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Abstract There is still considerable uncertainty about precip-
itation at high elevation in mountain terrain due to the rela-
tively few in situ measurements available and to the particular
variability of the parameter. In this study, several spatialization
techniques were tested, some for climatological time scale and
others for daily fields, for precipitation over the western Alps
for the period of 1990–2012. The study domain and period
were chosen for the quality of available in situ observations
and density of the network. First, a weather-type classification
was established with a technique based on canonical correla-
tion analysis combining large- and regional-scale data. The
spatialization techniques applied for the climatological time
scale were adapted from the Aurelhy method which uses ele-
vation and principal components of the topography as predic-
tors. The spatialization techniques applied to daily fields were
based on kriging of daily rain gauges and used the climato-
logical fields as predictors. This study aims to validate the
advantage of using the climatology of the weather type of
the day as predictor for daily fields over a monthly climatol-
ogy. The climatology of the weather type of the day seems to
demonstrate some small improvement.

Finally, annual means over the period of 1990–2012 were
produced using several methods, including some from accu-
mulation of daily fields and others from the spatialization of in
situ station means. Precipitation at high elevations and vertical

climatological gradients were particularly scrutinized. Annual
means based on sums of daily fields seem to have better
performances.

This paper only presents results for precipitation but tem-
perature was also analysed.

1 Introduction

Knowledge of meteorological conditions over mountainous
areas is of great interest, particularly in terms of precipitation
which has important economic consequences for agriculture,
water resources, hydro-power, tourism and transport. The
study of meteorological and climatological conditions of rain-
fall is important in its own right but also in terms of its close
links with other sciences including hydrology, biology, glaci-
ology, distribution and diversity of vegetation and wild life
(Whiteman 2000; Barry 2008). Precipitation is also a key fac-
tor for natural hazards, of which the most important for moun-
tainous zones are flash floods and avalanches.

Today, understanding climate change mechanism is criti-
cal. In this context, chronological long-term time series of
spatial analysis of meteorological variables is a valuable tool
for a present and past reference climate database.

This is particularly important for mountainous areas, for
which the vertical stratification is expected to show enhanced
response to climate change (Beniston 2006).

Analyses of the meteorological parameters at short (hourly,
daily) and long time steps (monthly, yearly, decadal, 30-year
climatology) show very different spatial variability and phys-
ical patterns. They also differ in terms of the spatial analysis
techniques applied.

The basis of knowledge of precipitation still relies on in situ
measurement networks.
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Large networks of in situ measurements of precipitation
have existed for over a hundred years in Europe, even in
mountainous areas, but are constantly evolving.
Measurement networks are still heterogeneous and it is diffi-
cult to manage measurement condition information and build
homogeneous long-term time series for climatological pur-
poses. Finally, the spatial density of good quality long-term
time series without gaps is very limited due to the difficulty of
preserving stable networks. These features are enhanced in
mountain regions. Networks of in situ measurement for pre-
cipitation suffer from the lack of high elevation stations.

The harsh conditions (wind, snow, freezing temperatures)
have deplorable consequences on the quality and representa-
tiveness of data collected, particularly for precipitation
(Goodison et al.1998; Sevruk 2005; Sevruk et al. 2009).

Even with a high quality and very dense network of in situ
measurements, sophisticated spatial analysis techniques are re-
quired to deliver a valid estimate of themeteorological variables.

There are many spatial analysis techniques available
(COST-79 1997; Hofstra et al. 2008, 2010; Li and Heap
2008). Three major families of techniques are commonly dis-
tinguished: deterministic methods, statistical methods and
geostatistical methods. Common examples of the first family
are inverse distance weighting methods (or other weighting
functions like Epanechnikov). Examples of the second family
are linear models (Ripley 1981) and also splines with a
smoothing parameter adjustment (here thin plate splines) as
presented in Hutchinson (1998). Today, Kriging is a very pop-
ular technique in the third family (Matheron 1963; Cressie and
Cassie 1993; Goovaert 1997). In this case, the variable of
interest must show a spatial dependence and the latter must
verify a hypothesis of stationarity. The analysis of spatial de-
pendence is realized through the spatial covariance function or
the variogram.

