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Abstract This study is among the first to investigate wild-
land fire risk in the Northeastern and the Great Lakes
states under a changing climate. We use a multi-model
ensemble (MME) of regional climate models from the Coor-
dinated Regional Downscaling Experiment (CORDEX)
together with the Canadian Forest Fire Weather Index Sys-
tem (CFFWIS) to understand changes in wildland fire
risk through differences between historical simulations and
future projections. Our results are relatively homogeneous
across the focus region and indicate modest increases in the
magnitude of fire weather indices (FWIs) during northern
hemisphere summer. The most pronounced changes occur
in the date of the initialization of CFFWIS and peak of
the wildland fire season, which in the future are trend-
ing earlier in the year, and in the significant increases in
the length of high-risk episodes, defined by the number of
consecutive days with FWIs above the current 95th per-
centile. Further analyses show that these changes are most
closely linked to expected changes in the focus region’s
temperature and precipitation. These findings relate to the
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current understanding of particulate matter vis-à-vis wild-
fires and have implications for human health and local and
regional changes in radiative forcings. When considering
current fire management strategies which could be chal-
lenged by increasing wildland fire risk, fire management
agencies could adapt new strategies to improve awareness,
prevention, and resilience to mitigate potential impacts to
critical infrastructure and population.

1 Introduction

Regional meteorology drives the conditions conducive to
increased wildland fire risk through mechanisms such as
high temperatures, elevated surface winds, nominal precip-
itation, and decreased soil moisture and is also responsible
for the non-anthropogenic source of wildland fire ignition,
lightning (Flannigan et al. 2005). While wind is a mecha-
nism by which wildland fires experience growth, Parisien
et al. (2011) examined several environmental factors related
to wildland fires in North America and suggested that
extreme temperatures most strongly governed wildland fire
activity. Regional fire regimes are highly sensitive to climate
change due to an immediate response on fuel moisture from
changes in precipitation, temperature, wind speed, and rel-
ative humidity (Moriondo et al. 2006). Pronounced climatic
changes have already begun to alter the long-standing cli-
matic averages of the Northeastern and Great Lakes states
in the USA (henceforth “focus region”) and these changes
are expected to continue through the twenty-first century
(e.g., Hayhoe et al. 2007; Gao et al. 2012; Ning et al. 2015).
Knowledge of the impact of these climatic changes on fire
regimes in this historically non-fire-prone region is essential
for sound preparation for these changes by land managers,
fire professionals, and policy makers.
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The key objectives of this study are to spatially, tempo-
rally, and statistically quantify expected changes in wildland
fire risk and thereafter consider the most important climatic
factors driving these changes. We use regional climate mod-
els (RCMs) dynamically downscaled by a subset of general
circulation models (GCMs) from Phase 5 of the Cou-
pled Model Intercomparison Project (CMIP5) (Taylor et al.
2012) as inputs to the Canadian Forest Fire Weather Index
System (CFFWIS) (Wagner 1987). The public perceptions
of currently low wildland fire risk (Hawbaker et al. 2013)
and heavy urbanization (2013) in this focus region make it
an important region to study the effects of climate change on
wildland fire risk to provide an accurate overview for impact
assessment and policy development. We begin this paper
with an overview of the synoptic meteorological patterns
affecting the focus region as well as a brief description of the
general climatic conditions (Section 2.1). This is followed
with a description and framework for the regional climate
and fire weather models used in this study (Sections 2.2 and
2.3). Section 2.4 expands on the metrics applied to under-
stand changes in wildland fire risk. Section 3 focuses on
the significant effects of climate change on wildland fire
risk, and we discuss the extent to which uncertainties may
confound these effects. Finally, we summarize our findings
(Section 4) and call for a better understanding of additional
factors that contribute to wildland fire risk and effective
adaptation techniques.

2 Data and methods

2.1 Focus region

We define our focus region based loosely on the amal-
gamation of two ecoregions defined by the Joint Fire Sci-
ence Program (JFSP) (see www.firescience.gov). Here, we
consider the Great Lakes states to be Minnesota, Wiscon-
sin, Michigan, and Ohio. The Northeastern states include
Pennsylvania, New York, Vermont, New Hampshire, Maine,
Massachusetts, Connecticut, Rhode Island, New Jersey,
Delaware, and Maryland (Fig. 1). The climate of the region
is diverse due, in part, to several geographic factors. The
Atlantic Ocean and Great Lakes regulate the climate of near-
by areas as well as influence mesoscale weather patterns.
The sheer size of the Great Lakes reduces the diurnal and
annual variation of air temperature and also alters cloud co-
ver and downwind precipitation patterns (d’Orgeville et al.
2014). Average annual precipitation substantially varies
across the focus region ranging from about 600 mm yr−1 in
Minnesota to 1300 mm yr−1 in New England coastal areas.
The Appalachian Mountains, a narrow system of mountains
running parallel to the eastern seaboard and generally con-
sidered to be the geographical line which divides the eastern

seaboard of the USA with the Midwestern region, are oro-
graphic influences and increase precipitation. Some highly
localized areas in these mountainous regions annually receive
over 1500 mm of precipitation (Kunkel et al. 2013a, b).

Climatological records in the Northeastern states reveal
frequent heat waves (defined as three or more days of tem-
peratures exceeding 32 ◦C) occurring nearly annually during
the summer (Kunkel et al. 2013b). Northeastern meteoro-
logical droughts occur less frequently, on average every
2–3 years, and have a temporal scale of 1–3 months (Kunkel
et al. 2013b). Changing temperature patterns are expected to
cause milder winters and more extreme heat events during
the summer (Thibeault and Seth 2014). Multi-model aver-
ages from 23 coupled models project warm spells in the
Northeast to lengthen more than 700 % by the middle of
the twenty-first century and more than 1500 % by the late
twenty-first century over 1951–2010 values (Thibeault and
Seth 2014). An analysis of precipitation across the North-
eastern states since 1970 has shown upward trends in annual
amounts and greater variability (Kunkel et al. 2013b). The
seasonal distribution of future precipitation in the Northeast
is expected to shift to higher amounts during the winter sea-
son with decreases or no changes during the summer season
(Hayhoe et al. 2007).

In the Great Lakes states, the distribution of precipita-
tion is also changing. By mid-century, a median increase of
between 14 and 29 % in the frequency of a 50-year rain-
fall event is expected to occur (d’Orgeville et al. 2014).
However, these states will still experience, overall, drier
conditions (Swain and Hayhoe 2015) as precipitation will
fall during temporally brief, extreme precipitation events.
Similar to the Northeastern states, the Great Lakes states can
anticipate average daily maximum temperatures to increase
by 3–6 ◦C by the end of the century (Wuebbles and Hayhoe
2004). Summertime temperature changes at the end of the
century under a high emission scenario are anticipated to
be the highest in Minnesota and Wisconsin (Wuebbles and
Hayhoe 2004). The highest upward trends in precipitation
are projected in Minnesota while no change is expected in
the Eastern Great Lakes states such as Michigan and Ohio
(Wuebbles and Hayhoe 2004). Modeled summer tempera-
tures and precipitation distributions in Upper Great Lakes
states are expected to resemble current summer conditions
in Arkansas or Mississippi (Wuebbles and Hayhoe 2004).

