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Abstract Considering the unstable condition of water re-
sources in Iran and many other countries in arid and semi-
arid regions, groundwater studies are very important.
Therefore, the aim of this study is to model groundwater po-
tential by qanat locations as indicators and ten advanced and
soft computing models applied to the BeheshtabadWatershed,
Iran. Qanat is a man-made underground construction which
gathers groundwater from higher altitudes and transmits it to
low land areas where it can be used for different purposes. For
this purpose, at first, the location of the qanats was detected
using extensive field surveys. These qanats were classified
into two datasets including training (70%) and validation
(30%). Then, 14 influence factors depicting the region’s phys-
ical, morphological, lithological, and hydrological features
were identified to model groundwater potential. Linear dis-
criminant analysis (LDA), quadratic discriminant analysis
(QDA), flexible discriminant analysis (FDA), penalized dis-
criminant analysis (PDA), boosted regression tree (BRT), ran-
dom forest (RF), artificial neural network (ANN), K-nearest
neighbor (KNN), multivariate adaptive regression splines
(MARS), and support vector machine (SVM) models were

applied in R scripts to produce groundwater potential maps.
For evaluation of the performance accuracies of the developed
models, ROC curve and kappa index were implemented.
According to the results, RF had the best performance, follow-
ed by SVM and BRT models. Our results showed that qanat
locations could be used as a good indicator for groundwater
potential. Furthermore, altitude, slope, plan curvature, and
profile curvature were found to be the most important influ-
ence factors. On the other hand, lithology, land use, and slope
aspect were the least significant factors. The methodology in
the current study could be used by land use and terrestrial
planners and water resource managers to reduce the costs of
groundwater resource discovery.
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1 Introduction

Average annual precipitation in Iran has been measured as
270 mm, which is less than one third of the world’s annual
average (Mahdavi 2004; Chezgi et al., 2015). Seventy percent
of the precipitation falls on northern parts of the country, while
other parts receive inadequate amount (Ahmadi et al. 2010).
According to Mahdavi (2004), in the case of temporal distri-
bution of the precipitation, a low share of the precipitation
occurs during plan growing season. The rapid increase in the
population of Iran in the last decades has caused an increasing
demand for fresh water, especially for groundwater resources.
Considering the mentioned facts, efficient management, con-
servation plans, and sustainable use of groundwater resources
are necessary activities needed.

Qanat is an underground construction that collects and de-
livers groundwater from highland mountainous areas to
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lowland residential areas for different purposes especially
drinking water and farming (Perrier and Salkini 1991;
Nazari Samani and Farzadmehr 2006) (Fig. 1). Qanat technol-
ogy was developed by the Persian people and spread from
there to more than 34 countries in Asia, Africa, and Europe
(Naghibi et al. 2015). There are about 32,164 active qanat
systems in Iran with approximately 9 billion cubic meters
(bcm) of total discharge (Naghibi et al. 2015). More descrip-
tion on qanat and its structure can be found in Nazari Samani
and Farzadmehr (2006) and Naghibi et al. (2015).

One new method which has provided much useful infor-
mation for water resource managers is groundwater potential
mapping (GPM). Different researchers have used different
groundwater indicators for groundwater potential mapping
such as spring, qanat, and well. In some studies, spring loca-
tions and different models were used for producing GPMs
such as frequency ratio (FR) (Oh et al. 2011; Pourtaghi and
Pourghasemi 2014; Davoodi Moghaddam et al. 2015);
weights-of-evidence (WE) (Ozdemir 2011a); logistic regres-
sion (LR) (Ozdemir 2011a; Pourtaghi and Pourghasemi
2014); index of entropy (IE) (Naghibi et al. 2015); artificial
neural network (ANN) (Lee et al. 2012a, b); analytical hierar-
chy process (AHP) (Rahmati et al. 2014; Razandi et al. 2015);
evidential belief function (EBF) (Pourghasemi and
Beheshtirad 2014); and data mining models such as random
forest, classification and regression trees, and boosted regres-
sion tree (Naghibi and Pourghasemi 2015; Naghibi et al.
2016; Zabihi et al. 2016).

In the last decade, many predictive models have been used
in other fields of sciences and engineering such as soil, spec-
troscopy, landslide susceptibility mapping, food quality, air
quality, land use, and flood susceptibility mapping, including
flexible discriminant analysis (FDA) (Tebaldi et al. 2002), k-

nearest neighbor classification (KNN) (Paraskevas et al.
2015), linear discriminant analysis (LDA) (Ramos-Canon
et al., 2015; Eker et al. 2015), multivariate adaptive regression
spline (MARS) (Felicisimo et al. 2012; Samui and Kurup
2012; Tayyebi and Pijanowski 2014), penalized discriminant
analysis (PDA) (Granitto et al. 2008; Zhu and Tan 2016) qua-
dratic discriminant analysis (QDA) (Eker et al. 2015), and
SVM (Ballabio and Sterlacchini 2012; Kavzoglu et al. 2014;
Hong et al. 2015; Marjanović et al. 2011; Pourghasemi et al.
2013; Tehrany et al. 2014; Tehrany et al. 2015; Tien Bui et al.
2015; Karami et al. 2015), and the results were reported
satisfactory.

