series, the cone of influence (COI) was considered to
highlight the region of the wavelet spectrum in which edge
effects become important and the results should be ignored
(Torrence and Compo 1998). To examine the statistical signif-
icance for wavelet spectrum, a background power spectrum
was provided by a red noise model, and 95% confidence in-
tervals were taken into consideration following Torrence and
Campo (1998) calculations.

In addition, this study applied cross wavelet transform
(XWT) and wavelet coherence (WCO) to examine the rela-
tionship between the RPC scores and large-scale climate indi-
ces. The XWT that constructed from two CWTs denotes their
common power and relative phase in time-frequency space.
The cross wavelet power spectrum defined by Torrence and
Compo (1998) can be used for analysis of the covariance of
two time series, with the statistical significance estimated
against a red noise model. Following Torrence and Webster
(1999), the WCO is defined as a useful measure of the inten-
sity of the covariance. The cross wavelet power reveals areas
with high common power, while the wavelet coherence is
capable of finding significant coherence even though the com-
mon power is low. The statistical significance level of the
coherence was determined using Monte Carlo methods with
red noise (Jevrejeva et al. 2003). For a more complete intro-
duction of wavelet analysis, refer to Grinsted et al. (2004),
Maraun and Kurths (2004), and Labat (2005).

4 Results and discussion

4.1 Spatial pattern of droughts

The PCAwas applied to the SPI field to delineate the drought
spatial pattern of the Luanhe River basin. To reflect both short-
and long-term drought conditions, monthly SPI series with 3-
and 12-month time scales (SPI3 and SPI12, respectively) were
calculated using the precipitation observations from 1958 to
2011 for the 26 selected stations. Concernedwith seasonal and
annual droughts which are of great interest to water resource
managers, annual and seasonal SPIs (including SPIann, SPIspr,
SPIsum, SPIaut and SPIwin) were also calculated for all the
stations at an annual time step. As previously mentioned, the
length of each SPI series is equal to 53 × 12 = 636 for both the
SPI3 and SPI12, and equal to 53 when referred to every
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seasonal SPI or to the annual SPI (covering the period of
1958–2010). The KMO measures of sampling adequacy are
0.969, 0.908, 0.912, 0.890, 0.916, 0.876, and 0.875 with re-
gard to the SPI3, SPI12, SPIann, SPIspr, SPIsum, SPIaut, and
SPIwin sets, respectively, indicating that these data sets are
adequate for the PCA (KMO test statistic > 0.50). The
Bartlett’s tests of sphericity with the p value <0.0001
(α = 0.05) for all the sets also support the application of PCA.

The PCA results associated with all the considered SPI sets
revealed only the first three principal components (PC) with
eigenvalues larger than 1, and thus, the first three components
for each SPI set were retained for Varimax rotation. The ex-
plained variances of un-rotated and varimax-rotated compo-
nents for the seven SPI sets are summarized in Table 2. The
percentage of variances explained by the first three PC is
almost the same in all cases. In general terms, the cumulative
total explained variances of the three retained PCs are about
80%, and the first three rotated principal components (RPC,
hereafter F1, F2 and F3) account for approximately 39, 27,
and 15% of the total variance, respectively.

The rotated loadings of the first three components are pre-
sented to show the most dominant patterns of drought condi-
tion in the study area. Figure 2 illustrates the spatial distribu-
tion of the rotated loadings over the Luanhe River basin for the
seven SPI sets. A threshold value of 0.6–0.7 on the rotated
loading is reasonable for spatially delimiting the sub-regions
that experienced similar drought variability (blue areas in the
maps) (Raziei et al., 2013). The spatial patterns of the rotated
loadings with positive values for all the SPI sets are nearly
identical, delineating northwest, middle, and southeast as
three distinctive sub-regions within the Luanhe River basin,
which are represented as R1, R2, and R3, respectively. The
three sub-regions characterized by distinct drought variability
are highly correlated with the associated RPC scores.