Along with expected temperature and precipitation chan-
ges, the duration of the frost-free season is changing across
the entire focus region. For boreal and temperate forests,
studies have reported similar trends in spring onset and leaf-
out, which are shifting earlier in the year (Schwartz et al.
2006; Schwartz et al. 2013; Ault et al. 2015). Although the
responses of leaf senescence and leaf abscission to climate
change have not been thoroughly researched and autumn has
been referred to as the “neglected season in climate change

www.firescience.gov
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research” (Gallinat et al. 2015), several studies investigated
the frost-free season as a whole and found statistically signi-
ficant trends in the increasing length of the frost-free season
(Wuebbles and Hayhoe 2004; Kunkel 2004; Kunkel et al.
2013b). In subsequent sections of this manuscript, we consi-
der this changing length of the frost-free season to
explain our findings in future projections of FWIs in the
focus region.

2.2 The Canadian Forest Fire Weather Index System

The Canadian Forest Fire Weather Index System (hence-
forth “CFFWIS”), developed by the Canadian Forestry
Service, has been in use since 1970. Changes in units and
various mathematical procedures occurred in the years fol-
lowing 1970, but the overall continuity of the output has
been preserved (Wagner 1987). CFFWIS synthesizes mete-
orological parameters to estimate the effects of weather on
wildland fire risk but does not take into account other factors
contributing to risk (e.g., biomass, ignitions, topography,
etc.) (DeGroot et al. 1998). CFFWIS was calibrated and
tested in Canadian boreal forests and represents a standard-
ized fuel type characterized by mature Jack Pines (Pinus
banksiana) and Lodgepole Pines (Pinus contorta) (Wotton
2009; Chelli et al. 2015). Although CFFWIS historically
was used as an operational model, it has been widely used
for climate-related research applications in many different
fire regimes beyond Canada’s boreal forests such as the
Daxing’anling region of China, the Mediterranean Basin,
and Australia (Tian et al. 2011; Moriondo et al. 2006; Clarke
et al. 2013).

CFFWIS uses daily measurements of air temperature,
relative humidity, instantaneous wind speed, and accumu-
lated precipitation taken at 1200 h local standard time (LST)
to determine six indices which represent fuel moisture, the
rate of fire spread, and fuel weight consumed (Wagner
1987). 1200 h LST observations input to the model predict
wildland fire conditions during the peak time of fire activ-
ity, around 1600 h LST, if daily air temperature, relative
humidity, and wind speed follow typical diurnal patterns
(Turner and Lawson 1978; Wagner 1987). Within CFFWIS,
latitude is used to determine daylength. Outputs of CFFWIS
include three moisture indices (fine fuel moisture code, duff
moisture code, drought code), two indices pertaining to fuel
moisture influences on wildland fire behavior (initial spread
index, buildup index), and an index which represents the
intensity of a spreading fire (fire weather index) (Turner
and Lawson 1978). The fire weather index (FWI) is consid-
ered to be a “first level” index and combines the effects of
the other indices into one numerical value (Wagner 1987)
which is a measure of the rate of a fire’s spread with the
amount of fuel consumed. This index is suitable for a gen-
eral measure of wildland fire risk (Lawson and Armitage

2008). Within our research, it is the component of CFFWIS
that we compute and analyze.

Persistent meteorological conditions are factored into the
daily calculations of the FWI: CFFWIS uses the previous
day’s moisture indices to calculate the FWI. The seasonal
starting procedure for CFFWIS varies and is contingent
upon either snow cover or daily temperature values (Turner
and Lawson 1978). Since correct simulations of snow cover
have been only partially reproduced by state-of-the-art cli-
mate models (Brutel-Vuilmet et al. 2013), our starting pro-
cedure was based on Natural Resources Canada’s recom-
mendation of initializing CFFWIS when the daily mean
temperature is at least 6 ◦C for three consecutive days.
When this criterion was met, CFFWIS was initialized and
start-up values were calculated for the moisture indices
based on the number of days since the last precipitation
fell. This initialization should not be confused with the
onset of northern hemisphere spring. Although it could indi-
cate warmer winter temperatures, it could also indicate a
brief warm spell. Daily mean temperature is not a vari-
able included within the framework of the Coordinated
Regional Climate Downscaling Experiment (CORDEX), so
the approach of Forsythe et al. (1995) was used to cal-
culate daylength, and subsequently, a diurnal temperature
curve from daily maximum near-surface air temperature
(tasmax) and daily minimum near-surface air temperature
(tasmin) was constructed and averaged to yield the daily
mean temperature. In the event that start-up values are over-
or underestimated, the fine fuel moisture code will correct
itself after about 3 days (Turner and Lawson 1978). In this
research, we calculated and analyzed daily FWIs from the
date of initialization of CFFWIS until the end of the calen-
dar year due to the aforementioned increases in the length
of the frost-free season that prevented the use of a tempera-
ture threshold. A standard method of calculating the official
end of the fire season does not exist (Wotton and Flannigan
1993). Some have calculated the end of the season based on
temperature thresholds, while others stop daily calculation
when contracts end for seasonal employees working for fire
management agencies (Wotton and Flannigan 1993).

2.3 Regional climate scenarios

We assessed twentieth century simulations and twenty-first
century projections of wildland fire risk using the latest
set of coordinated climate model intercomparison experi-
ments, CMIP5 (Taylor et al. 2012). In particular, we relied
on CORDEX to provide reanalyses, historical simulations,
and future projections of dynamically downscaled regional
climate scenarios for North America (Giorgi et al. 2009).
There are a variety of regional simulations available for the
CORDEX North American domain from several modeling
groups, and we selected a subset of these simulations based
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on their temporal frequency, high grid cell resolution (0.44◦,
≈ 50 km), and high greenhouse gas concentrations. Since
wildland fire risk has a high temporal variability, we deemed
it necessary to only evaluate regional simulations available
at a daily frequency. Previous wildland fire risk studies
have exclusively used high-emissions scenarios (e.g., Goff
et al. 2009; Clarke et al. 2011), and current trends in global
emissions show yearly increases which align with these
“business as usual” scenarios (Peters et al. 2013). Our green-
house gas concentration criterion is therefore based upon
the Representative Concentration Pathways (RCP) raising
radiative forcing by 8.5 W m−2 due to anthropogenic emis-
sions by 2100 (Moss et al. 2010; van Vuuren et al. 2011).
These criteria resulted in our use of the models shown in
Table 1 combined in a multi-model ensemble (MME) with
a “one model, one vote” approach. We chose this approach
because examining individual ensemble members, on their
own, may lead to error due to differing parameterizations,
boundary conditions, and initial conditions; however, using
a MME improves the reliability, skill, and consistency of
predictions (Tebaldi and Knutti 2007) and provides a mea-
sure of likelihood of projected risk (Kendon et al. 2008). Un-
less noted, all subsequent plots and figures show the results
of the MME rather than the individual CORDEX models.