Statistical and geostatistical methods produce unbiased es-
timates with the lowest error possible.

Another important difference among spatial analysis tech-
niques is between those using only the in situ measurement
sample and those also using ancillary variables. The latter
techniques are highly effective when the sampled values are
of poor quality and density and when the associated variables
(one or several) are closely correlated to the parameter of
interest and available at high spatial density. This is the case
for analysis of hourly and daily precipitation fields with the
help of radar data (De Gaetano and Wilks 2009; Wuest et al.
2009). Very often, the orography parameters are introduced
here (not only elevation but often elaborate parameters)
(Prudhomme 1998).

For climatological analysis, two early important studies
must be briefly described here as they illustrate an interesting
use of orography parameters.

The first one is PRISM proposed by Christopher Daly
(1994). It is based on a local linear model of precipitation with

elevation as predictor. The characteristic of this method is an
elaborate selection and weighting of the close neighbour sam-
pled values. This technique was applied by Schwarb for the
Alps, Gottardi for French mountains, adapted by Brunetti for
temperature in Italy and again by Mergili for precipitation in
Tyrol (Schwarb 2001; Gottardi et al. 2012, Brunetti et al.
2013; Mergili and Keschner 2015).

The second one is the Benichou and Le Breton (1987)
Aurelhy method (Benichou 1994). This technique is based
on a principal component analysis of the orography. For each
point of the target grid, representative points of the
neighbourhood are selected, here called landscapes. A princi-
pal component analysis (hereafter PCA) is applied on the ma-
trix of landscapes. The first components are representative of
slope vectors, curvature, convexity/concavity and other char-
acteristics of the relief. They are not correlated and have
turned out to be good parameters for a linear model for a first
estimate of the meteorological variable. An improvement in
the result is then added with a kriging of the residuals.

A new software for the implementation of the Aurelhy
method was developed in 2014 at Météo-France and this spa-
tial analysis technique plays a central role in the present study.

The two methods, PRISM and Aurelhy, have in common
the idea that a statistical relationship between orography and
precipitation can be found at the climatological time scale. In
this study, as most of the time in the literature, statistical
models using orography parameters for the spatialization of
precipitation are considered suitable only at the climatological
time scale and not at the daily or hourly time scale.

Another technique to improve the quality of spatial analy-
sis for precipitation is to discriminate between the daily data
with the help of a weather type or a weather regime
classification.

We can confidently suppose that there are typical spatial
patterns of the meteorological variable at the local scale asso-
ciated with the general large-scale meteorological situation.
This idea has been developed and applied in many studies
as, for example, Courault and Monestiez (1999) for tempera-
tures over southeast of France, Tveito (2007) for temperature
in Norway and Esteban et al. (2008) for precipitation over the
central Pyrenees. Gottardi (2012) has produced an analysis of
precipitation and temperature over the French mountains
based on the PRISM technique with the help of a weather-
type stratification.Masson and Frei (2014) have also tested the
capacity of circulation types to improve spatial analysis of
precipitation over the Alps.

The present study is devoted to spatial analysis of precipi-
tation over the western Alps. The available data, the period,
the study area and the main goals of the study are first pre-
sented (Section 2). Aweather-type classification with an orig-
inal method is then proposed (Section 3). A climatological
spatial analysis of precipitation is produced within each
weather type with the help of the Aurelhy method and using
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topography parameters as predictors (Section 4). The clima-
tology of the weather type of the day is then used as guess
pattern for the spatialization of daily data to the production of
long-term time series of daily fields (Section 5). One of the
goals of the study is to analyse the advantage of a weather-type
climatology as predictor to the spatialization of daily data.

Finally, four climatological annual means are produced, two
from spatialization of in situ station climatological means and
two from accumulation of daily grids (Section 6). These four
final results are then compared in a validation process with the
aim of improving precipitation estimations at high elevation.