Considering the aforementioned literature, there are two
major novelties in current study: (i) the use of the ten advanced
and soft computing models for groundwater qanat potential
mapping and (ii) consideration of qanats as indicator for
groundwater potential.

2 Study area

The study area lies between 31°50′36″N and 32°34′16″N lat-
itude and 51°26′57″E and 59°21′51″E longitude with an area
of 2321 km2. Beheshtabad is located in Chaharmahal-e-
Bakhtiari Province, Iran. The elevation of the study area dif-
fers from 1660 to 3560 m with an average of 2301 m. The
mean yearly rainfall in Beheshtabad is 618.8 mm (Mojiri and
Zarei 2006). Based on the Geological Survey of Iran (GSI
1997), the most part of the area is covered by the lithology
as A in Table 1. The study area is consisted of main land use
classes of agricultural (29.83%), orchard (1.37%), rangeland
(66.25%), and residential (2.54%). There are 1425 springs and
228 qanats in the study area. People in the study area have a

Fig. 1 A profile of qanat and its
components (Nazari Samani and
Farzadmehr 2006)
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high dependency to groundwater resources for water supply
and other usages.

3 Methodology

The overall methodology (Fig. 2) includes the following: (1)
preparing a qanat location map in the study area; (2) feature
selection using frequency ratio model; (3) running ten models
for groundwater qanat potential mapping; (4) validating the
models; and (5) comparing different models and selection of

the best models using ROC curve, Cohen’s kappa, specificity,
and sensitivity indices. Figure 1 lists the factors used and the
processes applied in the analysis.

3.1 Qanat dataset

In the current study, the location of qanats was detected using
extensive field surveys and national reports. In total, 228
qanats were detected in the Beheshtabad Watershed and
mapped at 1: 50,000 scale (Fig. 3). Water resources provided
by qanat structures in the Beheshtabad area are used for

Table 1 Lithological
characteristics of Beheshtabad
Watershed, Iran

Name Lithology

A Low-level piedmont fan and valley terraces deposit

B Low weathering gray marls alternating with bands of more resistant shelly limestone

C Pale-red, polygenic conglomerate, and sandstone

D Undifferentiated metamorphic rocks, including phillite, meta-volcanics, calcschist, and crystallized
limestone

E Cream to brown-weathering, feature-forming, well-jointed limestone with intercalations of shale

F Gray, thick-bedded, o’olitic, fetid limestone

G Gray, thick-bedded to massive orbitolina limestone

H High-level piedmont fan and valley terraces deposits

I Marl and calcareous shale with intercalations of limestone

J Polymictic conglomerate and sandstone

K Undivided Bangestan Group, mainly limestone and shale, Albian to Companian

L Undivided Eocene rock

M Un consolidated wind-blown sand deposits and back shore sand duns

Fig. 2 Overall methodological flow chart adopted in this study
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Fig. 3 Qanat locations with
digital elevation model (DEM)
map of the study area
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different sections such as drinking water purposes, farming,
wild life, etc. Qanats were divided into two groups: training
dataset (70%, 160 qanats) and validation dataset (30%, 68
qanats) (Oh et al. 2011; Ozdemir 2011a, b; Lee et al. 2012a,
b). For this, Hawth extension (Gutiérrez et al. 2009) was used
to randomly classify qanat locations into two groups. Hawth
extension provides tools for sampling such as generating ran-
dom points and creating random selections. In addition,
Hawth tools can be used to calculate and add some indices
and add to the table of layers such as area, perimeter, length,
etc.

3.2 Groundwater influence factors

To assess groundwater potentiality in this study, it is vital to
consider several qanat-effective factors. Fourteen influencing
groundwater factors were selected based on literature review
(Naghibi et al. 2015) and data availability. These factors con-
tain three primary topographical attributes (i.e., altitude, slope
angle, slope aspect), five secondary topographical attributes
(i.e., plan curvature, profile curvature, topographic wetness
index, slope length, stream power index), four river and fault
maps (i.e., distance from rivers and faults, rivers and faults
density), and finally categorical factors (i.e., lithology and
land use). These factors were then classified according to lit-
erature review (Oh et al. 2011a, b; Ozdemir, 2011a, b; Naghibi
and Pourghasemi 2015).

3.2.1 Primary topographical attributes maps

First, the digital elevation model (DEM) was extracted using
the 1:50,000 scale topographic maps (contour lines and eleva-
tion points) in a 20-m cell size. Then, three primary factors
including altitude, slope angle, and slope degree were calcu-
lated and classified. Altitude was divided into five classes
(<2000, 2000–2400, 2400–2800, 2800–3200, and >3200 m)
based on equal classification scheme (Fig. 4a). The slope an-
gle map was prepared by dividing it into four classes: (0°–5°,
5°–15°, 15°–30°, and >30°) (Fig. 4b). Slope aspect was cate-
gorized into north, northeast, northwest, east, west, southeast,
southwest, south, and flat based on normal or common stan-
dard classification (Fig. 4c).