In the case of SPI3 (Fig. 2(a)), the loading patterns corre-
sponding to the F1 highlight 13 stations which are located in
the southeastern part of the basin, showing high positive and
spatial homogeneous correlation (0.63 < r < 0.86) between F1
score and drought variability in these stations. This sub-region
(R1) with extensive urbanization and agriculture activity has
lower elevation (around 450 m) and higher average annual
precipitation (500–630 mm). Apparently, the F2 shows its
high loadings with positive value larger than 0.62 at nine
stations over the middle part which is mainly characterized
by grassland and urban area. The mean elevation over this
sub-region (R2) is about 800 m and the average annual pre-
cipitation is 450–540 mm. The F3 has relatively high positive
loadings (>0.75) in the northwest including four stations. This
sub-region (R3) is mostly forested with higher elevation
(around 1300 m) and lower average annual precipitation
(330–420 mm).

The spatial loading patterns of the RPC observed in the
other SPI sets (SPI12, SPIann, SPIspr, SPIsum, SPIaut, and

SPIwin) coincide relatively well with those in SPI3, showing
that the three sub-regional drought patterns generally remain
stable in their spatial homogeneity with different time scales.
Thus, it is possible to conclude that the spatial structure of
drought condition related with precipitation deficit seems to
be well identified as three dominant sub-regions over the
Luanhe River basin: the southeastern part (R1), the middle
part (R2), and the northwestern part (R3). The temporal char-
acteristic of SPI-based drought appears to be different on a
sub-regional scale and depends on different precipitation re-
gimes. Moreover, the similar spatial pattern obtained by SPI
with various time scales makes valid to continue the further
analysis based on one of those scales.

Generally, the four seasonal RPC sets have consistent spa-
tial distributions with each other, but somemarked differences
derived from these seasonal patterns are worth noting. For
example, the R2 sub-region identified by winter F2 is of rel-
ative small size than those identified by other seasonal RPCs,
while the high loadings related to summer F2 determine the
R2 sub-region covering a larger area. Moreover, the F3 of
spring SPI accounts for 9% of the total spring drought vari-
ance, which is considerably below the average percentage
(15%) of variances explained by the F3. Meanwhile, the rela-
tively high loadings of the spring F3 is around 0.5, indicating
that the R3 sub-region inferred by the spring F3 seems to be
in-apparent. These inconsistencies among the spatial patterns
of seasonal droughts suggest that different seasons may be
controlled by different atmospheric circulations.

4.2 Temporal variability of droughts

4.2.1 Time series evolution

Due to the strong positive correlation between RPC scores and
SPI series over the corresponding sub-region, the time series
of RPC score can be serve as representative of the temporal
variability of the sub-regional drought condition. Generally,
the SPI with a longer time scale can filter out high frequency
fluctuations and reserve the long-term behaviors, thus the time
series of the first three RPC (F1, F2, and F3) scores for SPI12
were selected to represent the drought evolution in the three
identified sub-regions, illustrated in Fig. 3. Differences obvi-
ously emerge in the processes of the orthogonal RPC scores,
showing the different temporal variability of drought over
these sub-regions. The positive and negative values in all the
RPC scores (representing wet and drought conditions, respec-
tively) alternately appeared within the period of 1958–2011.

Over the R1 sub-region related to F1 score (Fig. 3a), the
main severe droughts occurred in 1960–1962, 1971–1972,
1992–1993, 1999–2001, 2002–2003, and 2006–2007. This
sub-region suffered several extreme droughts with the worst
one in 1971–1972, which is in an agreement with the serious
drought of 1972 recorded in history (Water Resources and
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Hydropower Planning And Design General Institute, MWR,
2008). According to the F2 score series (Fig. 3b), the remark-
able drought events with different severities are detected dur-
ing the periods of 1963–1964, 1966–1968, 1983–1984, 1988–
1990, 1995–1996, 2002–2003 and 2006–2007 in the R2 sub-
region. The drought event in 1983–1984 identified with
highest intensity is consistent with the consecutive drought
in 1980–1984 which has already been reported by both Ma

et al. (2013) and Wang et al. (2015b). The R3 sub-region
corresponding to F3 score experienced the major drought
events in the periods 1975–1977, 1984–1985, 1989–1990,
1993–1994, 2000–2002, and 2007–2008 (Fig. 3c). The time
series of F3 score appear to indicate intense drought episodes
in the last decade and highlight a tendency towards drier con-
ditions in this sub-region. This is in line with the conclusions
reported by Wei and Feng (2011) and Wang et al. (2015c).