2 Section 1: preliminary steps

2.1 Study area and data

The area studied (Fig. 1) covers the western Alps: the French
part of the Alps, western Switzerland and western Italy. This
area includes a large part of the high mountain regions of the
ridge but also lower regions in France in the southwest of the
zone, the west of the Pô valley in Italy, the Jura in the north-
west between France and Switzerland and a small maritime
area in the southeast. This is a rectangular zone 210 × 360km.
The longitude and latitude coordinates of the corners of the
domain are NW 5.35–46.76°, NE 8.09–46.66°, SW 5.18–
43.52°, SE 7.77–43.42°. The geographic data in this study is
processed in Lambert II projection.

The total surface is 75,600 km2. The mean elevation is
1202 m. More information on the vertical profile of the eleva-
tion is given in Fig. 3.

The digital elevation model (hereafter DEM) comes from
the NASA Shuttle Radar Topography Mission (http://www2.
jpl.nasa.gov/srtm/). The original data come from the CGIAR-
CSI web site at resolution of 1/1200th degree (corresponding
to about 90m) on a lon/lat projection. For our study, this DEM
was first interpolated on a 1/120th degree grid with a cubic
splines method and then re-projected on a 1-km LambertII
grid with the library gdal (http://www.gdal.org/).

The in situ measurements are daily precipitation
(06hUTC-06hUTC), over a 23-year period from 1990 to
2012. The French data come from the Météo-France
DClim data-base, the Swiss data from the Meteo-Swiss
IDAWEB database and the Italian data from ARPA
Piemonte and ARPA Val d’Aosta.

For the weather-type classification, daily fields of mean sea
level pressure (here after MSLP) from the ERA-Interim re-
analysis were also needed. The ERA-Interim reanalysis (Dee
et al. 2011) is a European Centre Medium-Range Weather
Forecast global reanalysis produced with a 3D-Var assimila-
tion model with a horizontal resolution of about 80 km cov-
ering a period beginning in 1979 and continuously updated to
real time. The MSLP fields are on the domain 30° W, 30° E,
30° N, 70°N on a 2.5° projection (daily fields at 12 h UTC).

2.2 Different processes and critical issues analysed

The different steps are shown in the flowchart in Fig. 2.
The most important steps are identified from number 1 to 6

on the flowchart as follows:

1. Production of a spatial analysis of monthly climate nor-
mals from 1990 to 2012 with Aurelhy method

2. Production of daily fields using the previous monthly cli-
matological fields as predictor

3. Production of a weather-type classification based on a
canonical correlation analysis of the daily fields at the
local scale and corresponding daily fields of the large-
scale parameter MSLP

4. Production of a climatology for each weather type with
Aurelhy method

5. Production of daily fields using the previous climatolog-
ical field corresponding to the weather type of the class of
the day as predictor.

6. Production of four different 1990–2012 annual means
from aggregation of the fields of steps 1, 2, 4, 5 for the
purpose of inter-comparison and validation of the differ-
ent methods.

The analysis presented here was applied separately for pre-
cipitation, minimum temperature and maximum temperature.
However, for the sake of brevity, only the results for precipi-
tation are presented in this paper.

Fig. 1 Study domain over western Alps (210 × 360 km) with topography
and mention of the four local massifs Chablais, Belledonne, Haute-
Tarentaise and Queyras (see Section 6)
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The different steps of the study are described in detail in the
following sections, except for the two preliminary proceed-
ings (steps 1 and 2).

Step 1 is a monthly climatological spatial analysis for pre-
cipitation realised with the Aurelhy method. The details for the
implementation of a climatological spatial analysis with the
Aurelhy method are fully described in Section 4 of the study,
after a weather-type classification (step 4 of the flowchart).

Similarly, step 2 is the production of daily fields using the
previous monthly climatological fields as predictor. This tech-
nique is fully presented for the daily fields of step 5 (see
Section 5 ).