CORDEX provides reference data for evaluation, the
ERA-Interim driven reanalysis (Dee et al. 2011). RCMs
driven by reanalyses are available for 1989–2012, and
RCMs driven by historical simulations are available for
1951–2004. We examined the overlapping period between
the reanalyses and the historical simulations (1989–2004)
to assess model performance and to ensure that the RCMs
driven by GCMs accurately portray the reanalyses with-
out producing artificial trends or other artifacts. We defined

Table 1 Regional simulations from the CORDEX North American
domain (Giorgi et al. 2009) used in this study

Driving reanalysis Driving GCM

RCM ERA-Int CanESM2 EC-EARTH

RCA4 X X X

CanRCM4 X X

HIRHAM5 X X

The regional climate models (RCMs) include (1) Sveriges Meteo-
rologiska och Hydrologiska institut (SMHI) Rossby Centre Regional
Atmospheric Climate Model, version 4 (RCA4), (2) Centre canadien
de la modélisation et l’analyse climatique/Canadian Centre for Cli-
mate Modelling and Analysis (CCCma) Canadian regional climate
model, version 4 (CanRCM4), and (3) Danmarks Meteorologiske
Institut HIRHAM, version 5 (HIRHAM5). The general circulation
models (GCMs) and reanalyses include (1) European Centre for
Medium-range Weather Forecast (ECMWF) Interim Reanalysis
(ERA-Int), (2) second generation Canadian earth system model
(CanESM2), and (3) ECMWF/Europe-wide consortium earth system
model (EC-EARTH)

this period as a baseline for several metrics related to wild-
land risk. The CORDEX future scenario spans 2006–2100,
and in addition to trends aggregated over this entire period,
two arbitrary 25-year periods, a mid-century period (2026–
2050), and a late-century period were examined. For addi-
tional details about the CORDEX experimental design, refer
to http://www.cordex.org.

From CORDEX, we obtained tasmax, tasmin, 12 UTC
near-surface specific humidity (q), 12 UTC surface pres-
sure (ps), near-surface wind speed (sf cWind), and 12 UTC
accumulated precipitation (pr). Daily values of relative
humidity were computed by combining tasmax, q, and ps

in the classical Clausius-Clapeyron relationship (Lawrence
2005).

We began our investigation with a systematic compar-
ison of FWIs produced with the ERA-driven reanalysis
from CORDEX and FWIs produced with local observations.
Research has revealed biases and lack of model consensus
in CMIP5 GCMs which effectively decrease confidence in
future climate projections (Maloney et al. 2014). We sought
to investigate whether these biases—or biases present in the
RCMs—would yield different FWIs compared to those pro-
duced with meteorological observations. Figure 1 compares
daily FWIs produced with hourly meteorological obser-
vations from CLIMOD (climod.nrcc.cornell.edu) for the
measuring period 1989–2004 versus the MME from the
ERA-driven reanalysis calculated in the same manner as
elsewhere in this paper. Sites examined represent stations
across the Northeastern and Great Lakes states with reliable,
complete climatic records and are identifiable in Fig. 1a
with black scatter points and in Fig. 1b–k by their ICAO
codes. In an effort to smooth out any noise in the ERA-
driven reanalysis, the reanalysis was sampled at the five
nearest grid cells to the stations’ locations and averaged;
these grid cells are shown in blue in Fig. 1a. Upon com-
paring the signal and noise in the box plots in Fig. 1b–f,
we note similar first quartiles, median, and minimum val-
ues for selected sites. Indeed, by definition the FWI has
a minimum of 0 corresponding to very low risk, so these
whiskers correspond to 0 or near-zero values. The variability
and maximum values of FWIs produced with observations
versus the reanalysis are slightly greater in magnitude. The
cumulative distribution functions (CDFs), shown in Fig. 1g–
k, compliment the findings in the box plots and give validity
to the notion that FWIs produced in these two different man-
ners have similar distributions, although FWIs derived from
the reanalysis leads to a slight underestimation of FWIs
for CDF values between 0.4 and 1. Overall, this systematic
comparison at these sites revealed that FWIs produced with
the ERA-driven reanalysis from CORDEX slightly underes-
timated wildland fire risk. Additional analyses (not shown)
indicated that the seasonal cycle of FWIs computed through
observations versus CORDEX was largely preserved. For

http://www.cordex.org
climod.nrcc.cornell.edu
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Fig. 1 Comparison of observed and modeled Fire Weather Indices
(FWIs). The locations of observed FWIs shown in a, derived from
hourly, derived from hourly meteorological observations at select sites,
are shown as scatter points while ERA-Interim grid cells which, aver-
aged, yielded the FWIs derived from the reanalysis are shown as
patches. Also shown in a are the Northeastern and Great Lakes states
referred to extensively in this paper. Boxplots of FWIs computed with

observations and the reanalysis over the historical period (1989–2004)
are shown in b–f. Indicated on the boxplots (from bottom) are the
minimum value, 1st quartile, median, 3rd quartile, and the maximum
value. Subplots (g–k) show cumulative distribution functions (CDFs)
of observed and modeled FWIs for the same stations and measuring
period

these reasons, we did not deem it necessary to apply any
offset or scale factor to our results from CORDEX.

2.4 Data analysis

In this study, we use several metrics to gauge projected
changes in wildland fire risk. The metrics chosen for analy-
sis are as follows: (1) Magnitude of FWIs. Daily FWI values
averaged over the historical, mid-century, and late-century
periods show the annual cycle of the wildland fire season
and expected changes in the magnitude of FWIs correspond-
ing to increased wildland fire risk. (2) Temporality of the
fire season. Given the recent trends in spring onset (e.g.,
Schwartz et al. 2006, 2013; Ault et al. 2015), what are their
effects on the timing of the fire season? We investigated
trends in the date of the start and peak of the wildfire season,
defined as the date of initialization of CFFWIS and max-
imum FWI in a year, respectively. (3) Changing length of
high-risk episodes. We examined the right tail of the FWI
distribution and, in particular, the 95th percentile of FWIs

as this portion of the distribution corresponds to days where
more frequent, extreme fires could occur (Wang et al. 2015).
We define a “high-risk day” in our focus region as a day
which exceeds the 95th percentile for historical FWIs. We
then examine the largest consecutive number of days in a
year where this threshold is exceeded.