Fig. 2 Loading patterns of the first three rotated principal components (F1, F2, and F3) for the (a) SPI3, (b) SPI12, (c) annual SPI, (d) spring SPI, (e)
summer SPI, ( f ) autumn SPI, and (g) winter SPI

Table 2 Explained variances of the un-rotated and rotated principal components corresponding to seven SPI sets

PCs SPI3 SPI12 SPIann SPIspr SPIsum SPIaut SPIwin

UnR
(%)

VR
(%)

UnR
(%)

VR
(%)

UnR
(%)

VR
(%)

UnR
(%)

VR
(%)

UnR
(%)

VR
(%)

UnR
(%)

VR
(%)

UnR
(%)

VR
(%)

First PC 68.9 39.4 67.0 36.5 66.0 38.1 64.7 39.9 63.2 37.1 64.0 40.5 59.5 40.9

Second PC 8.4 25.6 8.2 26.2 7.7 26.1 14.6 34.7 7.9 27.7 10.7 27.6 13.8 24.4

Third PC 4.2 16.4 4.7 17.1 5.5 14.9 4.7 9.4 5.7 12.1 4.7 11.3 5.8 13.8

Cumulative 81.5 81.5 79.9 79.9 79.2 79.2 84.0 84.0 76.9 76.9 79.4 79.4 79.1 79.1

UnR un-rotated, VR varimax rotated
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4.2.2 Trend detection

In order to detect the inter-annual trend of drought in the
Luanhe River basin, MK test with the TFPW procedure and
Sen’s method both at the 10% significance level were applied
to the annual SPI series of 26 rain-gauging stations. Moreover,
seasonal SPIs were also considered to account for the tempo-
ral trend at a seasonal scale. We determined whether there was
an upward, downward, or no trend in the annual and seasonal
SPI time series during the period 1958–2011 based on the
statistic Z values of MK test and the Sen’s slope estimator
(Qmed).

Spatial distributions of the rain-gauging stations with
upward, downward, and no trends for the annual and
seasonal SPI series were illustrated in Fig. 4. As for
annual SPI (Fig. 4(a)), the significant downward trends
were detected at the stations in southeast, while scarcely
any significant upward or downward trends were found
at the stations located in middle and northwestern parts.
It is indicated that there seems to be an intensification
of inter-annual droughts in the R1 sub-region, and

temporal tendency of annual drought is not evident in
the R2 and R3 sub-regions.

The spring SPI had the significant upward trends at about
92% of stations (Fig. 4(b)), and the significant downward
trends for summer SPI were presented at more than 80% of
stations (Fig. 4(c)). It might imply that, on the whole, the
drought condition in summer has a remarkable aggravating
trend over the Luanhe River basin, while a mitigating trend
is significantly identified for spring drought. These results
agree with those of previous studies on the temporal analysis
of droughts in the study area (Li and Zhou 2015; Wang et al.
2015c). However, as shown in Fig. 4(d), no significant up-
ward or downward trend was identified in autumn SPI series,
possibly suggesting that the magnitude of tendency change in
autumn drought was low during the period of 1958–2011 in
the study area. Moreover, a significant upward trend in winter
SPI was found at the stations located in northwest, but a sig-
nificant downward trend was observed at the stations in south-
east (Fig. 4(e)). It appears to reveal an aggravating trend of
winter drought in R1 sub-regionwhile a mitigating trend in R3
sub-region.
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Fig. 3 Time series of the first three rotated principal components (a F1, b F2, and c F3) scores of the SPI field on 12-month time scale for the period
1958–2011

Fig. 4 Spatial distribution of 26
rain-gauging stations with
upward, downward, and no trends
by the MK and Sen’s tests for the
time series of annual and seasonal
SPIs during the period 1958–
2011 across the Luanhe River
basin
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4.2.3 Periodic features of the RPC scores

The continuous wavelet transform (CWT) was further carried
out to recognize the periodic cycles at the 5% significance
level in the sub-regional SPI patterns which are represented
by the time series of corresponding RPC scores. To leave
securely off the effect of the seasonal cycle, the analysis of
cyclical behavior based on the CWT in this study is concerned
with the SPI data at 12-month time scale rather than SPI3. The
wavelet power spectra (WPS) of the first three RPC (F1, F2,
and F3) scores for SPI12 are presented in Fig. 5, showing that
the SPI12 over the three main sub-regions are featured by
different cycles with temporal variability in power.

