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Abstract The present study aims at the assessment of six
satellite rainfall estimates (SREs) in Pakistan. For each
assessed products, both real-time (RT) and post adjusted
(Adj) versions are considered to highlight their potential ben-
efits in the rainfall estimation at annual, monthly, and daily
temporal scales. Three geomorphological climatic zones, i.e.,
plain, mountainous, and glacial are taken under considerations
for the determination of relative potentials of these SREs over
Pakistan at global and regional scales. All SREs, in general,
have well captured the annual north-south rainfall decreasing
patterns and rainfall amounts over the typical arid regions of
the country. Regarding the zonal approach, the performance of
all SREs has remained good over mountainous region com-
parative to arid regions. This poor performance in accurate

rainfall estimation of all the six SREs over arid regions has
made their use questionable in these regions. Over glacier
region, all SREs have highly overestimated the rainfall. One
possible cause of this overestimation may be due to the low
surface temperature and radiation absorption over snow and
ice cover, resulting in their misidentification with rainy clouds
as daily false alarm ratio has increased from mountainous to
glacial regions. Among RT products, CMORPH-RT is the
most biased product. The Bias was almost removed on
CMORPH-Adj thanks to the gauge adjustment. On a general
way, all Adj versions outperformed their respective RT ver-
sions at all considered temporal scales and have confirmed the
positive effects of gauge adjustment. CMORPH-Adj and
TMPA-Adj have shown the best agreement with in situ data
in terms of Bias, RMSE, and CC over the entire study area.

1 Introduction

Precipitation is a crucial input of the earth’s hydrological cycle
and its accurate estimation is important to the fact that it is
highly influential in many human-related activities like drink-
ing and agricultural use (Gebere et al. 2015). It is also an
impetuous factor in the occurrence of natural disasters like
flooding and droughts (Guo et al. 2015). Pakistan’s economy
is highly dependent on agriculture (Hussain et al. 2016) where
a hefty part of country’s gross domestic product (GDP) is
earned from agriculture and agriculture-related industry
(Economic Survey 2009–2010). Along with agriculture, the
natural calamities such as floods, droughts, and increased fre-
quency of heat waves are also a function of rainfall. The fre-
quency and intensity of occurrence of these calamities have
been aggravated by the climate change since the last many
decades (Khan et al. 2014). The consequents of these disasters
are many folded on agriculture, livestock, food security, water
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resources, public health, and economic status at large (Aslam
et al. 2016). The extreme flooding episode of 2010, due to
anomalous rainfall at northern parts, is a tragic reminder of the
natural disasters which severely damaged the country’s agri-
culture and infrastructure in the past (Webster et al. 2011). The
frequency modeling of floods and droughts shows that both
extremes are more frequent in upcoming decades aggravated
by climate change (Khan et al. 2016). The effects of these
calamities need to be solved through proper rainfall estimation
and management. Indeed, accurate temporal and spatial vari-
ations of rainfall are the key factors to understand water cycle,
and their trend analysis can be used to support decisions that
are directly linked with coping calamities.

Traditional ground base methods of precipitation measure-
ment such as radar and rain gauges imply a point-based ap-
proach which accurately measure rainfall but have remained
representative of the fine spatial scale and generally suffer of
no or less coverage over inaccessible tough terrains (Behrangi
et al. 2014; Tong et al. 2014). With a near global coverage and a
high spatio-temporal resolution, the satellite rainfall estimations
(SREs) have become an important component of hydrometeo-
rological research (Behrangi et al. 2014).

SRE is favored because of its free availability, particularly
for developing countries like Pakistan. Previous studies have
already checked the suitability of SREs by comparing it with
actual rainfall data over Asia (Khan et al. 2014; Qin et al.
2014; Prakash et al. 2014), Shukla et al. 2014), Africa
(Dinku et al. 2007; Pierre et al. 2011; Thiemig et al. 2012;
Gosset et al. 2013), South America (Vila et al. 2009; Ochoa
et al. 2014; Salio et al. 2014; Blacutt et al. 2015; Satgé et al.
2016), and Europe (Kidd et al. 2012). The performance of
these SREs varies from region to region under different cli-
matic conditions and from product to product. On a general
way, Tropical Rainfall Measuring Mission (TRMM)
Multisatellite Precipitation Analysis (TMPA) performs better
for moderate rainfall events (Nair et al. 2009), Precipitation
Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) accuracy is usually
high in dry and relatively flat regions (Gebere et al. 2015;
Satgé et al. 2016), and Climate Prediction Center
MORPHing (CMORPH) performs well over mountainous re-
gions (Dinku et al. 2007; Dinku et al. 2010).

Very few studies address SRE potentiality over Pakistan. A
study was conducted by Khan et al. (2014) to assess TMPAv7
Real Time (RT) and Adjusted (Adj) versions and CMORPH-
RT during the monsoon on a daily time step. Best agreement
with rain gauges measurements was found for TMPA-Adj v7.
More recently, Anjum et al. (2016) assess the improvement
brought by TMPA-v7 over the previously v6 on a more local
scale over the Swat River watershed (14,039 km2). Results
showed an improvement of rainfall estimation in TMPA-Adj
v7 in comparison with TMPA-Adj v6. Both products are more
accurate for monthly than daily precipitation estimate.