One of themost important aims of this study is to analyse the
benefit of using a climatological field as predictor in the pro-
duction of daily fields. The idea is that the climatological field
produced with Aurelhy involves the statistical relation between
topography and precipitation. In this study, the climatological
field is introduced as predictor in the spatial analysis of the daily
fields in order to enhance the quality of the daily analysis. To
this end, two candidate climatological fields for predictor were
tested. The first one is a common monthly climatological field
(step 2) as applied by Isotta et al. (2013). The second one is the
climatological field of the weather type of the day (step 5).

Another important objective of this study is to compare
different methods used to produce climatological means.
Some of the latter are based on spatial analysis of the clima-
tological statistics of observation stations (steps 1, 4, 6a, 6d)

while others are based on accumulation of daily fields (steps 2,
5, 6b, 6c). The different methods are sometimes called
aggregation-integration for the first category and integration-
aggregation for the second category (Journée 2015).The diffi-
culty with the first category is that climatological statistics
from observation stations are often of low density and preserv-
ing constant quality and stable measurement conditions is dif-
ficult. Many stations have large gaps during the climatological
period, they are often displaced or closed and their equipment
can change. The second category, with spatial analysis of daily
fields, benefits from a higher spatial density of observation
stations for each day and the final mean or accumulation of
these daily fields may prove to be less dependent on the low
quality or occasional failure of a particular observation station
(Frei and Schär 1998; Isotta et al. 2013).

2.3 Density of the data, quality control and variable
transformation

This study required a very dense observation network. Table 1
shows the mean density for each country. Unfortunately, it
was not possible to obtain dense enough data before 1990.

The number of daily observations for each year during the
period studied is not absolutely stable and has a slight tenden-
cy to increase progressively over the period of 1990–2012.
However, this difference in density is small and meets the
requirements of the study.

Fig. 2 Flowchart of the study
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After having checked that the density requirements were
satisfied, all the data available were submitted to a quality
control (QC) process. This automatic quality control process
is derived from the operational one used at Météo-France.

All controls were automatic. It should be noted that there is
necessarily a proportion of errors in this QC system (errone-
ous qualification doubtful or undetected wrong values).
However, for the operational QC process of Météo-France, it
was checked that this proportion was small.

In this study, the share of values qualified as doubtful was
1.6 %.

It was checked that the PDF of the data after rejection of
doubtful values was nearly the same as original data.

A final pre-processing of observation data was to check
how the high elevation was sampled. To this end, histograms
of the mean daily density of observations by elevation steps of
250 m are shown in Fig. 3. The number and proportion of
observation stations are shown with, in parallel, the surface
of the corresponding elevation step.

This histogram shows an important problem: the lack of
observation stations at high elevation. For elevations above
2000m, there are very few rain gauges. For this reason, spatial
analysis of meteorological parameters in mountainous regions
requires sophisticated techniques and is very challenging.

The question of variable transformation must be discussed
here. Daily precipitation has a particularly skewed distribu-
tion. In this study, the techniques applied were regression

and kriging which are linear techniques designed for
Gaussian variables. In many studies, these techniques are ap-
plied for precipitation after variable transformation. The Box
and Cox transformation is a technique adapted for all kinds of
variables because it can be applied with different degrees of
intensity (Erdin et al. 2012). In this study, log transformation
and square root transformation were tested (which are equiv-
alent to two commonly used Box and Cox transformations).
The difficulty with these techniques when they are applied
with regression-kriging and kriging with external drift is that
back transformation is not direct and needs to use the variance
of error. The particularities of this transformation and back
transformation, so-called Trans-Gaussian Kriging, are pre-
sented in Cressie and Cassie (1993).

3 Section 2: weather-type classification based
on canonical correlation analysis of large-
and local-scale data

Classification is an analysis method that has been used for
decades in meteorology. Results from Hess and Brezowsky
(1952) Grosswetterlagen for central Europe and Lamb (1972)
for the British Isles were very popular at the time. Today, the
first methods based on human expertise have been replaced by
automatic statistical methods.