3.3 Secondary topographical attributes maps

Five secondary topographical attributes were used in the
analysis: plan curvature, profile curvature, slope length
(LS), stream power index (SPI), and topographic wetness
index (TWI) (Fig. 3d–h). Plan curvature and profile cur-
vature were prepared by using SAGA-GIS 2.8 (Fig. 4e).
The plan curvature map was classified into three classes
of convex, concave, and flat representing positive, nega-
tive, and zero values, respectively (Fig. 4d). Profile

curvature map was prepared and then categorized into <
−0.001, −0.001 to 0.001, and >0.001 groups. LS was
classified into four classes (0–20, 20–40, 40–60, and
>60) (Fig. 4f). SPI was classified into four classes of
(0–200, 200–400, 400–600, and >600) (Fig. 4g). TWI is
a topographical index which shows the aptitude of water
to gather at each point in the watershed (Moore et al.
1991). This factor was classified into (<8, 8–12, and
>12) (Fig. 4h).

3.3.1 River and fault maps

Four maps were extracted from river and fault layers in-
cluding drainage density, distance from rivers, fault den-
sity, and distance from faults. Distance from river and
drainage density was created using topographic maps of
Beheshtabad watershed. In order to produce fault-related
groundwater factors, distance from fault and fault density
maps were calculated implementing a geological map of
Beheshtabad watershed. Distance from river map was
classified into (<100, 100–200, 200–300, 300–400, and
>400 m) (Fig. 4i). Distance from fault map was classified
into <250, 250–500, 500–750, 750–1000, and >1000 m
(Fig. 4j). For drainage density and fault density, natural
breaks were used for classification (Fig. 4k, l).

3.3.2 Categorical factors (land use and lithology)

Using Landsat images, the land use map was created.
Supervised classification and maximum likelihood algorithms
were used to produce land use map of the study area. Four
land use classes were identified including agricultural, resi-
dential, orchard, and rangeland (Fig. 4m).

The lithology map of the study area that has 13 lithological
classes was created from a geological map obtained from
Geology Survey of Iran (GSI) (1997). In the study area, there
are different lithology classes which were classified from A to
M (Table l and Fig. 4n).

3.4 Feature selection

FR is defined as the probability of happening of an exact event
(Bonham-Carter, 1994). An FR value of greater than 1 for an
influence factor indicates a high correlation (Oh et al. 2011).
FR also shows the relationship between qanat occurrence and
groundwater influence factors. Although it ignores the inter-
actions between influence factors, it was used as an indicator
to show whether the factors are useful alone or not. In this
step, FR values were calculated to determine whether the fac-
tors are influence or not. For this, FR was calculated for each

of the factors’ classes by FR ¼ q
Q =

p
P

� �
. In this equation, q is
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the number of pixels with a qanat for each factor, Q shows the
number of total qanats in study area, p is the number of pixels

in the class area of the factor, and P is the total number of
pixels in the area.

Fig. 4 Topographical parameter maps of the study area: a altitude, b slope angle, c slope aspect, d plan curvature, e profile curvature, f slope length, g
stream power index, h topographic wetness index, i distance from rivers, j distance from faults, k drainage density, l fault density,m land use, n lithology
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3.5 Soft computing models for groundwater qanat
potential assessment

In this study, four discriminant analysis methods were imple-
mented for modeling groundwater potential including LDA,
QDA, FDA, and PDA models.

Fisher (1936) introduced a linear discriminant analysis
model which can separate two classes an object by seek-
ing for a linear combination of variables (Eker et al.
2015). In the LDA, the estimated values (i.e., N) are de-
termined using a linear combination of a set of explana-
tory variables (i.e., effective factors) such as N = fX + q
(q = constant), which best differentiates the group of a
case by finding the f coefficients (Eker et al. 2015).
LDA has two assumptions including the existence of nor-
mal distribution in effective factors and close covariance
values. For running LDA model, MASS package was
used in R 3.0.2.

In quadratic discriminant analysis approach, a qua-
dratic surface will be determined which could separate
the group of a case. QDA searches for a group mem-
bership consisting of a matrix (m × m) (m = number of
effective factors) and a linear combination of these fac-
tors such that Q = xTVx +KTx + f (Eker et al. 2015),
where V shows the m × m matrix of coefficients, K
shows the linear combination coefficient, and f is a con-
stant (Eker et al. 2015). In the QDA, the assumption of
the normal distribution still exists, but there is no need
for covariance values to be close. The QDA was ana-
lyzed using “MASS” package in R 3.0.2 as well.

FDA was developed to combine non-parametric re-
gression models with LDA to get more flexibility in
the decision boundaries (Mallet et al. 1996). This goal
could be achieved by casting regression methods and
classification methods into one framework (Mallet
et al. 1996). On the other hand, FDA is the application

Fig. 4 (continued)
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of LDA on the matrix achieved with regression methods
and on the transformed class matrix (Reyn et al. 2006).