The present study is a way forward regarding SREs over
the region as it compares for the first time PERSIANN,
CMORPH, and TMPA performances over the whole
Pakistan. It also consists of the first assessment of
PERSIANN and the new CMORPH products over the region.
RT and Adj versions of each product are considered to appre-
ciate the potential gain induced by the adjustment. This con-
sideration is necessary as an adjustment process may increase
uncertainty in SRE estimation (Bitew and Gebremichael
2011; Gosset et al. 2013; Xue et al. 2013; Satgé et al. 2016).
Different orogenic regions are considered, to understand SRE
error topography dependencies previously found (Khan et al.
2014; Anjum et al. 2016). Moreover, each of the three defined
classes corresponds to a specific geomorphologic climatic
context: arid plain, dry to semi-humid mountain, and glacier
region. This study will be highly supportive in assessing SREs
of 11 rainfall stations located over Himalayas glacier region
and will provide a first comprehensive feedback of SRE abil-
ity over Pakistan’s glacier regions.

1.1 Study area

Pakistan is situated in the western zone of South Asia between
24 and 37 °N lat i tude and 62–75 °E longi tude.
Geographically, it is bounded at the north by China, east by
India, while Afghanistan and Iran lie at the western side. The
Arabian Sea marks the southern border (Fig. 1). The total area
is 803,940 km2 where elevation varies from a maximum of
8011mmaximum value at K2 (second elevated peak on earth)
to about 0 m at the Arabian Sea.

The Indus River is the most important river of Pakistan. It
crosses the country from it sources located in Mount Kailash
in Tibet (China) to the Arabian Sea (Pakistan). The northern
parts of Pakistan consist of very high mountains with perma-
nent snow and glacier (Fig. 1). Dry mountains (Koh-e-
Suleman) are located in western parts, there are many small
Nalas (drainages formed after rainfall), which cause flooding
in these areas during rainy seasons. Deserts are the important
part of Pakistan’s geography. Major deserts of Pakistan are
Thar (southeastern), Cholistan (southeastern), Thall (central),
and Kharan (southwestern).

Pakistan offers a great climatic variation influenced by oro-
genic divisions with various elevation zones and precipitation
patterns (Hanif et al. 2013). Topography and temperature
changes give rise to various rainfall patterns in the northern
and southern mountains of Pakistan (Hanif et al. 2013). In the
subtropical climatic region like sub-continent, the air circula-
tions in the upper atmosphere influence the rainfall patterns
greatly (Hanif et al. 2013). Pakistan receives 60% rainfall in
July–September, the monsoon season in northern parts and
about 30% in winter (December–March) rains (Sarfaraz
et al. 2014) in the southern parts. Two dry plateaus Potwar
and Baluchistan are dependent only on the rainfall for
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agriculture, livestock, and human population. Potwar
is located near Islamabad and Baluchistan is located
in Baluchistan province (southwestern part). A little
delay in the rain can cast immense damages to these
regions which have very fertile lands and contribute
about 13% to the country’s total agriculture (Adnan
et al. 2009). Accurate rainfall estimations can win
the losing trusts of the local farmers so they can in-
vest more and more in agriculture without fear of
losses because of less rainfall occupancy (Adnan
et al. 2009). Figure 2 has the details of rainfall pat-
terns in three different topographic classes as glacier,
mountain, and plain. Like rainfall patterns, the climat-
ic vulnerabilities also differ in northern and southern
mountains. The northern parts are affected by flooding
and southern parts by the frequent occurrence of
droughts. Both these north-south climatic vulnerabil-
ities are also a function of rainfall.

2 Materials

2.1 In situ data

Pakistan Metrological Department (PMD) is in charge of the
meteorological network. A total of 76 stations are available

from the 2008 to 2010 periods. The dataset was split
into different zones to account with previously founding
on SRE accuracy dependency. Indeed, SRE performance
contrasts can be observed over a defined region due to
emissivity/temperature contrast and/or warm rain cloud
processes. For example, a rainfall deficit in the measure-
ments of PERSIANN and TMPA was observed over the
big Lake Titicaca, due to strong emissivity and temper-
ature contrast observed above the lake (Satgé et al.
2016). Similar impacts should be observed over
Pakistan’s glacial region, induced by high emissivity
related to snow and ice cover. In the same way, moun-
tainous region is challenging because of warm rain
cloud processes which could be misidentified as no
rainy cloud by SREs (Dinku et al. 2010). Finally, arid
region is challenging because of short rainfall event
dominance which is not well captured by SREs (Tian
et al. 2009; Gebregiorgis and Hossain 2013).

Three geomorphologic climatic zones are considered to
account for SREs mentioned factors on SREs over Pakistan.
They are plain, mountain, and glacial regions count with 10,
24 and 41 stations, respectively (Fig. 1). The class BPlain^
includes stations located in low relief with no mountain influ-
ences in relation to warm rain cloud processes and emissivity/
temperature contrast. The BMountain^ class includes stations
located in the mountain part with no snow or glacial cover to

Fig. 1 Study area with pixel
location including at least on rain
gauge and mean monthly rainfall
for all the three considered
regions with DEM values. Upper
left is the regional location of
Pakistan
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observe the potential effects of warm rain cloud process
on SREs. Finally, with the predominance of glacial and
snow cover, the BGlacial^ class is considered to observe
SRE potentialities over contrasted emissivity/temperature
regions.