The F1 score series related with the SPI12 in R1 sub-region
exhibit 16- to 64-month cycles continuously possessing sig-
nificant powers during the periods of 1961–1976 and 1988–
2008, especially highlighting the 33- to 57-month cycles with
relatively high powers (Fig. 5a). Although the wavelet powers
of F1 show a reduced level of activity between these two
periods, a considerable amount of power as 128-month cycle
can be observed in the 1969–1989. The WPS of F2 score
(Fig. 5b) suggest that the SPI12 over R2 sub-region generally
has strong cycles of 16 to 64 months from 1971 to 2008. The
33- to 57-month and 61- to 75-month cycles show significant
power during the 1980–1990 and the 1990–2000 respectively,
indicating that these cycles may contribute remarkably to the
frequent occurrence of severe droughts from 1980 to 2000 in
the R2 sub-region. As for the WPS for F3 score (Fig. 5c),
significant cycles of 18 to 40 months during the 1961–1974
are detected in the SPI12 in R3 sub-region, as well as the 33- to
57-month significant cycles during the 1976–1987. Moreover,
14- to 43-month cycles emphasize significant power from
2002 to 2010, appearing to account for the intensification of
droughts over the R3 sub-region in recent decade.

In general, the drought variability of Luanhe River basin is
dominated by 16- to 64-month cycles, but remarkable differ-
ences are observed in the cyclic structures related to the three
main sub-regions, further confirming that the temporal char-
acteristics of these sub-regions are different from each other.
Due to the shortness of the available data, the periodical fea-
tures obtained in this study remain restricted to inter-annual
and inter-decadal scales. The localized intermittent periodic-
ities discovered by CWT can provide useful information for

the regional drought risk analysis, and they will be conducive
to better understanding the atmospheric dynamics that modu-
late drought occurrence and severity on a sub-regional scale.

To further detect the periodic features of annual and sea-
sonal droughts in the three main sub-regions, the CWT was
also applied to the first three RPC scores corresponding to
annual and seasonal SPI sets. For the annual F1 score, the
WPS (Fig. 6(a-1)) are observed in 95% confidence regions
mainly during 1961 to 1643 at the 2- to 4-year scale and
during 1971 to 1978 at the 10- to 13-year scale. The WPS
for annual F2 score (Fig. 6(a-2)) show 2.5- to 4.5-year cycles
having significant powers during the periods of 1984–1987
and 2000–2006, as well as 5- to 6.5-year cycles during 1989–
1999. In addition, the WPS of annual F3 score (Fig. 6(a-3))
present non-significant but strong cycles of 2.5 to 4 years from
1980 to 1985. It is suggested that the annual drought of the
Luanhe River basin is mainly characterized by 2- to 6-year
cycles, which is consistent with the CWT results of SPI12. As
for all the seasonal SPIs, their first three RPC scores mostly
detected significant wavelet powers at the 2- to 6-year scale,
while the specific cyclic patterns vary from season to season
and differ depending upon the sub-region identified
(Fig. 6(b)–(e)). These results corroborate that the main drivers
of the periodical features of seasonal droughts seem to be
related with different oscillations in global climate system.
The dominant factors also change spatially over the Luanhe
River basin, generating the three identified sub-regions with
individual temporal evolution of drought conditions.

4.3 Links between global teleconnections and sub-regional
droughts

Considering the teleconnections of ENSO, NAO, PDO, and
AMO, the cross wavelet transform (XWT) and wavelet coher-
ence (WCO) were utilized to detect common properties and
correlations between the climate indices and the sub-regional
drought signals which are represented by the first three RPC
(F1, F2, and F3) scores for SPI12. The detections were per-
formed above the 5% significance level along with more focus
on inter-annual and decadal scales.