The penalized discriminant analysis developed by
Hastie et al. (2001) is a regularized version of the tra-
ditional Fisher’s LDA (Ripley 1996). PDA is suggested
to be more appropriate for problems in which LDA has
overfitting problem (Mallet et al. 1996). PDA, first, re-
casts LDA classification problem as a regularized linear
regression problem. Then, it applies one of the many
famous techniques available (Granitto et al. 2008).

Boosted regression tree uses both statistical and machine
learning (SL and ML) techniques (Youssef et al. 2015). BRT
has a different approach from traditional regression methods
that produce a single best model (Elith et al. 2006; Leathwick
et al. 2006). BRT combines a large number of simple tree
models to improve the performance of prediction using
boosting technique (Elith et al. 2006; Leathwick et al. 2006).
In addition to boosting, the BRT also implements regression
trees in the modeling process. Regression trees are categorized
from the classification and regression tree approaches which
are from decision tree group of models. An R script (gbm and
dismo) was used to run BRT.

Random forest is a new non-parametric method and a very
accurate classifier and robust against noise (Breiman, 2001).
The algorithm extracts binary trees selected randomly that
implement a sub-dataset of the feature observations through
bootstrappingmethod. Then, RF selects a sub-dataset from the
whole dataset to build the model (Zabihi et al. 2016). The data
which is not included in the sub-dataset are called out-of-bag
(OOB) (Breiman 2001; Catani et al. 2013). RF grows multiple
decision trees on random sub-datasets from training dataset
and related variables. Small changes in the training data cause
a high variance in single classification trees and often results
in rather low prediction accuracies (Breiman 1996). RF was
fitted in R (R Development Core Team 2005) version 3.0.2,
implementing the randomForest package (Ridgeway 2006).
Artificial neural network comprises several layers of nodes
(neurons) (Lee et al. 2012a, b). These layers of nodes ex-
change messages with each other (Lee et al. 2012a, b).
Every node is connected to the other nodes in the next layer.
Input layer includes influence factors and the output layer
delivers one or more predictive values for the response vari-
able(s), which in this case is the probability of qanat occur-
rence (Aertsen et al. 2010). Between them, there are one or
more hidden layers and the network is trained by
implementing an iterative method for determining the weights
of the connections between the layers (Aertsen et al. 2010). In
the current study, the back propagation (BP) algorithm with
“mlpe” package was tested for groundwater qanat potential
mapping and the results were compared with other soft com-
puting models.

KNN classification is a non-parametric model for classifi-
cation and regression problems (Chirici et al. 2015). Rote

classifier, first, memorizes the whole training data. Then, the
mentioned Rote classifier classifies only when the features of
the test object (i.e., qanat) match with one of the training
objects (Wu et al. 2008). However, there is a drawback in this
approach. Since many test objects do not match with any of
the training records, they cannot be categorized (Wu et al.
2008). The best selection of the k value depends on the data.
Everitt et al. (2011) mentioned that larger values of k results in
a reduction in the effect of noise on the classification.
However, it makes boundaries among classes less clear
(Everitt et al. 2011). The KNN model fit in R 3.0.2 was eval-
uated using the “rminer” package.

MARS is a method that is implemented in order to fit the
relationship between input (in this case, groundwater influ-
ence factors) and output variables (in this case, qanat occur-
rence) (Friedman, 1991).MARS combines three techniques to
build a new model. These techniques are (1) constructing
splines mathematically, (2) binary recursive partitioning
(BRP), and (3) linear regression (LR) (Friedman 1991). This
model determines the type of relationship between the re-
sponse factor (qanat occurrence) and the groundwater influ-
ence factors which could be linear or non-linear (Hastie et al.
2001). TheMARSmodel was fitted using the “earth” package
in R 3.0.2.

Support vector machines (SVMs) are a set of ma-
chine learning techniques based on the concept of opti-
mal separating hyperplane which are developed by
Vapnik (1995). SVM can be thought as non-linear clas-
sifiers which aim to find the most extensive margin
between two classes in feature space (Ballabio and
Sterlacchini 2012). The SVM approach aims to (1) re-
duce the error test and (2) reduce the model complexity
(Ballabio and Sterlacchini 2012). In other words, SVM
depends on data which means that the model capacity is
calibrated to match data complexity which is called
structural risk minimization, a paradigm on which
SVM is based (Vapnik 1995; Cherkassky and Mulier
2007). In this study, SVM was fit in R 3.0.2 using
the rminer package.

3.6 Data-based sensitivity analysis

Data-based sensitivity analysis (DSA) was used in order to
define the importance of the groundwater influence factors
in the ANN, QDA, and SVMmodels. The sensitivity analysis
(SA) dataset is consisted of Ns random sub-datasets which are
selected from the initial dataset. In the SA dataset, all xz values
are altered by xak and the responses are gathered (Cortez and
Embrechts 2013), where xz :a∈ (1, 2, 3, …, B) and xak is the
first input level, and B represents input variables. In the next
step, the previous function is repeated implementing a differ-
ent j value (j € {1, 2, 3, … , L}, L = level) (Cortez and
Embrechts 2013). The mentioned process will be repeated
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for all groundwater influence factors and results in a complex-
ity of the order ϑ(M*L*Ns*P), where Ns is the length of the
training samples (Cortez and Embrechts 2013).