The recent Cost 733 European project (2004–2010) has
produced interesting results on the topic of classifications for
Europe (Huth et al. 2008; Beck and Philipp 2010; Philipp et al.
2010).

The idea behind weather-type classifications for mid-
latitude climate and particularly for Europe is that there must
be a small number of characteristic meteorological situations
usually lasting a few days and then changing rapidly from one
to another.

There are many specific applications of weather-type clas-
sification for mountain climate including the French Safran
model precipitation analysis by Durand et al. (1993) and the
Swiss Alpine snow pack analysis by Scherrer and Appenzeller
(2006). Other references were previously cited (Gottardi
2012; Esteban et al. 2008; Masson and Frei 2014).

In the vocabulary used in this study, large meteorological
scale (or synoptic scale) is for meteorological analysis cover-
ing an area of several thousands of kilometres, while local
scale covers an area from ten to several hundreds of
kilometres. In this study, the large-scale area covers western
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0−250 m: 1 rain gauge for 77 km2

250−500 m: 1 rain gauge for 87 km2

500−750 m: 1 rain gauge for 94 km2

750−1000 m: 1 rain gauge for 91 km2

1000−1250 m: 1 rain gauge for 97 km2

1250−1500 m: 1 rain gauge for 92 km2

1500−1750 m: 1 rain gauge for 89 km2

1750−2000 m: 1 rain gauge for 132 km2

2000−2250 m: 1 rain gauge for 137 km2

2250−2500 m: 1 rain gauge for 566 km2

2500−2750 m: 1 rain gauge for 2880 km2

Fig. 3 Blue: relative surface of layers by step of elevation of 250 m over
the study domain. Green: mean daily number of rain gauge observations
for each layer

Table 1 Mean number and
density of daily rain gauges after
quality control

Study domain French part Italian part Swiss part

691 509 107 79

1 station for 106.8 km2

9.4 stations/10,000 km2

1 station for 94.3 km2

10.6 stations/10,000 km2

1 station for 150.0 km2

6.7 stations/10,000 km2

1 station for 123.5 km2

8.1 stations/10,000 km2
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Europe and the eastern Atlantic zone and the local scale is the
domain over the western Alps. Furthermore, a weather regime
classification (sometimes also called circulation patterns) is
based only on large-scale analysis, while a weather-type clas-
sification is based on the merging of large-scale and local-
scale analyses. In this context, the technique applied in this
study must be called a weather-type classification and not a
weather regime.

A preliminary question needed to be addressed is should
the classifications be applied to the data with a seasonal divi-
sion or not? Two seasonal subdivisions were tested: a subdi-
vision in two seasons of 6 months (ONDJFM and AMJJAS)
and a subdivision in four seasons of 3 months (DJF, MAM,
JJA, SON).

A flowchart of the classification is presented in Fig. 4.
The weather-type classification proposed in this study is

based on a canonical correlation analysis (here after CCA)
of the large- and local-scale parameters. A presentation of
the theory and advantages of CCA for this kind of coupling
is proposed by Bretherton et al. (1992). Von Storch and Zorita
(1993) have also presented an interesting analysis of down-
scaling of large-scale signals to regional monthly precipitation
over the Iberian Peninsula.

The CCA is applied here to the following two sets of data:
the large-scale parameter matrix with the points of a grid over
western Europe and east Atlantic in columns and daily index
in rows and an equivalent matrix for local-scale parameter
(precipitation) with points of the grid over the western Alps

in columns and daily index in rows. The CCA produces a set
of two groups of new variables, the canonical variables, with
maximum correlation by pairs but orthogonal otherwise.
These canonical variables are sorted by decreasing correlation
by pairs and decreasing correlation between them and the
original variables. A limited number of these new variables
is then selected and is considered to be representative of the
most informative correlation of the original variables.

In our study, several parameters were tested for the repre-
sentation of the large scale. In the same way, different grid
sizes and ranges of the large-scale domain were tested. This
analysis resulted in the choice of MSLP over a northern
Atlantic-Western Europe domain 30° W, 30° E, 30° N, 70°
N on a 2.5° lon/lat grid (425 points). As the original data are
on a regular lon/lat grid, a weighting by the cosinus of the
latitude is applied. The annual cycle of the large-scale data is
removed with the help of a fast Fourier transform function.