Statistical comparison of spatial fields FWIs computed
from ERA-Interim driven reanalysis were compared to
FWIs computed from CORDEX historical simulations by
a test for differences of mean for paired samples for auto-
correlated data (Wilks 2011). Statistical significance was
assessed by z-scores at the 95 % confidence level under a
null hypothesis of zero change; here, z is defined by:

z = � − μ�

(s2
�/n′)1/2

(1)

where � is mean of the FWICORDEX and
FWIERA−Interim paired differences, μ� = 0 under the
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null hypothesis, and s2
� is the sample variance of the paired

differences. Since using the previous day’s FWI to calcu-
late the present day’s FWI introduces time dependence,
an effective sample size (n′) was determined using the
approximation:

n′ ≈ n
1 − ρ1

1 + ρ1
(2)

where ρ1 is the lag-1 autocorrelation coefficient.

Trend detection in the seasonality of wildland fire risk
Typically, Spearman’s rho test or the non-parametric Mann-
Kendall trend test is used to analyze possible temporal
trends in data (Wilks 2011). For this study, the Mann-
Kendall trend test was invoked to assess the significance in
the nonstationarity of the time series and the degree of asso-
ciation between time and parameter of interest. The high
interannual variability of the metrics related to wildland fire
risk results in a non-normal distribution for which the Mann-
Kendall is particularly appropriate. The null hypothesis for
the Mann-Kendall trend test is that the data have no trend or
serial correlation (Hamed and Rao 1998). The test statistic
is discussed in detail by Wilks (2011) and given as:

S =
n−1∑

i=1

n∑

j=i+1

sgn(xj − xi) =
∑

i<j

sgn(xj − xi) (3)

where:

sgn(�x) =
⎧
⎨

⎩

+1, �x > 0
0, �x = 0.

−1, �x < 0
(4)

If some values in the data are repeated, the variance of the
distribution varies directly with these non-distinct values;
the variance is defined by:

V ar(S) =
n(n − 1)(2n + 5) −

J∑
j=1

tj (tj − 1)(2n + 5)

18
(5)

Finally, the z test statistic, a standard Gaussian value, is
computed and used to evaluate the test p value.

z =
⎧
⎨

⎩

S−1

[V ar(S)] 1
2
, S > 0

S+1

[V ar(S)] 1
2
, S < 0

(6)

3 Results and discussion

Since the FWI is a strong indicator of wildland fire risk
in forested areas (Lawson and Armitage 2008), our results
show that future climate changes will more frequently trig-
ger conditions conducive to wildland fires through enhanced
FWIs. The upper left subplot in Fig. 2 shows linear trends

in the magnitude of the annual maximum FWIs from
1989–2100. In this subplot, the largest trends in the mag-
nitude of FWIs are concentrated in a broad swath along
the northern border of the focus region (i.e., Michigan’s
Upper Peninsula, northern Minnesota, New York). Negative
trends, smaller in absolute value than the projected positive
trends, are noted in the far western portions of the focus
region (southern Minnesota). The remaining three subplots
in Fig. 2 depict mean annual maximum FWIs for the three
periods of interest. The geographic distribution of larger ver-
sus smaller FWIs does not change in a major way between
the historical and late-century periods, rather we observe
nuanced increases in the magnitude of FWIs. The large
magnitudinal range of FWIs that exists in the focus region
make detecting differences between the three time periods
in the remaining subplots of Fig. 2 difficult. However, pro-
jected changes in the magnitude of annual maximum FWIs,
in some cases, represent 100 % increases.

Stippling in the upper right subplot of Fig. 2 corresponds
to statistically significant differences between annual maxi-
mum FWIs produced with CORDEX historical simulations
and the ERA-Interim driven reanalysis at the 95 % con-
fidence level and was determined with t tests for auto-
correlated data (Eqs. 1 and 2). These differences manifest
themselves as biases between historical CORDEX simu-
lations and the ERA-Interim driven reanalysis in Fig. 3.
For both the Great Lakes and the Northeastern states in
springtime, FWIs produced with historical CORDEX simu-
lations and ERA-Interim driven reanalyses are roughly the
same. However, during the latter half of the year, FWIs
are slightly overestimated by CORDEX historical simula-
tions. In the Northeast, this overestimate is apparent starting
in mid-June and lingering until October. Whereas for the
Great Lakes states it is limited to, more or less, a 3 month
window: July through September. These differences do not
have to underscore our method of investigating changes
in wildland fire risk: although forcing RCMs with GCMs
can lead to errors due to incorrect boundary conditions and
structural biases, studies over the CORDEX North Ameri-
can domain have shown skill in reproducing near-surfaces
fields as well as in simulating mesoscale and synoptic
climatic features (Martynov et al. 2013; Šeparović et al.
2013). In the CORDEX models investigated by Martynov
et al. (2013), there is good agreement between historic
simulations and observation-based datasets, and they assert
that the performance of CORDEX in simulating historic
near-surface atmospheric processes is a sound basis for pro-
jecting future climate. In our study, we thus assume that
the biases present in CORDEX historical simulations persist
in CORDEX future projections; therefore, presenting the
changes between the future projections relative to the his-
torical simulations allows accurate assessment despite the
biases as the focus is on relative changes.



Climate change effects on wildland fire risk in the Northeastern and Great Lakes states 631

Fig. 2 Linear trends and
changes in FWIs. Linear trends
in the annual maximum FWIs
are shown (upper left). The
remaining subplots show annual
maximum FWIs averaged over
the baseline, mid-century, and
late-century periods. Stippling
in the baseline subplot (upper
right) corresponds to statistically
significant differences between
ERA-Interim and CORDEX
historical simulations at the
95 % confidence level

Possible biases arising from time dependence and the
memory in CFFWIS necessitated a resampling test to con-
struct batches of artificially paired data to determine how
unlikely the number of statistically significant different grid
cells we observed was. FWIs were therefore resampled in
a way that was consistent with the null hypothesis that no
statistical difference existed between FWIs computed with
CORDEX historical simulations versus those driven by the
ERA-Interim reanalysis. We constructed a collection (1000
realizations) of artificial data and found test statistics with
the aforementioned t tests for autocorrelated data. From
here, we compared these with the statistics from the original
data to investigate the significance of our original find-
ings. Upon comparing the total number of grid nodes where

statistically significant differences existed for our original
data and the artificial data, we see that our original findings
lie in the critical region (α = 0.99) of the left tail of the distri-
bution; thus, the resampling test gives strong evidence that
our findings are significant (Wilks 2011).