The cross wavelet power spectrum and wavelet coherence
between the F1 score and each climate index in 1958–2011 are
shown in Fig. 7. The results indicate that the drought

Fig. 5 Continuous Morlet wavelet power spectrum of time series of the
first three rotated principal components (a F1, b F2, and c F3) scores for
the SPI12. The thick black contours depict the 5% significance level of

local power relative to red noise. The cone of influence (COI) where edge
effects are not negligible is shown as a lighter shade
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variability in R1 sub-region has a statistically significant cor-
relation with SOI in the 18- to 57-month period from 1969 to
1977 and in the 66- to 75-month period from 1993 to 2004.
NAO with 18–33-month period signals shows the most sig-
nificant influence on F1 during 1960–1975, and PDO with
37–50-month period signals in 1970–1974 as well as 57–66-
month period signals in 1988–1997 shows a remarkable influ-
ence. AMO exhibits significant correlations with the F1 score
in the 33- to 57-month period during 1969–1975 and in the
14- to 37-month period during 1993–2003. Moreover, a note-
worthy association between the sub-regional drought and
AMO is detected for the period 1973–2001 at a decadal scale
(100- to 130-month period).

For the drought variability in R2 sub-region, the results of
cross wavelet analysis are presented in Fig. 8, suggesting a

significant correlation with SOI in the 25- to 33-month period
from 1970 to 1977 and in the 37- to 75-month period from
1984 to 1998. There is also a significant correlation with NAO
in the 37- to 43-month period from 1983 to 1987 and in the
16- to 32-month period from 1999 to 2004. The variation in
F2 score is closely related to the PDO associated with 57–76-
month signals during 1965–1975, 14–37-month signals in
both the periods of 1975–1980 and 1993–2009, and signals
on the 33–43 and 66-month scales during 1980–1986. AMO
also shows substantial influence on F2 in the 33- to 57-month
period from 1980 to 1990.

As shown in Fig. 9, the drought variability in R3 sub-
region is poorly linked with the teleconnection of ENSO
(depicted with the SOI index) at the scale large than 1 year,
while the strong influence of NAO is clearly seen in the 28- to

Fig. 6 Continuous Morlet wavelet power spectrum of time series of the
first three rotated principal components ((a) F1, (b) F2 and (c) F3) scores
for the SPIann, SPIspr, SPIsum, SPIaut, and SPIwin. The thick black contours

depict the 5% significance level of local power relative to red noise. The
cone of influence (COI) where edge effects are not negligible is shown as
a lighter shade

Fig. 7 a Cross wavelet power spectrum and b wavelet coherence
between F1 score series of SPI12 and climate indices (SOI, NAO, PDO,
and AMO). The thick black contours depict the 5% significance level of

local power relative to red noise, and the cone of influence (COI) is shown
as a lighter shade. Right-pointing arrows indicate that the two signals are
in phase while left-pointing arrows are for anti-phase signals
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50-month period in the 1980s. The significant correlation be-
tween the F3 score and PDO is found in the 28- to 43-month
period from 1981 to 1996 and in the period of 75- to
128 months from 1990 to 2000. In addition, the AMO has
significant influence on the sub-regional drought regime in
the 28–43-month period during 1964–1974.

Generally, we can conclude that the global teleconnections
(including ENSO, NAO, PDO and AMO) show strong influ-
ences on drought over the Luanhe River basin concentrated in
the 16- to 64-month period, while considerable differences
exist in the detailed links for the three distinct sub-regions. It
is consistent with the potential periodicity observed for the
regional drought based on CWT analysis, indicating that the
large-scale climate patterns may play a crucial role in gener-
ating cyclical behavior of drought occurrences. It is also worth
noting that PDO and AMO highlight the possible links to
drought variability on decadal scales.

In addition, the teleconnections of these climatic indices
with annual and seasonal droughts were investigated by ap-
plying the cross wavelet analysis. Corresponding to the

seasonal drought (represented by seasonal RPC score), the
climate pattern considered in the analysis was defined as the
average of its index values for the related months with the
season. Table 3 summarizes the significant link between each
climate index and the first three RPC (F1, F2, and F3) scores
for annual and seasonal SPIs, according to the significant
common power and wavelet coherence uncovered by using
the XWT and WCO, respectively.