2.2 Satellite rainfall estimation products

Six SREs are considered in the foregoing analysis. All
SREs used a combination of passive microwave
(PMW) radiometers and IR data from Low Earth
Orbital (LEO) and geosynchronous satellites, respec-
tively, to estimate rain rates on a 0.25° spatial
resolution.

TMPA is a product of the National Aeronautics and Space
Administration (NASA) in collaboration with the Japan
Aerospace Exploration Agency (JAXA). Six PMW radiome-
ters named TRMMMicrowave Imager (TMI), Special Sensor
Microwave/Imager (SSM/I), Advanced Microwave Scanning
Radiometer-EOS (AMSR-E), Advanced Microwave
Sounding Unit-B (AMSU-B), Special Sensor Microwave
Imager/Sounder (SSMIS), and Microwave Humidity
Sounder (MHS) are used to estimate rainfall rates. IR data
from the Climate Prediction Center (CPC) of the National
Weather Service/NOAA (CPC-IR here-after), from the
Meteorological Operational satellite program (MetOp) and
from the 0.07° GridSat-B1 are used to fill the gaps between
PMW measurements (Janowiak et al. 2001; Huffman et al.
2010; Huffman and Bolvin 2014). There exists a Real Time

version (TMPA-RT v7) only based on PMWand IR data and
an adjusted version (TMPA-Adj v7). TMPA-Adj v7 is derived
from TMPA-RT v7 according to an adjustment using gauge-
based data from Global Precipitation Climatology Centre
(GPCC) and Climate Assessment and Monitoring System
(CAMS) (Janowiak et al. 2001; Huffman et al. 2010;
Huffman and Bolvin 2014).

CMORPH is a product of the NOAA/Climate
Prediction Center (NOAA/CPC). Rainfall estimates are
derived from PMW radiometers (AMSU-B, SSM/I, TMI,
and AMSR-E) and motion vectors derived from CPC-IR
data are used to propagate PMW rainfall estimates in
space and time (Joyce et al. 2004). The first version
(CMORPH v0.x) used an evolving algorithm according
to input data which has generated inhomogeneity, espe-
cially for the 2003–2016 period. Thus, it was recently
replaced by the CMORPH v1 version using a fixed
algorithm and homogeneous input data (NOAA 2012).
Hereafter, we refer to CMORPH v1 using CMORPH
and to the only sa te l l i t e -based vers ion us ing
CMORPH-RT. A Bias correction method is applied on
CMORPH-RT to produce an adjusted version called
CMORPH-Adj. The procedure uses data from the CPC
unified gauge analysis over land and the pentad Global
Precipitation Climatology Project (GPCP) over the
ocean (Xie et al. 2011).

PERSIANN is a p roduc t o f t h e Cen t e r f o r
Hydrometeorology and Remote Sensing (CHRS). A neu-
ral network technique (Hsu et al. (1997) and Sorooshian

Fig. 2 Monthly rainfall for the 2008–2010 period for in situ and SREs
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et al. (2000)) is used to estimate rainfall rates from CPC-
IR data. PMW data (TMI, AMSU-B, and SSM/I) is used
to adjust neural network parameter to increase the rainfall
estimate accuracy. There exists a real-time version
(PERSIANN-RT) based only on satellite data and a de-
rived adjusted version (PERSIANN-Adj). Monthly GPCP
data are used to adjust PERSIANN-RT and provide
PERSIANN-Adj. It is noteworthy that recently another
PERSIANN ra in f a l l p roduc t i s ava i l ab l e , t h e
PERSIANN-CDR. PERSIANN-CDR use the same neural
network as used previously but differs in terms of input
IR dataset with the use of GridSat-B1 instead of CPC-IR,
and PMWs data are not used (Ashouri et al. 2015). The
aim of PERSIANN-CDR is to provide continuous daily
rainfall data from 1983 to today and thus no RT version is
available. As this study aims to assess the adjustment
processes’ potentiality over rainfall estimate, we do not
consider PERSIANN-CDR in our analysis.

TMPA-RT and Adj v7, CMORPH-RT and Adj, and
PERSIANN-RT and Adj are assessed in this study. Data were
acquired on a 0.25° and a 3-hourly spatial and temporal reso-
lution, respectively, from the links reported in Table 1.

3 Method

3.1 Data processing

A total of 76 stations were available for the 2008–2010 period.
These stations are distributed on 75 SRE resolution (0.25°)
pixels (Fig. 1). For pixels with more than 1 rain gauge, the
data were averaged to produce a single mean value per day
and per pixel. Data were not interpolated because interpola-
tion from a sparse and uneven rain gauge network could gen-
erate unrealistic estimations (Li and Heap 2008; Scheel et al.
2011; Satgé et al. 2016). The SRE daily accumulations are
computed from 3:00 to 3:00 UTC to match the 8:00 to 8:00
local time of the gauge data in Pakistan. The native 0.25°
spatial resolution is kept for all SRE products.