The regional-scale data for the CCA are daily analysis of
precipitation over the western Alps shown in step 2 in Fig. 2
but finally interpolated on a 10-km grid (790 points).

For precipitation, a preliminary log variable transformation
of the daily data is applied, due to the highly skewed distribu-
tion, as discussed in the previous section.

The final stage of the CCA is to select a reduced number of
canonical variables with the help of two techniques: the
Bartlett test (Bartlett 1941) and an implementation of a fore-
cast model of the local variable with the large-scale variable as
predictor and analysis of explained variance (Barnston 1999).

Fig. 4 Graph of the classification
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This resulted in the selection of 12 canonical variables with an
explained variance for precipitation of 62% for ONDJFM and
60 % for AMJJAS.

Each of the 365 × 23 days of the period of 1990–2012 is
then represented by 12 canonical variables and a classification
algorithm is applied to these variables. Only the canonical
variables on the side of the large-scale original variables are
used (this technique preserves the possibility of further devel-
opments, see conclusion).

Many different techniques for automatic classifications are
available today. However, the most frequently used methods
in data mining are still hierarchical clustering, hereafter HCA,
(Ward 1963; Hastie et al. 2009) and K-means centroid-based
clustering (Forgy 1965; MacQueen 1967).

The method applied here belongs to the family of hybrid
methods (Wong 1980) based successively on K-means, HCA
and again K-means (see work flow Fig. 4).

The first level is based on K-means multiple trials and is
designed to produce a large number of clusters. Three K-
means partitions with 25 clusters are produced here. Each
one is selected after 100 trials of random initial centroids, with
the help of the similarity criterion proposed by Michelangeli
(1995) . Groups of days a lways toge ther in the
25 × 25 × 25 = 15,625 possible groups of the partition product
are then searched for. Only a few of the 15,625 possible
groups had more than 1 day: 295 groups for the winter season
(ONDJFM) and 316 groups for summer (AMJJAS). This is
considered as a first level of partitioning.

After this first step, the HCA is applied on the 295 clusters
for winter and 316 clusters for summer. This HCA is on
Euclidean distance with Ward’s linkage criterion. This HCA
is designed to help choose the final number of clusters.

Finally, a new K-means is applied with the centres of clas-
ses coming from the HCA as initial centroids. This final K-
means again improves the between-clusters variance.

Objective measures were also tested to determine the best
number of clusters: Rousseuw’s silhouette index (Rousseuw
1987), classifiability and reproducibility of Michelangeli et al.
(1995) and others proposed by Huth et al. (2008). In our study,
the classifications were tested for 4, 5 and 6 classes.

A climatological validation of the classifications and selec-
tion of the final experiment is then realised with the help of
tercile anomalies for the local scale, a validation technique
proposed by Plaut (2001) and Simonnet (2001): the climato-
logical tercile thresholds for light, medium and heavy precip-
itations are calculated for each grid point and anomalies of
frequencies in each class according to these thresholds are
analysed. See Fig. 5 for an illustration of such result. This
analysis resulted in the selection of a two-season, five-
cluster classification.

The patterns emerging from the classification, at the local
scale, are expected to show important contrasts between the
different sides of the alpine ridge, depending on the dominant

meteorological fluxes in each weather type and associated
with the large-scale synoptic patterns.

To illustrate the ability of the classification to discriminate
between very different situations, the anomalies for the upper
terciles for precipitation for each class and each season are
shown in Fig. 5. The frequencies of the classes are also shown
in this figure.

For the sake of brevity, it is not possible to present in this
paper too many maps for large- and local-scale patterns
resulting from the classification.

4 Section 3: spatial analysis of weather-type
climatological fields with the Aurelhy method

In this section the Aurelhy method is applied for the
spatialization of climatologies for each weather type (climate
normals for the period of 1990–2012). This spatialization is
shown in step 4 of the flowchart in Fig. 2. The implementation
of the Aurelhy method is presented here in detail.