Figure 3 shows the seasonality of FWIs for the periods
of interest. Grey lines correspond to FWIs averaged over
the time periods. Colored lines were smoothed with a
least squares polynomial and regularize the noisy patterns.
Fire risk during the summer increases with each suc-
cessive time period across the entire focus region. Dif-
ferentiating changes in the magnitude of FWIs between
the historical, mid-century, and late-century periods dur-
ing the early and late parts of the year (January–May and

Fig. 3 The seasonal cycle of
FWIs. Annual patterns for the
historical, mid-century, and
late-century periods are depicted
in this figure along with a
comparison between historical
simulations and those driven by
the ERA-Interim reanalysis.
Grey lines represent daily values
averaged over the respective
periods while colored lines
shown in the legend correspond
to a smoothing of the grey lines
with a least squares polynomial
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Fig. 4 Violin plot of the
distribution of FWIs. These
violin plots combine box plots
with kernel density estimations
to show the changing
distribution of FWIs in the
twenty-first century for the
Northeastern and Great Lakes
states. The upper row
corresponds to the multi-model
ensemble average calculated
with the “one model, one vote”
approach while the bottom four
rows give a model-by-model
analysis

September–December) proves difficult, and often changes
are not readily observable. However, pronounced changes in
the magnitude of FWIs are evident during the summer. The
magnitude of FWIs in the Great Lakes states, especially dur-
ing the summer, is often double the magnitude found in the
Northeastern states. This difference in magnitude is not only
apparent in the seasonality of FWIs in Fig. 3 but also in the
distribution of FWIs in Fig. 4 as FWIs in the Great Lakes
states are generally more than double the value of FWIs in
the Northeastern states. The violin plot (Fig. 4) illustrates
obvious discrepancies when comparing individual models.
Most apparent are the differences in magnitude of FWIs
with EC-EARTH + HIRHAM5 (defined in Table 1), which
consistently produced smaller FWIs for both the Northeast-
ern and Great Lakes states. The performance of this model
in the Northeastern states, as shown in Fig. 4, projects that
the extrema, corresponding to higher risk, are projected to
decrease from the historical period to mid-century period
although the distribution of FWIs during the late twenty-
first century in these states for this model indicates a larger
number of days will have higher FWIs compared to the his-
torical period. This model’s performance is an outlier, and
the other three models and the MME mean suggest that both
the extrema and overall distribution of FWIs are changing
in a way that is conducive to increased risk. The perfor-
mance of EC-EARTH + HIRHAM5 in the focus region and,
to a lesser extent, CanESM2 + CanRCM4’s performance
in the Northeast imply a bimodal distribution (Fig. 4). In
these cases, we observe a peak of values of FWIs clus-
tered around 0 (presumably during early spring and late fall)
and a peak between the median (represented by black tick
marks on the violins) and maximum. For many models in
Fig. 4, the median of the distribution steadily increases for
each successive period of interest. An interesting feature of
the models’ performance in the Great Lakes states, perhaps

explained by interdecadal variability, is a decrease of FWI
extrema during the mid-century period with respect to the
historical period and then an increase during the late-century
period. This behavior is present in two of the models (i.e.,
CanESM2 + CanRCM4, EC-EARTH + HIRHAM5) and in
the MME mean as shown in Fig. 4.

Figures 5 and 6 indicate linear trends in both the ini-
tialization of CFFWIS and the peak of the fire season. We
investigated these possible trends with the Mann-Kendall
trend test (Eqs. 3, 4, 5 and 6), and this test yielded evi-
dence for significant change with time. Trends in both the
Northeastern and Great Lakes states suggest that the date
of initialization will occur more than 30 days earlier from
the dates observed in the late 1980s. We observed similar
trends in the date of the peak of the fire season across the
focus region. Figure 6 shows spatial results in the trends
of the date of initialization and peak of the wildland fire
season. The trends of the initialization (shading in Fig. 6)
appear to roughly lie in a latitudinal gradient with an ear-
lier start of the fire season at higher latitudes. There are no
areas of the focus region in which the fire season is pro-
jected to start later in the year. The spatial distribution of
trends of the date of the peak (stippling in Fig. 6) are highly
varied in space. For the most part, the projected behavior in
the date of the peak is trending earlier in the year: only in
the coastal Atlantic region do we observe this date to not
change or trend later in the year. The date of initialization
by the end of the century appears anomalous, coming as
early as mid-January in the Northeast. Since the initializa-
tion of CFFWIS occurs when the mean daily temperature is
at least 6◦C for three consecutive days, our results indicate
more frequent warm spells interrupting northern hemisphere
winter or overall warmer winter temperatures.

The magnitude of the trends in the date of initializa-
tion are roughly the same as the magnitude of the trends
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Fig. 5 Linear trends in the
dates of the initialization of the
Canadian Forest Fire Weather
Index System (CFFWIS) and
peak of the wildland fire season.
These time series, in grey,
indicate the day of the year since
January 1 (DOY) of the
initialization of CFFWIS and
the date of maximum FWI
occurrence, corresponding to the
peak of the wildland fire season.
The colored lines correspond to
linear trends for the two
parameters

in the date of the peak (note parallel trend lines in Fig. 5),
and thus the length between them is approximately the
same. In Fig. 3, we observe that FWIs decrease to low val-
ues in approximately mid-November, regardless of the time
period. Combining this with the earlier dates of initialization
and peak could result in a longer fire season and increased
risk. Similar findings were found by Flannigan et al. (2005).
The expected changes in the length of the fire season could
challenge the mobilization of wildfire management agen-
cies and force them to reconsider their approach in dealing
with changing fire regimes. Our findings of an earlier initial-
ization of CFFWIS agree with a previous study by Wotton
and Flannigan (1993). Of course, the exact fire risk not only
depends on climate but also on fuels and ignitions. Earlier
climate conditions conducive to fire affect fire occurrence
will therefore be determined by the interaction between
this change in climate and potential changes in fuels (type,
connectivity, availability) and ignitions (frequency, location,
probability).

The largest number of consecutive days above the 95th
percentile for each year is shown in Fig. 7. Unlike previous
studies (e.g., Guang et al. 2011) that used ordinal variables
(low, moderate, high, extreme) to rank wildland fire risk, we
decided to exclusively use expected changes in the annual
number of consecutive days above the historical 95th per-
centile to correspond to high-risk periods (Fig. 7). Because
of large differences in the magnitude of FWIs across the
focus region, implementing a universal set of ordinal vari-
ables could lead to stark differences in what is considered
low, moderate, or high risk at different locations. Thus, our
use of the 95th percentile in the method of Clarke et al.
(2013) and Wang et al. (2015) standardizes the classifica-
tion of extreme risk throughout our domain. We additionally
performed a Mann-Kendall test, and the results of this test
indicate the trend (Fig. 7) for the entire focus region is
significant. The analysis of this metric, shown in Fig. 7,
revealed that the length of these high-risk episodes will dou-
ble by 2100 over 1980s levels, thus indicating longer periods

Fig. 6 Spatial depiction of
linear trends in the dates of the
initialization of CFFWIS and
peak of the wildland fire season.
Same as Fig. 5 with shading
indicating linear trends in the
initialization of CFFWIS and
stippling indicating linear trends
in the peak of the wildland fire
season
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Fig. 7 Number of consecutive
days exceeding the 95th
percentile. Scatter points,
averaged over the states in either
the Northeast or Great Lakes
regions, represent the longest
period of consecutive days in a
year surpassing the 95th
percentile of historical FWIs.
The linear trend line corresponds
to expected changes aggregated
across the entire focus region

conducive for wildland fire activity. Recent studies on cli-
mate extremes (Seneviratne et al. 2012) suggest that this
surge in consecutive days above the 95th percentile aligns
with the expected changes in the length and severity of heat
events and meteorological droughts.