3.2 Comparison methods

Some values of daily rainfall estimation are missing in SRE
time series. If a missing value is found, then that particular day
is removed from all SREs and the rain gauge. Only months
and years with 80% of the daily value were considered to
compute the statistical scores (Clarke et al. 2011; Satgé et al.
2016). According to this selection, a total of 225 yearly and
2601 monthly rainfall amounts are available for the assess-
ment. First, the root mean square error (RMSE), Bias, and
correlation coefficient (CC) were computed considering all
pixels. Then, to estimate the possible effects of topographic
variations on the overall accuracy of SREs, a total of 75 pixels
are divided as 41 plain pixels, 26 mountainous pixels, and 10
glacial pixels based on the elevation classes derived from
DEM (Digital Elevation Model) (Fig. 1).

bias ¼ ∑n
i¼1 PSREi−PGið Þ

∑n
i¼1PGi

� 100 ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 PSREi−PGið Þ2

N

s

∑n
i¼1PSREi

N

� 100 ð2Þ

where, N is the length of the series and it includes the
rainfall total (monthly or yearly) from all available pixels;
PGi is the gauge precipitation for the considered month or
years i; and PSREi is the SRE precipitation for the considered
month or year i.

The mean value of the RMSE, Bias, and CC total amounts
was first computed to assess SREs at the regional scale and for
each considered classes for both annual and monthly scale
(Tables 1 and 2). We considered CC as significant if, its value
was equal or greater than 0.7 (Condom et al. 2010; Satgé et al.
2016), RMSE is acceptable if, it was lesser than or equal to
50% (Adeyewa and Nakamura 2003; Condom et al. 2010;
Satgé et al. 2016) and Bias as acceptable when −10% ≤Bias
≤10% (Brown 2006; Yang and Luo 2014; Satgé et al. 2016).
The presentation of SRE rainfall estimation efficiency is
projected in Fig. 5 in the form of calculation of monthly
Cumulative Distribution Function (CDF). The spatial varia-
tions into SRE ability are observed by mapping pixel-based
comparison considering RMSE, Bias, and CC to provide the
spatial error distribution over Pakistan for the period 2008–
2010 (Figs. 6, 7, and 8). Finally, a quick analysis is made on a

Table 1 Website links used for the SRE dataset download

Product Link

TMPA-RT v7 http://mirador.gsfc.nasa.gov/

TMPA-Adj v7 http://mirador.gsfc.nasa.gov/

CMORPH-RT ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/

CMORPH-Adj ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/

PERSIANN-RT http://chrs.web.uci.edu/persiann/data.html

PERSIANN-Adj http://fire.eng.uci.edu/PERSIANN/

Table 2 Factors for
Probability of Detection
(POD) and the False
Alarm Ratio (FAR)

Gauges

Rain No rain

SRE Rain a b

No rain c d
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daily scale. Two categorical indexes focusing on the ability of
SREs to correctly detect daily rainfall event occurrence are
considered. They are the Probability of Detection (POD) and
the False Alarm Ratio (FAR) as presented in Eqs. 3 and 4,
respectively.

POD ¼ a
aþ cð Þ ð3Þ

FAR ¼ b
aþ bð Þ ð4Þ

POD is an indicator of how well a SRE detect rainfall
event. Values vary from 0 to 1 with a perfect score of 1.
FAR indicates how often a SRE detect rainfall events when
actually no rainfall events were detected by the gauges.

The analysis limits to these two indices because the gauge
network used is poorly representative of SRE in terms of spa-
tial resolution at the daily scale. Actually, gauge measurement
is a point measurement while SREs correspond to a mean
rainfall estimates of an area of 625 km2. Indeed, in the case
of a perfect SRE, every rainfall event detected by the gauges
should be detected by the SRE. However, lots of rainfall
events detected by the SRE are missed by the gauges. In
consequences, Ba^ and Bc^ factors should not be impacted
by the different spatial resolution between gauges and SRE
while a systematic overestimation and underestimation of Bb^
and Bd^ values should be observed (Table 2). Other indicators
such as the CSI, ETS, and HSS are generally used to improve
the analysis. However, these indexes rely on Bb^ and Bd^
values which are poorly represented from the gauge network.
In this context, we only consider POD and FAR to limit the
uncertainties in the results and provide a first insight on SRE
ability at daily scale. POD and FAR are computed from all
SREs at the global scale and for glacial, mountainous, and
plain classes.

4 Results and discussion

4.1 Annual scale

All products exhibit the typical north-south gradient with rain-
fall amount decreasing from north to south. The slight west-
east rainfall gradient is also captured by all SREs with a very
arid region located in southwest drymountains of Balochistan.
It is particularly true for both PERSIANN–RT and Adj prod-
ucts. PERSIANN and TMPA products were already found to
be well represented of regional rainfall gradient over the arid
region as the Altiplano (Satgé et al. 2016) and Iran (Katiraie-
Boroujerdy et al. 2013).

For all SREs, higher rainfall amounts are found over the
northward higher relief regions. CMORPH-RT product

considerably overestimates rainfall amounts in this region
with mean annual rainfall superior to 2000 mm/year and high
positive Bias of 35.4% (Fig. 3 and Table 1). On the contrary,
PERSIANN-RTunderestimates rainfall resulting in a negative
Bias of −34.5%. All other products present Bias into or close
to the acceptable threshold range fixed between −10 and 10%.