3.7 Validation and comparison of the groundwater
potential maps

For evaluating the models, ROC, sensitivity, specificity, kap-
pa, and qanat density indices were used. Sensitivity is propor-
tion of qanats (in this study) which are correctly estimated as
qanat (Negnevitsky 2002). On the other hand, specificity is
called to the proportion of the non-qanats (in this study) that
are correctly predicted as non-qanat (Negnevitsky 2002).
Tradeoff between these indices is called ROC curve
(Negnevitsky 2002; Hong et al. 2016; Karimi et al. 2016)
which was also calculated and used in this study. Kappa index
was also calculated as below:

k ¼ Po−Pe

1−Po
ð1Þ

where, Pois TP + TN/n, and Pe = (TP + FN)(TP + FP) + (FP +

TN)(FN + TN)/
ffiffiffiffi
N

p
. In these equations, TP is true positive,

TN is called the true negative, FP is false positive, FN shows
false negative, and N represents the total number of observa-
tions (Moosavi and Niazi 2015; Naghibi and Moradi
Dashtpagerdi 2016).

Qanat density (QD) was also computed for the implement-
ed models as below:

QD ¼ PQ

PP
ð2Þ

where QD represents qanat density, PQ depicts percentage of
the qanats in each class of the GPMs, and PP percentage of the
pixels in each class of the GPMs.

4 Results

4.1 Results of the feature selection

According to Table 2, for slope angle, lower slopes had larger
correlation with qanat occurrence as the class of 0–5 had the
highest FR with a value of 1.71. For slope aspect, flat and
southeast aspects had the highest FR values (1.87 and 1.34,
respectively). For altitude, the class of 2000–2400 has the
highest FR value (1.27). For plan curvature, the flat class
had the highest FR with a value of 1.43, indicating a high
probability qanat occurrence in this class. For the profile cur-
vature class of −0.001 to 0.001 had the highest FR value
(1.20). Qanats are concentrated in areas with LS <20 (FR
value of 1.44), in areas with an SPI (<200) (1.40), and in areas

with TWI >12 (1.69). For distance from rivers, the class of
<100 had the highest FR value (2.63), while for distance from
faults, the class of >1000 m had the highest FR value (1.11).
The results of river density showed that the 0.31–0.78 class
had a high density of qanats with FR value of 1.30. In the case
of fault density, the <2.72 and 8.37–15.70 classes had the
highest values (FR = 1.13, and 1.12, respectively). In respect
of land use factor, orchard and agriculture had the highest
qanat concentration with frequency values of 1.82 and 1.44,
respectively. Finally, in the case of lithology, F and I had the
highest FR values (2.72 and 1.30, respectively).

Considering the FR values, it can be concluded that all of
the factors, in one or some classes, have higher FR values than
1 which implies that the factors can be used as influence fac-
tors on groundwater potential.

4.2 Results of the models

The results of the LDA indicated that GPM could be calculat-
ed as below:

GQPILDA ¼ −0:139*slope degree−0:071*slope aspect

þ 0:002*altitude−32:299*plan curvature

−22:828*profile curvatureþ 0:011*slope length

−0:0000006*stream power index

−0:0004*topographic wetness index −0:0004*

distance from riversþ 0:00002*distance from faults

−1:164*river density

−0:015*fault density−0:031*land use−0:025*lithology

ð3Þ

In the GPM obtained by using LDA, low potential, mod-
erate potential, high potential, and very high potential classes
cover 21.29, 25.56, 33.58, and 19.57% of the study area, re-
spectively (Fig. 5a).

In the case of QDA, the GPMwas grouped into four classes
of low potential, moderate potential, high potential, and very
high potential (Fig. 5b). The moderate potential GPM class
derived using the QDA model covers 25.27% of the area;
24.69, 17.22, and 32.80% of the area are assigned to low
potential, high potential, and very high potential GPM zones,
respectively (Table 3). In this method, altitude, profile curva-
ture, and plan curvature had the highest importance (Fig. 6a).

FDA resulted in a final model included degree value of 1
and nprune of 10. In this case, nprune depicts number of terms
and degree represents product degree. In the GPM obtained by
using the FDA model, high and very high classes covered
23.12 and 17.12% of the study area, while low potential and
moderate potential classes of potentiality covered 32.25 and
24.52% of the area (Fig. 5c).
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Table 2 Spatial relationship between each effective factor and qanat locations using frequency ratio (FR) model

Factor Class No. of pixel in domain No. of qanats Frequency ratio (FR)