As shown in Table 3, the annual drought variability in R1
sub-region is significantly correlated with SOI in the 3- to 5-
year period during 1969–1976, with PDO in 3.5- to 4.5-year
period during 1970–1974, and with AMO in 2.5- to 5-year
period during 1969–1974 and 1995–2002. AMO in the 9- to
10-year period also shows significant correlations with the
sub-regional annual drought from 1973–1985. The annual
drought in R2 sub-region exhibits a 2.5- to 3.5-year oscillation
significantly linked to NAO during 1982–1987 and to AMO
during 1966–1969. SOI and PDO with 3.5–6 year period sig-
nals have significant influence on this sub-regional drought
during 1981–1998 and 1987–2001, respectively. In R3 sub-

Fig. 8 a Cross wavelet power spectrum and b wavelet coherence
between F2 score series of SPI12 and climate indices (SOI, NAO, PDO,
and AMO). The thick black contours depict the 5% significance level of

local power relative to red noise, and the cone of influence (COI) is shown
as a lighter shade. Right-pointing arrows indicate that the two signals are
in phase while left-pointing arrows are for anti-phase signals

Fig. 9 (a) Cross wavelet power spectrum and (b) wavelet coherence
between F3 score series of SPI12 and climate indices (SOI, NAO, PDO,
and AMO). The thick black contours depict the 5% significance level of

local power relative to red noise, and the cone of influence (COI) is shown
as a lighter shade. Right-pointing arrows indicate that the two signals are
in phase while left-pointing arrows are for anti-phase signals
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region, both SOI and NAO with 2–6 year period signals have
significant associations with the annual drought during 1976–
1986. These results may highlight the decisive role of the
climate patterns in the periodical feature (2- to 6-year) of an-
nual drought in the Luanhe River basin.

On the whole, all these climate patterns have signifi-
cant influences on spring drought over the Luanhe River
basin concentrated in the 2- to 6-year period and in the 8-
to 10-year period. For the R3 sub-region, the impacted
cycles related with both ENSO and PDO extend to 12 to
18 years, while the influence of AMO is observed to be
in-apparent. As for summer drought, a significant correla-
tion with SOI in the 3- to 5-year period is detected in all
the sub-regions, and NAO, PDO, and AMO with various
period signals are found to be remarkably correlative in
the R2 sub-region. SOI and AMO also indicate significant
links to the summer drought on a decadal scale (about 10-
year period) in the R3 sub-region. The variability of au-
tumn drought is significantly associated with SOI and
NAO both in the 3- to 5-year period, generally across
the whole basin. Meanwhile, these two indices in the
12- to 16-year period also show noteworthy relations with
the autumn drought in the R1 sub-region. In addition,
winter drought conditions over the basin are primarily
dominated by NAO with 2–3 and 6–8-year period signals.
SOI in the 3- to 5-year period and PDO in the 8- to 11-

year period highlight a significant correlation with the
winter drought in the R2 sub-region and the R3 sub-re-
gion, respectively.

Although the cause of drought variability in the Luanhe
River basin is controversial under a changing environment,
several previous studies have already provided evidences for
the significant effects of atmospheric teleconnections on hy-
drological processes and drought characteristics. However,
there are still questions as to how the climate patterns affect
the spatial and temporal structure of droughts, particularly
interested in annual to decadal variations. In this study, the
cross wavelet analysis was employed to reveal the possible
link between large-scale climate anomalies and regional
drought variability in the time-frequency domain. The related
results can explain the different drought behaviors found in
the three sub-regions to some extent and suggest that different
physical mechanism maybe are acting on the sub-regional
drought conditions at various time scales. Under the back-
ground of global warming, these possible links could provide
guidance for policy makers in drought mitigation and adapta-
tion strategies.