Over the glacial region, all products overestimate rainfall
amounts (Table 3). The combined presence of cold cloud and
ice cover may contribute to the overestimation. Here, cold
clouds are associated with high relief. Researchers agree that
rain/no rain classification based on cloud top IR temperature
may fail in mountainous regions (Dinku et al. 2007; Dinku
et al. 2010; Hirpa et al. 2010; Gebregiorgis and Hossain
2013). Below a temperature threshold, clouds are considered
as rainy while the opposite case is considered when cloud top
temperatures are above the temperature threshold. Hence, over
Pakistan’s mountainous and glacial regions, cloud temperature
threshold might be too high and lead to the misidentification of
no-rainy clouds as rainy ones. In addition, over snow and ice,
radiation absorption and surface temperature are much lower
than the surrounding land. The strong land-snow ice contrast
observed in those specific regions (in radiation absorption and
temperature) is a potential source of error for PMW rainfall
retrieval (Ferraro et al. 1998; Levizzani et al. 2002). Indeed, it
can lead to a misidentification of snow and ice cover with the
rainy cloud (Dinku et al. 2010) contributing to SREs overesti-
mate rainfall over these regions. As a result, from mountainous
to glacial areas, the Bias considerably increased for all the
considered SREs (Table 1). It is particularly true for
PERSIANN-RT and TMPA-RT passing from a negative to a
positive Bias. This feature highlights the importance of caution
measure into algorithms to enhance SREs in contrasted area (in
radiation absorption and surface temperature) in the same way
coastlines are (Adler et al. 1993). Thus, the glacial region of
Pakistan is still challenging for SRE estimates.

SREs are more contrasted over the mountainous region.
TMPA and PERSIANN-RT tend to underestimate rainfall
amount by −14.5 and −34.5%, respectively, while
CMORPH-RT tends to overestimate rainfall amount by
35.7%. Bias adjustment process decreases Bias value for all
SREs to reach value ranging into the quality threshold (−10 to
10%) with a lower observed value for CMORPH-Adj
(−3.7%).

Over the plain region, all SREs are less accurate than over
mountainous and glacial regions. They tend to overestimate
the rainfall amount with positive Bias value. Among all the
considered products, CMORPH-Adj presents better statistic
results overall with low Bias, RMSE and relative higher CC
of 6.4, 77.6, and 0.59, respectively.

On a more general point of view, on the global scale, the
Adj versions of CMORPH and TMPA present a significant
enhancement in rainfall estimates in comparison with their RT
versions with lower RMSE, Bias, and higher CC. The
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adjustment effects are clear in Fig. 4, with Adj values fitting
better with gauge measurement than RT values over the entire
study period. The adjustment of PERSIANN-RT is more
contrasted. Over mountainous region, the enhancement is ob-
vious with an increase of CC and a decrease of both Bias and
RMSE values. Over plain and glacial regions, RMSE and CC
are better for PERSIANN-Adj than for PERSIANN-RT.
However, PERSIANN-Adj is more biased than its RT version.
Same observations are true at the regional scale. Thus, for
PERSIANN products, the adjustment enhances the rainfall
temporal variation description which is valuable for long-
term precipitation variation studies.

According to the defined quality threshold value, with a
CC superior to 0.7, an absolute Bias value inferior to 10%
and a RMSE value very close to 50%, CMORPH-Adj is the
best suited product to represent annual rainfall over Pakistan at
the regional scale. TMPA-Adj is the second best product with
RMSE and Bias values close to the 50% and 10% threshold
value, respectively and a CC superior to 0.7.

According to the different regions considered,
CMORPH-Adj presents better statistical results over
plain region with RMSE and Bias of 58.1 and 13.6%,
respectively. Same observations are true over mountain-
ous region, where CMORPH-Adj outperformed all other

Fig. 3 Regional mean annual
rainfall pattern for the 2008–2010
period

Table 3 Annual RMSE, Bias, and CC for all SREs at regional scale and for plain, mountain, and glacier region

Bias CC RMSE

All Plain Mountain Glacial All Plain Mountain Glacial All Plain Mountain Glacial

PERSIANN-RT −11.80 2.6 −34.5 46.4 0.57 0.38 0.71 0.29 80.10 54.5 96.5 67.8

PERSIANN-Adj 35.50 46.2 8.3 134.8 0.66 0.49 0.75 0.4 56.80 66.9 45 61.9

TMPA-RT 14.70 36.4 −14.5 75.5 0.60 0.41 0.73 0.48 61.00 57.5 59.8 62.2

TMPA-Adj 18.20 23.6 9.3 42.3 0.74 0.52 0.76 0.67 52.90 49.8 44.3 61.5

CMORPH-RT 51.70 47.5 35.4 157.9 0.73 0.63 0.8 0.51 59.20 83.7 45.2 57.3

CMORPH-Adj 6.30 6.4 −3.7 60 0.74 0.59 0.81 0.53 56.90 77.6 44 60.7
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SREs with the lowest Bias (−3.7%), higher CC (0.81),
and lowest RMSE (44%). It is noteworthy that, over
mountain, TMPA-Adj and PERSIANN-Adj also perform
well with all statistic parameters into the quality thresh-
old range. Over glacial region, SRE potentiality is very
poor. In comparison to other SREs, TMPA-Adj rainfall
estimates are closer to gauge estimates with the highest
CC (0.67), lowest RMSE (44.3%), and close to lowest
Bias value (42.3%).