Slope angle (degree) 0–5 2,298,984 109 1.71

5–15 1,462,498 37 0.91

15–30 1,679,643 14 0.30

>30 361,705 0 0

Slope aspect Flat 735,195 38 1.87

North 557,953 11 0.71

Northeast 855,674 18 0.76

East 632,044 13 0.74

Southeast 593,011 22 1.34

South 679,745 13 0.69

Southwest 774,993 23 1.07

West 545,134 15 0.99

Northwest 429,081 7 0.59

Altitude (m) <2000 138,471 0 0

2000–2400 3,982,550 140 1.27

2400–2800 1,338,961 20 0.54

2800–3200 321,421 0 0

>3200 21,427 0 0

Plan curvature (100/m) Concave 1,305,957 28 0.77

Flat 3,077,923 122 1.43

Convex 1,418,950 10 0.25

Profile curvature (100%m) <(−0.001) 1,423,662 40 1.01

(−0.001) to (0.001) 3,197,653 106 1.20

>(0.001) 1,181,515 14 0.42

Slope length (m) <20 2,552,771 102 1.44

20–40 994,761 21 0.76

40–60 726,026 9 0.44

>60 1,529,272 28 0.66

Stream power index <200 1,159,782 45 1.40

200–400 730,882 15 0.74

400–600 536,393 14 0.94

>600 3,375,773 86 0.92

Topographic wetness index <8 407,887 0 0

8–12 3,059,222 51 0.60

>12 2,335,721 109 1.69

Distance from rivers (m) <100 330,835 24 2.63

100–200 290,402 14 1.74

200–300 285,638 4 0.50

300–400 278,972 9 1.17

>400 4,616,983 109 0.85

Distance from faults (m) <250 386,142 8 0.75

250–500 377,923 5 0.47

500–750 353,617 5 0.51

75–1000 320,728 8 0.90

>1000 4,364,420 134 1.11

River density (km/km2) <0.31 2,203,090 48 0.79

0.31–0.78 2,246,028 81 1.30

0.78–1.27 998,728 21 0.76

1.27–2.51 354,984 10 1.02
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Penalized discriminant analysis was fitted and the final
model had shrinkage penalty coefficient (lambda) value of
0.1 with accuracy value of 0.61 and kappa value of .023. In
the case of GPM obtained by using PDA, moderate potential
class covered 26.11% of the study area and low potential, high
potential, and very high potential classes contained 21.43,
33.01, and 19.45% of the area (Fig. 4d).

In the case of BRT, the five most influential variables were
altitude (18.42%), TWI (13.91%), distance from faults (12.52%),
slope aspect (9.99%), and slope degree (9.70%), respectively
(Fig. 6b). GPM obtained by using BRT model is illustrated in
Fig. 5b. We found that low potential, moderate potential, high
potential, and very high potential classes cover 24.44, 25.44,
25.06, and 25.05% of the study area, respectively (Fig. 4e).

RF provides two indices to determine the importance
of the input variables, i.e., mean decrease in accuracy
and mean decrease in Gini (Immitzer et al. 2012).
Altitude, TWI, slope, and distance from faults had the
highest importance between effective factors, respective-
ly (Fig. 6c). On the other hand, fault density, land use,
and aspect had the lowest power. Low potential, mod-
erate potential, high potential, and very high potential
classes cover 31.27, 30.74, 23.10, and 14.89% of the
study area, respectively (Fig. 5f).

In the case of ANN, the final multilayer perceptron
(MLP) was applied with 14 input layers, 7 hidden layers,

and 1 output layer as a 14-7-1 network. A groundwater
qanat potential map was calculated using artificial neural
network (Fig. 5g). The range of classes and percentage of
each class are presented in Table 3. According to the re-
sults, low potential, moderate potential, high potential, and
very high potential classes cover 13.00, 34.87, 32.57, and
19.54% of the study area, respectively. According to
Fig. 6d, TWI, slope degree, and river density had the most
important influence factors, while land use, slope aspect,
and fault density had the lowest importance.

Groundwater qanat potential map was calculated using
KNN by a k = 3 in the study area (Fig. 5h). Based on this
method, low potential, moderate potential, high potential, and
very high potential classes cover 21.72, 34.57, 31.05, and
12.66% of the study area, respectively.

The main equation calculated by multivariate adaptive re-
gression spline model is represented as

MARS ¼ 0:928–0:018*max 0;Slope−8:324ð Þ−0:00004*max

0;Fault Dis−6596:97ð Þ þ 67:984*max 0;Profile−−0:0009ð Þ
*Landuse2–0:061*max 0; 14:489−TWIð Þ*Landuse2

þ 0:005*max 0; 2280−Altitudeð Þ*max 0; 0:353–River Densð Þ
−0:0002*max 0; 2280−Altitudeð Þ*max 0; 8:797–Fault Densð Þ
−0:014*max 0; Profile−−0:004ð Þ*max 0; 6596:969−Fault Disð Þ

ð4Þ

Table 2 (continued)

Factor Class No. of pixel in domain No. of qanats Frequency ratio (FR)