Furthermore, we conducted a perturbation experiment to
understand the influence of biases in the input variables
to CFFWIS between the historical period and future peri-
ods. Even with our approach of comparing changes between
the historical and future periods, CFFWIS could react non-
linearly to biases and confound the signals seen in several
of the analyses conducted. We broadly applied changes to
each of the input variables from the historical period (1989–
2004) and recalculated FWIs with these perturbed inputs. To
do so, we scaled the input variables to the CFFWIS by sim-
ple percentage decreases (75 %) and increases (125 %) at
every grid cell for the entire time period. While it is unlikely
that a bias in the modeled data would present itself in this
way without variance or localization, this approach gives us
an estimate to first order of how the FWI reacts to changes
in the input variables. Figure 8 uses a kernel density estima-
tion to show the results of this experiment aggregated over
the Northeastern and Great Lakes states. Statistical anal-
yses (i.e., ANOVA) were performed to assess differences
between the FWIs computed with perturbed inputs versus
FWIs computed with the unperturbed inputs. For tempera-
ture and wind shown in Fig. 8a, c, scaling the input variables
by 125 % (75 %) leads to increases (decreases) of the mean
and variance of a similar magnitude as the initial pertur-
bation, graphically shown in Fig. 8. We obtained similar
results for relative humidity and precipitation in Fig. 8b, d,
although perturbations to precipitation led to even smaller
changes in its mean, variance, and other statistical param-
eters. Based on the results of this experiment, we garner
an idea of the uncertainty in our projected changes through
the sensitivity of the CFFWIS to systematic perturbations in
the model’s input variables. Further work focusing on the

sensitivity of CFFWIS is needed, and we encourage inter-
ested groups to investigate the model’s behavior through
additional sensitivity experiments.

Lastly, we designed an analysis to diagnose which input
variable or combination of input variables to CFFWIS is
most responsible for the projected changes we observed.
This was done by recalculating late-century FWIs for four
cases. By using late-century values for three of the four
input variables (i.e., temperature, relative humidity, wind
speed, precipitation), we substituted historical values for
the final variable and recalculated FWIs. These recalcula-
tions were compared with actual late-century projections
using simple percentage change calculations for annual
maximum FWIs. Figure 9 spatially depicts these four recal-
culations. For example, the “temperature” subplot in Fig. 9
uses recalculated FWIs computed with historical values of
temperature and late-century values of precipitation, wind
speed, and relative humidity (determined by the Clausius-
Clapeyron relation using late-century values of specific
humidity and pressure and historical values of tempera-
ture). For the “relative humidity” subplot, also in Fig. 9,
we investigated how the role of relative humidity affects
late-century fire risk. For this case, we isolated specific
humidity’s effects on relative humidity and recalculated
relative humidity using historical specific humidity and
late-century temperature and pressure. Using this method
allowed us to preserve the seasonality of the input vari-
ables and the respective climate changes in each season
rather than broadly applying percent increases or decreases
to every grid cell for the whole period.

Meteorological variables which elevate wildland fire risk
often have aggregated contributions with respect to fire risk
and are difficult to parse (Parisien et al. 2011). Our recal-
culations of FWIs using historical parameters in Fig. 9
show that temperature is a key variable driving risk in the
late-century period. According to Goff et al. (2009), a
change in temperature alone is not conducive to increased
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Fig. 8 Sensitivity of CFFWIS.
Subplots show kernel density
estimations of perturbation
experiments conducted with
varying scalings for each input
variable to CFFWIS. Different
line types correspond to
different perturbations (solid
lines represent unperturbed runs)

wildland fire risk since this increase will be accompanied
by an increase in specific humidity due to the temperature-
specific humidity (T -q) feedback implied by the Clausius-
Clapeyron relationship (Gaffen and Ross 1999; Dai 2006)
thereby limiting the impact of the temperature effect.
However, the relative humidity subplot in Fig. 9 indicates
that specific humidity does contribute to increases in late-
century wildland fire risk, thus suggesting that the positive

effect that increasing temperatures have on wildland fire
risk more than compensates the negative effect that specific
humidity plays in decreasing risk.

Little research exists on the changes to near-surface
winds in the focus region. Klink (2002) observed twen-
tieth century trends in the distribution of wind speeds in
Minnesota and referred to wind as an “inherently-noisy vari-
able” influenced by local-scale features. Wind’s influence

Fig. 9 Input variables to CFFWIS driving change in wildland fire
risk. For each subplot, we substituted historical values (1980−2004)
of the title variable into the late-century period (2076−2100) to
diagnose which input variable was driving the largest changes in wild-
land fire risk. Percentage differences were found between average
annual maximum FWIs from the late-century period with and without

substitution of historical values. An explanation of the color scheme is
as follows: percentage decreases (blue) indicate that late-century val-
ues of the input variable of interest increased wildland fire risk in the
late-century period, whereas increases (red) indicate that late-century
values of the input variable of interest decreased wildland fire risk in
the late-century period
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on fire risk in the late-century period in Fig. 9 is highly
spatially dependent. There are several orographically influ-
enced areas in the Appalachian Mountains which are asso-
ciated with decreases in fire risk. Conversely, changes in
wind in the Great Lakes states are slated to elevate risk.
Precipitation’s role in increasing wildland fire risk across
the focus region is smaller than temperature’s and is rela-
tively homogenous (Fig. 9). Recent precipitation distribu-
tions across the USA have shown statistically significant
trends favoring an increase of precipitation intensity for
extreme precipitation events and a decrease for events with
lower precipitation amounts (Karl et al. 1999; d’Orgeville
et al. 2014). It is documented that precipitation deficits
are associated with large fire occurrence and annual area
burned (Drever et al. 2008). We speculate that fire risk
would increase if the focus region experienced an over-
all deficit of summertime precipitation with the distribution
favoring infrequent, extreme precipitation events; however,
additional research is needed to validate this hypothesis.
Overall, based on the analysis presented in Fig. 9, we unsur-
prisingly attribute changes in wildland fire risk primarily to
increases in temperature and, to a lesser extent, to decreases
in precipitation. Changing wind patterns also will increase
wildland fire risk in certain areas.