4.2 Monthly scale

Figure 2 represents the monthly mean rainfall for the 2008–
2010 period and for all SRE and gauge measurements. At a
global scale, all SREs except CMORPH-RT have well cap-
tured the monthly variations in higher rainfall in July and
August corresponding to the monsoon months. April rainfall
peak is also well represented by SREs. PERSIANN-RT un-
derestimates monthly amount and confirms annual tendency
(Table 1). Same tendencies are observed over the plain region.
SREs highly overestimate monsoon rainfall in July and
August with CMORPH-Adj estimates closer to gauge esti-
mates in comparison with over SREs. Over mountainous re-
gion, highest variations are observed between SREs.
CMORPH, PERSIANN, and TMPA Adj are closer to gauges
than their RT version highlighting the usefulness of such ad-
justment in this region. In the glacial region, from January to
April, CMORPH and TMPA adjusted versions are close to
gauge’s estimates. From May to October, all SREs highly
overestimate monthly rainfall. This might be due to the tem-
perature fluctuations from winter to summer and respective
variable amounts of snowfall increase SRE uncertainties.

Table 4 presents RMSE, Bias, and CC for all SREs and all
the considered regions (plain, mountainous, and glacial). On a
global scale, none of the products fit the quality criteria de-
fined with RMSE and Bias inferior to 50 and 10%, respective-
ly, and with CC superior to 0.7. However, with Bias value of
6% into the defined quality threshold, a CC and RMSE close
to the defined quality threshold, CMORPH-Adj monthly
amounts are the most accurate over Pakistan at the global
scale. All SREs present better statistical results over mountain-
ous region probably due to the higher rainfall amounts ob-
served in comparison with plain and glacial regions (Fig. 4).
Overmountainous region, CMORPH-Adj is the most accurate
product in terms of CC of 0.63 and Bias of −4.0%. It still
suffers a quite high RMSE value. It is noteworthy that
PERSIANN-Adj performed quite similar to CMORPH-Adj
over mountainous region with very close RMSE, CC, and
Bias values. Over glacial region, all SREs are poorly

Fig. 4 Scatter plot of SREs versus gauge with plain, mountainous, and
glacier region in red, blue, and green, respectively

Table 4 Monthly RMSE, Bias, and CC for all SREs and regional scale and for plain, mountain, and glacier regions

Bias CC RMSE

All Plain Mountain Glacial All Plain Mountain Glacial All Plain Mountain Glacial

PERSIANN-RT 4.0 −34.3 43.2 0.44 0.44 0.42 0.51 0.23 173.0 187.1 171.6 121.9

PERSIANN-Adj 48.5 7.9 129.9 0.54 0.54 0.50 0.62 0.36 128.8 157.2 105.1 108.6

TMPA-RT 37.6 −14.2 72.8 0.46 0.46 0.46 0.52 0.08 149.4 168.2 133.6 125.4

TMPA-Adj 25.1 9.3 40.2 0.58 0.58 0.54 0.61 0.29 132.5 156.7 107.3 135.9

CMORPH-RT 49.8 36.0 147.0 0.48 0.48 0.51 0.53 0.01 127.1 137.0 100.7 155.2

CMORPH-Adj 7.5 −4.0 55.0 0.57 0.57 0.56 0.64 0.15 137.2 160.9 104.6 164.2

1126 Y. Hussain et al.



correlated to gauge measurements and strongly overestimate
rainfall estimates with Bias value superior to 100%.

Figure 5 represents the Cumulative Distribution Frequency
(CDF) of monthly rainfall rates. The arid context of the region

Fig. 5 Cumulative distribution function for SREs and gauges with a 1-mm month−1 increment

Fig. 6 Spatial patterns of mean
monthly Bias
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is clearly highlighted with close to 60 and 80% of rainfall
amounts inferior to 25 mm and 50 mm month−1, respectively.
All SREs overestimate the relative proportion of low to mod-
erate monthly rainfall. It confirms SRE deficiencies over low
rainfall plain and glacial region with SREs highly
overestimating rainfall amounts (Table 4, Fig. 5).
PERSIANN-RT underestimates moderate to high rainfall
amount occurrences while it is the closer SREs regarding
low and moderate rainfall events. The adjustment enhances
the representation of a moderate to high rainfall event but
degrades the representation of low rainfall events (Fig. 5).
As a resul t , PERSIANN-Adj is less biased than
PERSIANN-RT over the mountainous regions where highest
rainfall amounts are observed (Fig. 2 and Table 4) and confirm
the adjustment benefit over this region. As low rainfall events
count for 80% of rainfall occurrence, lowest Bias is observed
on PERSIANN-RT (−11.8%) rather than on PERSIANN-Adj
on the global scale (35.3%) (Table 4). TMPA-Adj fitted better
the gauges CDF than TMPA-RT for low monthly rainfall
amounts. As a consequence, TMPA-Adj has the lowest Bias
than TMPA-RT over the plain and glacial regions where low
rainfall amounts are observed (Fig. 2 and Table 4). CMORPH-
RT overestimates the proportion of all rainfall amounts and
confirms positive Bias observed on the global scale and for all
the considered classes (Table 4). The adjustment leads to clear

enhancement with CMORPH-Adj curve fitting better the
gauges one in comparison to all other SREs.