Fault density (km/km2) <2.72 3,757,240 118 1.13

2.72–8.37 901,771 17 0.68

8.37–15.70 676,037 21 1.12

15.70–26.80 467,782 4 0.31

Land use Agriculture 1,731,384 69 1.44

Orchard 79,370 4 1.82

Rangeland 3,844,777 83 0.78

Residential 147,299 4 0.98

Lithology A 2,659,654 63 0.85

B 234,579 6 0.92

C 31,616 0 0

D 5095 0 0

E 94,800 0 0

F 757,669 57 2.72

G 1,005,012 19 0.68

H 102,749 3 1.05

I 305,502 11 1.30

J 151,436 1 0.23

K 104,632 0 0

L 346,945 0 0

M 3141 0 0
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Fig. 5 Groundwater potential maps produced by a LDA, b QDA, c FDA, d PDA, e BRT, f RF, g ANN, h KNN, i MARS, j SVM
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The groundwater potential map produced by MARS is
shown in Fig. 5i. In this method, low potential, moderate
potential, high potential, and very high potential classes cover
16.21, 23.88, 27.22, and 32.67% of the study area,
respectively.

In the case of SVM, C-SVM (SVM type 1) with a
Gaussian radial basic kernel function, hyperparameter
sigma = 0.076, number of support vectors = 249, ob-
jective function value = −189.32, and training error = 0.2
was fitted. Finally, groundwater potential map produced
by using SVM model is shown in Fig. 5j. The range
and classes are represented in Table 3. According to the
results, low potential, moderate potential, high potential,
and very high potential classes cover 36.34, 29.49,
20.58, and 13.57% of the study area, respectively.
According to Fig. 6e, altitude, slope degree, and plan
curvature had the highest importance between effective
factors, while lithology, land use, and slope aspect had
the lowest importance.

4.3 Validation of qanat potential maps

The results of the sensitivity showed that QDA and ANN
were the best models for predicting qanat locations
(Table 4). On the other hand, MARS and KNN were the
weakest models in this case. The results of the specificity
depicted good performance of BRT and RF models and
weak performance of QDA and ANN models (Table 4).
Results of the AUC-ROCs indicate that RF, SVM, and
BRT had the highest ROC values (0.846, 0.83, and
0.829, respectively) indicating better performance by
these models in groundwater potential mapping, while
ANN and KNN had the lowest values of ROC (0.632,
and 0.703, respectively, indicating weak performances;
Table 4). In the case of Kappa index, RF, BRT, FDA,
and SVM showed better results, while ANN, KNN, and
MARS showed weak performances (Table 4). In addition,
QD was also calculated and represented in Table 5.
According to the results, PDA, SVM, BRT, and RF had
the highest values of 18.15, 2.76, 1.98, and 1.93, respec-
tively. Overall, it can be concluded that RF, SVM, and
BRT were the most successful method for groundwater
modeling in this study.

5 Discussion

In this section, the results were discussed in three parts includ-
ing the performance of models and their comparison, the
comparison between qanat and spring as indicators of
groundwater potential, and the importance of variables in
groundwater modeling.

5.1 The performance of models and their comparison

According to the results, RF had the best performance in
groundwater modeling, followed by SVM and BRT
models. The better performance of RF can be due to its
ability to run on large databases and capability to handle
thousands of input variables without variable deletion.
Stumpf and Kerle (2011) mentioned that random forests
take advantage of the high variance among individual
trees which lets each tree vote for the class membership.
Then, RF determines the respective class based on the
most number of votes. In addition, RF is able to deal
with interactions and non-linearities between effective
factors (Catani et al. 2013). Also, RF showed suitable
performance in different fields of study including wild-
fire, ecology, groundwater spring potential mapping, and
landslide susceptibility mapping (Peters et al. 2007;
Oliveira et al. 2012; Vorpahl et al. 2012; Naghibi and
Pourghasemi 2015). The SVM model has the advantage
of handling complex, non-linear relationships, and is
very robust to noise (Ballabio and Sterlacchini 2012;
Tien Bui et al. 2016). It is shown that the SVM model
performs well in different fields of study including flood
susceptibility mapping (Tehrany et al. 2014; Tehrany
et al. 2015) and landslide susceptibility mapping
(Ballabio and Sterlacchini 2012; Pourghasemi et al.
2013). It was seen that BRT model had suitable perfor-
mance and attained third rank in groundwater potential
mapping among the implemented models. BRT model
includes strong features of tree-based models; it can
model different types of factors and cope with missing
data. BRT is also able to handle interaction effects
among effective factors (inputs) (Elith et al. 2008). In
addition, BRT showed good performance in different
fields of study such as ecology (Abeare 2009; Aertsen
et al. 2011), groundwater spring potential mapping

Table 3 Distribution of the qanat
potential values and areas with
respect to the groundwater qanat
occurrence potential zones