ENSO is the dominant coupled ocean-atmosphere mode of
the tropical Pacific, and its remarkable effects on the occur-
rence and evolution of drought in northern China have been
proven by several previous studies (e.g., Su and Li 2012;
Ouyang et al. 2014). During the typical warm phase of

Table 3 Summary of the
significant link between each
climate index and the first three
RPC (F1, F2, and F3) scores for
annual and seasonal SPIs based
on the results of XWT and WCO

SPI Climate
index

F1 score F2 score F3 score

Time Period
(year)

Time Period
(year)

Time Period
(year)

SOI 1969–1976 3–5 1981–1998 3.5–6 1976–1986 2–6
NAO – 1982–1987 2.5–3.5 1978–1986 2–6
PDO 1970–1974 3.5–4.5 1987–2001 3.5–6 –
AMO 1969–1974 2.5–5 1966–1969 2.5–3.5

1995–2002 2.5–5 – –
1973–1985 9–10

Spring SOI 1984–2002 3–6 1985–2000 3–6 1968–1984 12.5–15.5
NAO 1987–1992 2–4 1990–2006 8–12.5 2001–2007 3–4

1996–2004 8–10
PDO 1995–2006 7.5–10 1990–2004 8–11 1961–1992 12.5–18
AMO 1984–1995 3–5 1984–2005 6–10 –

Summer SOI 1971–1982 4–6 1976–1988 2.5–5.5 1967–1977 3–5
1994–2005 9–11

NAO 1982–2005 5–7 1986–1997 5–7 –
PDO – 1977–1984 3–4 –
AMO – 1977–1993 8–11 1982–2010 7.5–13.5

Autumn SOI 1965–1972 2.5–4 1968–1982 3.5–5 1967–1973 2.5–5
1969–2000 10–16.5

NAO 1964–1979 2–4 2000–2010 3–5 –
1973–1986 12.5–16.5 – –

PDO – – 1995–2005 6.5–8.5
AMO – 1980–1990 7–10 –

Winter SOI – 1968–1989 3.5–5 –
NAO 1984–1989 2–3 1969–1983 5.5–9.5 1974–1980 6–8

1980–1988 2–4 1994–2000 2–3
PDO 2001–2010 8–11 – –
AMO – – –
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ENSO, drier surface conditions even severe drought events
generally occur at high frequencies in North China (Lu et al.
2006; Su and Wang 2007). Chen and Shi (2003) found that
autumn precipitation in China shows a fairly close relation
with ENSO. The study of Luo (2000) indicated that the sum-
mer precipitation of North China is generally lower, possibly
causing drought events in the developing stage of ENSO.
Moreover, Li et al. (2015) developed a non-stationary distri-
bution with climate indices as covariates for fitting 12-month
cumulative precipitation over the Luanhe River basin and
found that SOI might be one of the dominant causes for the
non-stationary behavior of the precipitation observations.
These conclusions confirmed our findings that there are quite
strong associations between ENSO and drought conditions
over the Luanhe River basin.

NAO is viewed as the dominant mode of winter atmospher-
ic circulation across North Atlantic. Hurrell (1995 and 1996)
and Hurrell and van Loon (1997) reported that NAO might
make the greatest contribution to the temperature change in
the Northern Hemisphere, and its variation could largely ex-
plain the warming occurred in Eurasia during the 1980s.
Several studies have revealed the strong influence of NAO
on the climate anomalies in China, especially on the winter
climate (Wang and Shi 2001; Fu and Zeng 2005; Song et al.
2011). Wang and Shi (2001) discussed the relationship be-
tween NAO and winter climate in China, and they suggested
that the larger values of NAO index are directly correlated
with the higher temperature in winter across the northern
part of North China. Wu and Huang (1999) also demonstrated
the remarkable impact of winter NAO on the East Asia winter
monsoon that directly affects the winter climate of the Luanhe
River basin. In this study, the influence of NAO on winter
droughts was found to be forceful across the Luanhe River
basin. Consistency in the results of previous studies and ours
strengthens the credibility of the predominant effect of NAO.