At the monthly scale, the adjustment effects are positive for
CMORPH, TMPA, and PERSIANN products. CMORPH-RT
adjustment decreases and increases the Bias and CC values at
the global scale and for all the classes, while RMSE has
remained close to superior. TMPA-RT adjustment has en-
hanced all the considered statistical parameters. Close to low-
est Bias is observed at the global scale for TMPA-RT in rela-
tion to the negative Bias observed for mountainous classes
that reduce the global Bias. PERSIANN-RT adjustment is
strong over the mountain class where RMSE, CC, and Bias
value are enhanced. It is more contrasted at a global scale and
for the glacial and plain regions. Indeed, RMSE and CC
values are better for the Adj than the RT version while Bias
value increased. Therefore, at the global scale, even if
PERSIANN-Adj is much biased than its RT version, the ad-
justment enhances monthly rainfall temporal variation
description.

Figure 6 represents the Bias for the 75 pixels and for all
SREs. It confirms the results observed in Figs. 2, 3, 4, 5 and
Table 4. PERSIANN-RT underestimates high rainfall amount
with a large proportion of pixels with high negative Bias es-
pecially, over the rainiest mountainous area. CMORPH-RT
overestimates rainfall all over the domain except over the

Fig. 7 Spatial patterns of mean
monthly CC
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southwest arid region corresponding to the Balochistan pla-
teau. In this region, all SREs tend to underestimate rainfall
amounts with negative Bias. It might be a consequence of
short rainfall events predominance which is not well captured
by microwave sensor due to low receptivity. Almost all pixels
located in the glacial upper part present an overestimation of
rainfall and confirm SRE deficiency over snow and ice cover
previously observed from Tables 3 and 4 and Figs. 2, 3, and 4.
CMORPH-Adj and TMPA-Adj count with the highest propor-
tion of pixel with Bias value into the threshold quality criteria
domain. Adjustment decreases Bias value and confirms its
positive effect. It is especially true for CMORPH products as
CMORPH-RT and CMORPH-Adj are the most and less bi-
ased SREs. PERSIANN adjustment effect is more contrasted.
It is only benefic over the rainiest mountainous region north-
ern part (Fig. 6) with more pixels into the defined quality
range for PERSIANN-Adj than PERSIANN-RT. This region
counts with more rainfall amounts which are better represent-
ed by PERSIANN-Adj (Fig. 5). The opposite case is true over
the plain arid region with a higher proportion of negatively
biased pixels. This confirms PERSIANN-Adj Bias in low to
moderate rainfall regions (Fig. 5 and Table 4).

Figure 7 displays the CC. As for Bias values, CC values are
worst over the glacial region with very low value registered by
all considered SREs. For all products, a general increase of

CC value is observed all over the domain and for adjusted
versions. CMORPH-Adj and TMPA-Adj count the highest
proportion of pixels superior or close to the threshold value
all over the region and confirm the results observed in Table 4.

Figure 8 displays the RMSE pattern. RMSE is very high all
over the domains and for all SREs. It is especially true over the
arid southern part with RMSE value superior to 100%. A
slight decrease of RMSE value is observable for TMPA-Adj
and PERSIANN-Adj products thanks to the adjustment. On
the contrary and as observable in Table 4, CMORPH-Adj
RMSE is not enhanced by the adjustment and remained close
to CMORPH-RT RMSE values.

Figures 6, 7, and 8 confirm the positive effect of gauge
adjustment on TMPA, PERSIANN, and CMORPH products.
The same observation was found in a similar semi-arid climate
over the South American Andean region (Satgé et al. 2016)
and central Asia (Guo et al. 2015). Regarding TMPA, TMPA-
Adj rainfall estimates were also found to be the closest to the
reference estimate than RT version over the continental United
States and West Africa (Gosset et al. 2013; Chen et al. 2013).
Over mountainous region and in a less extent over the plain,
estimates of PERSIANN-Adj are more accurate than
PERSIANN-RT. This has confirmed PERSIANN-Adj im-
provement over PERSIANN-RT as observed in Iran
(Katiraie-Boroujerdy et al. 2013). CMORPH-Adj slightly

Fig. 8 Spatial pattern of mean
monthly RMSE
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outperformed PERSIANN-Adj and TMPA-Adj over the
mountainous region in terms of CC, Bias, and RMSE. This
has confirmed CMORPH potentiality over such region as
demonstrated for the CMORPH-RT first version (Dinku
et al. 2007; Dinku et al. 2010). However, here, it is only true
considering the CMORPH-Adj as CMORPH-RT estimates
are highly inaccurate all over the domains. Finally, over gla-
cial region, all SREs show consistent deficiencymay be due to
snow and ice cover. Thus, these regions are still challenging
for the future SRE algorithms.

4.3 Daily scale

Table 5 represents values of POD and FAR at global scale and
for plain, mountainous, and glacial regions.

As expected, FAR value is higher for all SREs at the global
scale and for all classes. This should be attributed to the dif-
ferent spatial scale representability from gauge and SREs. The
pixels are representative of an area of approximately 625 km2

in which more rainfall events are expected to occur in com-
parison to the point gauge scale.