Recent research on wildland fires and climate change has
arrived at similar conclusions as we have; mainly, in the
distribution of fire-prone areas and the increasing length of
high-risk episodes. Most recent and pertinent are Tang et al.
(2015) and Wang et al. (2015). Tang et al. (2015) found
that the distribution of historically fire-prone areas does not
drastically change during the future. Rather than CFFWIS,
Tang et al. (2015) utilized the Haines Index (HI) (Haines
1988) for calculations of historical and future fire risk. HI is
based only upon atmospheric stability and moisture content.
Tang et al. (2015) used a metric, days per year exceeding
an HI threshold, analogous to our use of the annual num-
ber of consecutive days above the 95th percentile, and a
similar increase of days exceeding this threshold was found
during the future. However, Tang et al. (2015) used six dif-
ferent RCM-GCM combinations available from the North
American Regional Climate Change Assessment Program
(NARCCAP) (Mearns et al. 2009) from CMIP3 (Meehl
et al. 2007). NARCCAP’s future period spans only 2041-
2070 and does not cover the late-century period used in
this research where we found the most pronounced changes.
Moreover, the study of Tang et al. (2015) examined the con-
tiguous United States as a whole rather than focusing on
regional impacts. Wang et al. (2015) calculated wildland fire
risk using CFFWIS with inputs from GCMs with a coarser
resolution than CORDEX. For their study, start-up calcula-
tions used standard values for the moisture codes applied
on a constant, single fixed start date unlike our research
which initialized CFFWIS on a grid cell by grid cell basis

depending on rigorous temperature thresholds. Lastly, while
the conclusions Wang et al. (2015) drew were similar to
ours, their research centered on climate change effects on
wildland fire risk across Canada’s boreal shield.

To reiterate, our findings do not directly translate to spe-
cific numerical values for FWIs for a particular year but
show general trends and patterns expected to occur by the
end of the century. CFFWIS has several limitations which
should not be neglected. The largest is that it is a strictly
meteorological model with no sensitivity for other main
factors driving fire occurrence such as fuel (type, load,
connectivity) and ignitions (timing, frequency, type, proba-
bility). Assessment of climate change effects on fire risk in
the Northeast and Great Lakes regions of the USA is there-
fore an important first step towards full analysis of future
change in fire risk in this region.

4 Conclusions

The expected increases of wildland fire risk pose social
impacts with intangible value including loss of life and psy-
chological trauma (Gould et al. 2013). Furthermore, there
are socio-economic impacts to the Northeastern United
States and Great Lakes region. Commodities such as the
timber industry, infrastructure, and personal property all are
potential economic losses associated with wildland fires
(Gould et al. 2013). The effects of increased wildland fires
on ecosystems could be direct and significant. Within the
forest, biomass production, carbon sequestration, and nutri-
ent cycles can all be altered by wildland fires, and carbon
sinks in post-fire forests are smaller (Weber and Flannigan
1997; Amiro et al. 2001). More tangible effects on ecosys-
tems include habitat loss and a reduction of plant and animal
biodiversity (Weber and Flannigan 1997). Beyond the for-
est, wildfires are primary contributors to particulate matter
episodes (Dawson et al. 2014), and emissions from fires can
positively change radiative forcing and therefore contribute
to net warming effects (Fiore et al. 2015).

We hope that this work will prompt action among both
fire management agencies and the scientific community.
To adapt to future wildland fire activity, communities can
focus on prevention and mitigation of fire risk by man-
aging fuels and increasing awareness. Since most of the
land in the focus region is privately owned (unlike in the
western United States where many wildfires occur on fed-
eral land (Stephens 2005)), the success of prevention and
mitigation measures will strongly depend on the commit-
ment of land owners. Early adoption of the FIREWISE
community program (www.firewise.org) is recommended to
prepare communities for the expected increase in wildfire
risk. When fires do occur, fire departments that have tra-
ditionally been equipped to deal with structural fires will

www.firewise.org
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require adequate training and equipment to manage and sup-
press wildfires in the future. The scientific community and
modelers, in particular, could also integrate dynamic veg-
etation models and ignitions data with FWIs to provide
regional rasters of wildland fire risk based on daily or sea-
sonal forecasts in order to provide a complete projection of
all factors impacting fire risk in the Northeastern and Great
Lakes states with future climate change.
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cardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park
BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart
F (2011) The ERA-Interim reanalysis: configuration and perfor-
mance of the data assimilation system. Q J R Meteorolog Soc
137(656):553–597. doi:10.1002/qj.828/abstract

DeGroot WJ et al. (1998) Interpreting the Canadian Forest
Fire Weather Index (FWI) System. In: Proceedings of the
Fourth Central Region Fire Weather Committee Scientific
and Technical Seminar. http://www.dnr.state.mi.us/WWW/FMD/
WEATHER/Reference/FWI Background.pdf

d’Orgeville M, Peltier WR, Erler AR, Gula J (2014) Climate
change impacts on Great Lakes Basin precipitation extremes:
D’Orgeville et al. J Geophys Res: Atmos 119(18):10,799–10,812.
doi:10.1002/2014JD021855

Drever CR, Drever MC, Messier C, Bergeron Y, Flannigan M (2008)
Fire and the relative roles of weather, climate and landscape char-
acteristics in the Great Lakes-St. Lawrence forest of Canada. J Veg
Sci 19(1):57–66. doi:10.3170/2007-8-18313

Fiore AM, Naik V, Leibensperger EM (2015) Air quality and cli-
mate connections. J Air Waste Manage Assoc 65(6):645–685.
doi:10.1080/10962247.2015.1040526

Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ
(2005) Future area burned in Canada. Clim Chang 72(1-2):1–16.
doi:10.1007/s10584-005-5935-y

Forsythe WC, Rykiel Jr. EJ, Stahl RS, Wu H, Schoolfield RM (1995)
A model comparison for daylength as a function of latitude and
day of year. Ecol Model 80(1):87–95

Gaffen DJ, Ross RJ (1999) Climatology and trends of US
surface humidity and temperature. J Clim 12(3):811–828.
doi:10.1175/1520-0442(1999)012

Gallinat AS, Primack RB, Wagner DL (2015) Autumn, the
neglected season in climate change research. Trends Ecol
Evol 30(3):169–176. http://linkinghub.elsevier.com/retrieve/pii/
S0169534715000063

Gao Y, Fu JS, Drake JB, Liu Y, Lamarque JF (2012) Projected
changes of extreme weather events in the eastern United States
based on a high resolution climate modeling system. Envi-
ron Res Lett 7(4):044025. http://stacks.iop.org/1748-9326/7/i=4/
a=044025?key=crossref.81de07f01d95bb7a6db4a1d0b075ee60