Fig. 5 Upper tercile anomalies (%) for weather-type classification for
precipitation (five classes, two seasons) and frequencies of the classes
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The input data for this spatialization are the climatological
precipitation for the in situ stations within the weather type
(mean daily intensity over all the days of the weather type).
The number of stations for each weather type is shown in
Table 2. The DEM is also necessary as input data for the
Aurelhy method. As the classification is in two seasons and
five clusters, ten fields are finally produced here. The grid size
of these fields is 1 km.

The Aurelhy method was first implemented by Benichou
and Le Breton in 1986 (Benichou 1987; Benichou 1994).
A new implementation based on R language was developed
in 2014, introducing important improvements. The method
is based on a linear model with the principal components
of the orography as predictors followed by a kriging of the
residuals. The PCA has the interesting advantage of orthog-
onality, hierarchy and reduced noise. The principal compo-
nents of the terrain model are produced on a matrix with
each line corresponding to the elevations of a selection of
points in the vicinity of each point of the target grid. They
are called the landscapes in the specific Aurelhy vocabu-
lary. The most important parameters of this selection are
range, density and shape. These parameters can be fitted
after testing. One usual choice for the landscapes is a
square matrix of 11 × 11 points with a 5-km lag. But, other
parameters are often selected. The importance of the spatial
scale to the relation between the meteorological variable
and the topography is discussed in Gyalistras (2003) and
in Masson and Frei (2014). Most of the time, elevation
itself is also introduced as candidate predictors along with
the principal components.

An automatic selection of the candidate predictors is then
applied. The methods available are increase of R-squared,
Akaike information criterion (AIC), Bayesian information cri-
terion (BIC) and Mallows’s CP.

The second step of the Aurelhy method is then a kriging of
the residuals and addition of the two contributions. The new
version offers extensive possibilities in terms of choosing the
kriging parameters. Different values for the range and the
nugget of the variogram can be tested as well as the choice
of the model of variogram.

Aurelhy’s first implementation was a spatialization tech-
nique of the family Regression-Kriging. Today’s version also
offers the possibility of choosing the true Kriging with exter-
nal drift (KED). For a presentation of the differences between
regression-kriging and KED, see the publications of Goovaert
(1997), Hengl et al. (2003) and Li and Heap (2008).

Finally, a possibility of cross-validation is also implement-
ed in the new software.

Two different issues are addressed in this section: the se-
lection of input data (climatological means of stations) and the
methodological choices for the parameterization of the
Aurelhy method.

Before applying the spatialization with Aurelhy, we have to
compute the climatological means for each station and each
weather type. In this process, we have to deal with stations
with missing daily values. To preserve the highest spatial den-
sity possible, stations with a maximum ratio of missing value
of 30 % are selected (however, only a small number of these
stations had a high ratio of absent values, more than half had
less than 10 %).

To try to improve the quality of the spatialization, two
different techniques often applied to prepare the input data
for climatological means are also tested. The first technique
consists in replacing the missing daily values with a local
estimate coming from a spatialization of the day (Journée
et al. 2015). The second technique consists in a bias correction
of the mean of the stations not available during the entire
reference period of 23 years (Isotta et al. 2013). If the station

Table 2 Summary of the
Aurelhy spatialization of weather
types climatological fields (five
classes, two seasons) with
number of input in situ stations
means, number of predictors
selected (principal component of
the orography), elevation selected
as predictor or not, adjusted R-
squared of the linear model,
standard deviation of the residuals
of the linear model, final model
(linear model + kriging of
residuals) RMSE after cross-
validation and R-squared after
cross-validation (unit is mm/day
for ResSD and RmseCV)