PDO is a pattern of climatic variability in the Pacific Ocean
with a characteristic time scale of 20–30 years (Hare and
Mantua 2001). Ouyang et al. (2014) investigated the impact
of PDO on precipitation and streamflow in China during
1901–2009. Their results revealed that the PDO warm phase
mainly decrease while the PDO cool phase increase the
precipitation and streamflow in the majority of China, along
with regional and seasonal differences. Ma and Shao (2006)
found that PDO is closely correlated to dry/wet evolution of
northern China and the correlation is particularly obvious in
North China at inter-decadal scale, by using monthly precip-
itation and monthly mean air temperature data during 1901–
2002. In addition, Ma (2007) also suggested that the warm
phases of PDO commendably correspond to the drying period
with less rainfall and high temperature in North China, most
likely highlighting the leading role of PDO in the regional dry/
wet variation at inter-decadal scale. A similar conclusion was
reported by Zhu and Yang (2003). These previous findings

give confidence in our results, which pointed out the signifi-
cant linkage of PDO to annual/seasonal droughts in the
Luanhe River basin observed at inter-decadal scales.

AMO represents a climate oscillation in the North Atlantic
with a period of 65–80 years (Kerr 2000). It has become a
consensus that the warm phase AMO intensifies the East
Asian summer monsoon but weakens the winter monsoon
(Wang et al. 2009). Many previous studies demonstrated that
the warm AMO phase plays a leading role in the substantial
East Asian warming in the recent two decades (Li et al. 2009;
Wang et al. 2010) and meanwhile favors warmer winters with
enhanced precipitation in North China (Ma and Ren 2007; Li
and Bates 2007).Wang et al. (2015b) used correlation analysis
to evaluate the effects of ESON and AMO on hydrological
drought in the Luanhe River basin, indicating a significant
influence of AMO. These consistent evidences can well sup-
port our tentative conclusion that AMO shows significant in-
fluence on the drought variability of the Luanhe River basin
especially on inter-decadal scales.

5 Conclusions

It is vital to understand the spatial and temporal variability of
drought for better mitigation and adaptation strategies.
Focusing on Luanhe River basin in this study, monthly pre-
cipitation data during the period of 1958–2011 were used,
from 26 rain-gauging stations distributed uniformly over the
basin. The spatial structures of drought were analyzed by ap-
plying the PCA to the SPI estimated on 3- and 12-month time
scales, as well as annual and seasonal SPIs. Then, the Mann-
Kendall trend test with the TFPW procedure and the Sen’s
slope estimator were used to detect the temporal tendency in
drought, and the CWTwas employed to identify the periodic
features. Moreover, the possible relationships between global
teleconnection patterns and sub-regional drought variability
were recognized by means of the cross wavelet analysis. The
main conclusions can be summarized as follows:

1. A well-defined spatial structure with three distinct sub-
regions was achieved for the Luanhe River basin, namely
the southeastern part, the middle part, and the northwest-
ern part. Each sub-region has its individual temporal evo-
lution of drought conditions, depending on different pre-
cipitation regimes.

2. Over the Luanhe River basin, results of MK and Sen’s
tests generally show evidences of a significant aggravat-
ing trend in summer drought and a prominent trend indi-
cating drought mitigation in spring. At the annual scale,
intensification of drought severity was detected across the
basin overall. Moreover, the drought condition in the en-
tire basin is subjected to a 16- to 64-month significant
cycles over the past 53 years in terms of SPI12. The
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periodicity in the northwest is weaker as compared with
that in the middle and southeast. The 2- to 6-year cycle is
clear evident when concerned with annual and seasonal
droughts.

3. Based on the cross wavelet analysis, the significant influ-
ence of large-scale climate patterns (represented by
ENSO, NAO, PDO, and AMO) on drought in the
Luanhe River basin is concentrated in the 16- to 64-
month period, possibly responsible for the physical cause
of cyclic behaviors of the regional drought condition. The
PDO and AMO with signals on decadal scales (around
128-month period) show noteworthy correlations with the
drought variability.

The findings of this study will be useful for drought miti-
gation and water resourcemanagement at a sub-regional scale.
However, the drought characteristics detected in this study are
directly based on historical data. Under a continuously chang-
ing environment, it is uncertain how these characteristics will
evolve in the future. Hence, as a future work, various climate
scenarios and models will be developed to further examine the
impacts of climate change on drought characteristics in the
Luanhe River basin.
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