Giorgi F, Jones C, Asrar GR, et al. (2009) Addressing climate informa-
tion needs at the regional level: the CORDEX framework. World
Meteorological Organization (WMO) Bulletin 58(3):175. http://
wcrp.ipsl.jussieu.fr/cordex/documents/CORDEX giorgi WMO.pdf

Goff HL, Flannigan MD, Bergeron Y (2009) Potential changes in
monthly fire risk in the eastern Canadian boreal forest under future
climate change. Can J For Res 39:2369–2380

Gould JS, Patriquin MN, Wang S, McFarlane BL, Wotton BM
(2013) Economic evaluation of research to improve the Cana-
dian forest fire danger rating system. Forestry 86(3):317–329.
doi:10.1093/forestry/cps082

Guang Y, Xue-ying D, Qing-xi G, Zhan S, Tao Z, Hong-zhou Y,
Wang C (2011) The impact of climate change on forest fire dan-
ger rating in China’s boreal forest. J For Res 22(2):249–257.
doi:10.1007/s11676-011-0158-8

Haines DA (1988) A lower atmosphere severity index for wildlife fires.
Fire Weather 13(2):23–27

Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for
autocorrelated data. J Hydrometeorol 204:182–196

Hawbaker TJ, Radeloff VC, Stewart SI, Hammer RB, Keuler NS,
Clayton MK (2013) Human and biophysical influences on fire
occurrence in the United States. Ecol Appl 23(3):565–582.
doi:10.1890/12-1816.1/full

Hayhoe K, Wake CP, Huntington TG, Luo L, Schwartz MD, Sheffield
J, Wood E, Anderson B, Bradbury J, DeGaetano A, Troy
TJ, Wolfe D (2007) Past and future changes in climate and
hydrological indicators in the US Northeast. Clim Dyn 28(4):381–
407. doi:10.1007/s00382-006-0187-8

Karl TR, Lawrimore J, DelGreco S (1999) United States historical
climatology network daily temperature, precipitation, and snow
data for 1871–1997. Carbon Dioxide information and analysis
center, Publ 4887. http://aprs.ornl.gov/∼webworks/cppr/y2002/
rpt/101454.pdf

http://www.publish.csiro.au/?paper=WF01038
http://www.publish.csiro.au/?paper=WF01038
http://dx.doi.org/10.1175/JCLI-D-14-00736.1
http://www.the-cryosphere.net/7/67/2013/
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11069-014-1397-8
http://doi.wiley.com/10.1002/joc.3480
http://www.publish.csiro.au/?paper=WF10070
http://www.publish.csiro.au/?paper=WF10070
http://journals.ametsoc.org/doi/abs/10.1175/JCLI3816.1
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-12-00181.1
http://onlinelibrary.wiley.com/doi/10.1002/qj.828/abstract
http://www.dnr.state.mi.us/WWW/FMD/WEATHER/Reference/FWI_Background.pdf
http://www.dnr.state.mi.us/WWW/FMD/WEATHER/Reference/FWI_Background.pdf
http://doi.wiley.com/10.1002/2014JD021855
http://doi.wiley.com/10.3170/2007-8-18313
http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1040526
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10584-005-5935-y
http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1999)012
http://linkinghub.elsevier.com/retrieve/pii/S0169534715000063
http://linkinghub.elsevier.com/retrieve/pii/S0169534715000063
http://stacks.iop.org/1748-9326/7/i=4/a=044025?key=crossref.81de07f01d95bb7a6db4a1d0b075ee60
http://stacks.iop.org/1748-9326/7/i=4/a=044025?key=crossref.81de07f01d95bb7a6db4a1d0b075ee60
http://wcrp.ipsl.jussieu.fr/cordex/documents/CORDEX_giorgi_WMO.pdf
http://wcrp.ipsl.jussieu.fr/cordex/documents/CORDEX_giorgi_WMO.pdf
http://forestry.oxfordjournals.org/cgi/doi/10.1093/forestry/cps082
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11676-011-0158-8
http://onlinelibrary.wiley.com/doi/10.1890/12-1816.1/full
http://springerlink.bibliotecabuap.elogim.com/10.1007/s00382-006-0187-8
http://aprs.ornl.gov/~webworks/cppr/y2002/rpt/101454.pdf
http://aprs.ornl.gov/~webworks/cppr/y2002/rpt/101454.pdf


638 G. H. Kerr et al.

Kendon EJ, Rowell DP, Jones RG, Buonomo E (2008) Robust-
ness of future changes in local precipitation extremes. J Clim
21(17):4280–4297. doi:10.1175/2008JCLI2082.1

Klink K (2002) Trends and interannual variability of wind speed dis-
tributions in Minnesota. J Clim 15(22):3311–3317. doi:10.1175/
1520-0442(2002)015

Kunkel KE (2004) Temporal variations in frost-free season in the
United States: 1895–2000. Geophys Res Lett 31(3). doi:10.1029/
2003GL018624

Kunkel KE, Stevens LE, Stevens SE, Sun L, Janssen E, Wuebbles
D, Hilberg SD, Timlin MS, Stoecker L, Westcott NE, Dobson
JG (2013a) Regional climate trends and scenarios for the U.S.
National climate assessment Part 3. climate of the Midwest U.S.
NOAA Technical Report NESDIS 142-3 142, no. 3

Kunkel KE, Stevens LE, Stevens SE, Sun L, Janssen E, Wuebbles D,
Rennells J, DeGaetano AT, Dobson JG (2013b) Regional climate
trends and scenarios for the U.S. National climate assessment: Part 4.
Climate of the Northeast U.S. NOAA Technical Report NESDIS
142, no. 4

Lawrence MG (2005) The relationship between relative humidity
and the Dewpoint temperature in moist air: a simple conver-
sion and applications. Bull Am Meteorol Soc 86(2):225–233.
doi:10.1175/BAMS-86-2-225

Lawson BD, Armitage OB (2008) Northern forestry centre (Canada):
weather guide for the Canadian forest fire danger rating system.
Northern forestry centre, Edmonton, http://epe.lac-bac.gc.ca/100/
200/301/nrcan-rncan/cfs-scf/nor-x/weather guide/Weatherguide
web.pdf

Maloney ED, Camargo SJ, Chang E, Colle B, Fu R, Geil KL, Hu
Q, Jiang X, Johnson N, Karnauskas KB, et al. (2014) North
American climate in CMIP5 experiments: Part III: assessment
of twenty-first century projections. J Clim 27(6):2230–2270.
doi:10.1175/JCLI-D-13-00273.1

Martynov A, Laprise R, Sushama L, Winger K, Šeparović L, Dugas
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