GQP classes (%) LDA QDA FDA PDA RF SVM BRT ANN KNN MARS

Low 21.29 24.69 32.25 21.43 31.27 36.34 24.44 13.00 21.72 16.21

Moderate 25.56 25.27 24.52 26.11 30.74 29.49 25.44 34.87 34.57 23.88

High 33.58 17.22 23.12 33.01 23.10 20.58 25.06 32.57 31.05 27.22

Very high 19.57 32.80 17.12 19.45 14.89 13.57 25.05 19.54 12.66 32.67
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(Naghibi and Pourghasemi 2015), and landslide suscep-
tibility mapping (Youssef et al. 2015). Overall, tree-based
models have some advantages such as feature selection
and pruning. Feature selection leads to selection of the
most important factors which can be used for splitting
and making decision. On the other hand, TB models
employ pruning features which makes them more general
and makes the results more acceptable. Among discrim-
inant analysis models, it was seen that FDA had the best
performance, followed by QDA, LDA, and PDA models.
In the case of LDA, it is very sensitive to outliers, and
no dependent factor may be definitely correlated to a
linear combination of other variables. ANN is prone to
overfi t t ing and KNN performs poorly on high-
dimensionality datasets (Tien Bui et al. 2012).

5.2 The comparison between qanat and spring
as indicators of groundwater potential

Using qanat as an indicator for groundwater potential was a
novelty in the current study. Naghibi and Pourghasemi (2015)
used spring data to map groundwater potential by five models
of BRT, RF, CART, EBF, and GLM in the Beheshtabad wa-
tershed, Iran. According to their results, BRT and RF models
had ROC values of 86.12 and 86.05, respectively. In the cur-
rent study, BRT and RF models showed ROC values of 84.90
and 86.31, respectively. The results obtained by spring and
qanat as groundwater potential indicators are very similar.

So, it can be concluded that qanat is also a good indicator
for groundwater potential.

5.3 The importance of variables in groundwater modeling

Altitude, slope degree, plan curvature, and profile curvature
were found to be more significant factors compared to others.
On the other hand, lithology, land use, and slope aspect were
the least important influence factors. Therefore, it can be con-
cluded that two primary and two secondary parameters had
the highest importance and contribution in the modeling pro-
cess. The four mentioned primary and secondary topographi-
cal parameters affect water flow concentration as well as its
infiltration in any part of the watershed. As slope degree in-
creases, flow speed increases and a decrease in infiltration can
be observed. Lower altitudes contain more developed drain-
age system which leads to more water flow and subsequently
higher available water. Considering the topographical condi-
tion of the study area which is mountainous, higher impor-
tance of the primary and secondary topographical factors
could be justified. In addition, the quality of the input factors
could influence the results of the models and subsequently the
factors’ importance. Thus, it can be concluded that the impor-
tance of the factors could be affected by general topographical
condition of the area and its quality. In another study, Naghibi
and Pourghasemi (2015) found altitude, distance from faults,
SPI, and fault density to be more important for groundwater
modeling. Hence, there are some differences in the sensitivity

Table 4 Prediction rate curve for
the qanat potential maps produced
by different models implemented
in the current study

Models AUC-ROC Sensitivity
(true positive rate)

Specificity
(false positive rate)

Cohen’s
Kappa index

RF 0.846 75.0 79.4 54.4

SVM 0.830 70.6 76.5 47.1

BRT 0.829 75.0 79.4 54.0

FDA 0.775 76.5 72.1 48.5

MARS 0.760 64.7 63.2 27.9

QDA 0.757 92.6 36.8 29.4

LDA 0.735 69.1 60.3 29.4

PDA 0.722 69.1 60.3 29.4

KNN 0.703 66.2 61.8 27.9

ANN 0.632 82.4 44.1 26.5

Table 5 Qanat density (QD) on
groundwater potential maps
developed from different machine
learning models

Class LDA QDA PDA FDA BRT RF ANN KNN MARS SVM

Low 0.66 0.48 0.62 0.58 0.60 0.56 0.68 0.71 0.32 0.49

Moderate 0.86 0.87 0.93 0.78 0.86 0.96 0.72 0.94 0.95 1.07

High 0.90 1.15 0.82 1.18 1.04 1.05 1.35 1.02 0.86 0.64

Very HIGH 1.73 1.41 18.15 1.93 1.98 1.93 1.13 1.63 1.49 2.76
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of different factors in the use of qanat versus spring for
groundwater modeling.

6 Conclusion

This study evaluated the performance of ten models in the
groundwater potential mapping using qanat locations as indi-
cator in the BeheshtabadWatershed, Iran. For this purpose, 14
influence factors were prepared and used in the modeling. The
ROC, sensitivity, specificity, kappa, and qanat density indices
were used to evaluate the performance of the models. The
results showed that the RF, SVM, and BRTmodels were more
suitable for groundwater potential mapping using qanat loca-
tion. Overall, it was seen that tree-basedmodels (BRTand RF)
and SVM had better performance than discriminant models,
ANN, MARS, and KNN. In addition, among discriminant
analysis models, FDA had the best performance.
Furthermore, the suitability of qanat locations as groundwater
potential indicator was verified. Therefore, in many countries,
these constructions can be used as groundwater indicator for
mapping groundwater potential. In addition, it was concluded
that altitude, slope degree, plan curvature, and profile curva-
ture were more effective compared to other factors. The results
of the current study can be used by land use planners and
water resource managers in order to reduce the costs of
groundwater resource discovery and exploitation.
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