At the global scale, CMORPH product presents the better
ability in detecting rainfall event occurrence with highest POD
value among all the considered SREs. When considering the
different classes, highest PODs are observed for all SREs over
glacial and mountain regions than over plain. This trend high-
lights the relative higher ability of SREs in differencing rainy
to no-rainy day over mountainous dominated region in
Pakistan. Indeed, rain processes over plain and mountainous
dominated regions differ in relation to the geomorphological
context. The FAR slightly decreases from glacier to mountain
classes and for all SREs. As previously discussed, glacial re-
gion dominated by ice and snow cover which could be
misidentified as the rainy cloud by SRE algorithms and led
to an increase of FAR. At the monthly and yearly scales, it is
transposed by an overestimation of respective rainfall amount.

The relative high POD and low FAR over mountain class is
in agreement with yearly and monthly analyses as both agree
with a highest SRE potential over this region.

Generally, CMORPH products present higher POD than
PERSIANN and TMPA products for all classes. FAR is high
and close for all SREs and classes in relation to the poor
representation of SREs by gauges induced at different spatial
resolutions.

All adjusted versions enhance daily rainfall detection with
higher POD and close FAR values at the regional scale and for
all the considered classes.

The POD results presented here are representative of SRE
ability because a rain event detected by gauges should be
detected by SREs regardless the spatial resolution difference.
However, FAR results should be considered with caution as
they are highly dependent on the spatial resolution difference
between gauges and SREs. For example, over the Andean
plateau, lowest FAR values were found when more than one
gauge by pixels was used (Satgé et al. 2016). More studies
including denser rain gauge network are needed to clearly
state on daily SRE potential over Pakistan.

5 Conclusions

Accurate rainfall estimation is very important for Pakistan’s
agricultural growth and safety from natural disasters like
flooding and droughts. However, few rain gauges are ob-
served over the region due to difficult access and limited fi-
nancial support. In this context, a total of 75 rain gauges
spread into 74 pixels were used to assess for the first time
six SREs over Pakistan. The considered SREs are
CMORPH (RT and Adj), TMPA (RT and Adj), and
PERSIANN (RT and Adj). RT and Adj versions are both con-
sidered to have assessed adjustment effect over the region.
SREs were assessed at regional scale and considering plain,
mountainous, and glacial regions separately to assess their
dependency on different morpho-climatologic contexts. The
following conclusions are drawn from the analysis:

& All the products represent the typical north south rainfall
patterns with higher rainfall region into the northern

Table 5 POD and FAR values
for all considered classes and
global scale

Classes CMORPH-
Adj

CMORPH-
RT

PERSIANN-
Adj

PERSIANN-
RT

TMPA-Adj
v7

TMPA-
RT

POD Glacial 0.62 0.63 0.52 0.46 0.49 0.31

Mountain 0.63 0.61 0.46 0.36 0.44 0.37

Plain 0.40 0.35 0.35 0.25 0.23 0.21

All 0.54 0.51 0.43 0.34 0.37 0.30

FAR Glacial 0.88 0.88 0.83 0.83 0.86 0.87

Mountain 0.74 0.75 0.75 0.74 0.72 0.73

Plain 0.84 0.86 0.87 0.86 0.84 0.84

All 0.81 0.82 0.82 0.81 0.80 0.80
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mountainous part and the very arid desert in the south
western part.

& SREs present strong deficiency over the Himalayan gla-
cial region with a systematic overestimation of seasonal
and monthly rainfall amounts. The snow and glacial cover
might be misidentified as rainy cloud due to low temper-
ature and high emissivity. This is highlighted by the daily
analysis revealing higher FAR values for all SREs over the
glacial regions.

& Future algorithms should carefully take into account those
specifics cover to better consider the strong emissivity and
temperature contrast towards the enhancement of rainfall
estimate.

& CMOPRH-RT strongly overestimates rainfall amount at
the regional scale with Bias value of approximately
50%. The adjustment is very efficient as the Bias drop to
6% for CMORPH-Adj. TMPA-RT adjustment is also pos-
itive as Bias value stays lower for all considered classes
for TMPA-Adj. PERSIANN-RT adjustment is more
contrasted.

RMSE and CC are enhanced by the adjustment for all
the classes but increase Bias value over the plain and gla-
cial region.

& CMORPH-Adj is the most accurate SREs to describe
annual and monthly rainfall over Pakistan. However,
TMPA-Adj is very close with close Bias, RMSE, and
CC.

& The daily analysis confirms the positive effect of the ad-
justments with an increase of POD for all SREs at the
regional scale and for all considered classes.

The results suggest that CMORPH-Adj should be used
in studies requiring annual to monthly rainfall informa-
tion. With more than 17 years of the available data set,
those products provide valuable information to highlight
the main change in rainfall tendencies over the period.
Thus, this data has a strong potential for national man-
agement regarding the conceivable drought and flood fu-
ture scenarios damaging billions of people. The potenti-
ality of SREs at daily scale was quickly assessed.
However, due to the low density of the rainfall gauges
network used, it is not possible to clearly state on SRE
ability and more assessments are still needed. In this
scope, future studies may indirectly assess SREs’ daily
estimate by using SREs as an input data for hydrological
modeling and compare simulated and observed dis-
charge. Such an approach avoids direct comparison with
a scarce gauge network and the subsequent gauge spatial
representativeness problem.
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