Class ONDJFM1 ONDJFM2 ONDJFM3 ONDJFM4 ONDJFM5

NbStations 573 555 566 561 559

NbPred 6 11 7 7 7

Elev Y Y N N N

AdjR2 0.41 0.72 0.56 0.62 0.56

ResSD 0.16 2.84 2.68 1.57 2.01

RmseCV 0.1 1.43 1.14 1.07 0.79

FinR2CV 0.77 0.93 0.92 0.82 0.93

Class AMJJAS1 AMJJAS2 AMJJAS3 AMJJAS4 AMJJAS5

NbStations 554 562 575 543 574

NbPred 6 8 9 9 10

Elev Y Y N Y Y

AdjR2 0.46 0.51 0.39 0.62 0.54

ResSD 0.18 1.84 1.9 1.72 0.85

RmseCV 0.1 0.93 0.67 0.93 0.25

FinR2CV 0.83 0.88 0.92 0.88 0.96
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is present during n days, the bias correction is realized accord-
ing to the ratio of the mean during these n days for the stations
of the vicinity without gaps over the mean of the same stations
during the whole climatological period.

A leave-one-out cross-validation (each input station mean is
put aside one by one, and an independent estimate is produced
with the Aurelhy spatialization) was realized with different
datasets and showed that the technique of completing the miss-
ing values by means of daily spatialization is the best method.

For the second question of optimization of the Aurelhy
method, nine different parameterizations were tested. A first
version was produced. Then, several new versions were test-
ed, modifying only one parameter each time and objectively
evaluating the improvement with a cross-validation (similar to
the previous one, for each input station mean). Finally, the
different versions showing an improvement were combined
and tested again.

In the final Aurelhy parameterization, the selection of
points for the PCA (landscapes) is with a range of 50 km
and grid density of 10 km. The predictor selection method is
BIC exhaustive. Kriging with external drift is applied instead
of regression-kriging. A square root preliminary data transfor-
mation of precipitation is applied. The variogram is with free
nugget, range of 80 km and the fitting method is maximum
likelihood.

A summary of the results of this spatialization is presented
in Table 2.

An interesting point to note is that, for precipitation, the
automatic selection of the predictors in the linear model ap-
plied by Aurelhy very often does not select elevation, and the
principal components are considered better and sufficient
predictors.

The final weather-type climatology for precipitation is pre-
sented in Fig. 6. The visual analysis of these maps shows
spatial patterns that are very different from one weather type
to another in localization and intensity. These patterns are
consistent with Fig. 5 of Section 5.

5 Section 4: spatial analysis of daily fields
of precipitation with weather-type climatologies
as predictor

At this stage of the study, daily in situ observations of precip-
itation as well as results of the spatial analysis of climatologies
for each weather type are available. A production of daily
fields is then implemented. In this production, the input data
are daily precipitation of all the in situ stations. The climatol-
ogy of the class of the weather type of the day produced in the
previous section is introduced as predictor. This production
corresponds to step 5 of the flowchart in Fig. 2. A field on a
1-km grid is produced for each of the 23 × 365 days of the
period of 1990–2012.

The spatialization technique applied here is very similar to
the one applied in step 2 of the study, presented in the flow-
chart in Fig. 2, except that weather-type climatology is used as
predictor here whereas a monthly climatology was used in
step 2. Then, the two time series of daily fields are compared.

The first question addressed in this section is to determine
if there is any advantage to using weather-type climatology as
predictor rather than a monthly climatology in the
spatialization of daily data.

The second question developed in this section regards
which technique should be used to integrate the climatology
as predictor.

Seven distinct methods are compared (five methods with
the help of weather-type climatologies as predictor and two
methods for the purpose of comparison):

– KEDWTC5c2s: kriging with external drift with the cli-
matology of the weather type of the day (five classes, two
seasons) as predictor.

Fig. 6 Climatology of mean daily rainfall intensity (mm/day) for each
class of weather type (five weather types, two seasons). Frequencies of
the classes

Daily and climatological fields of precipitation over the Alps 9



– KEDMC: kriging with external drift with the monthly
climatology as predictor (step 2 of Fig. 2).

– RatiosWTC5c2s: ordinary kriging of the ratios of the ob-
servations of the day over the corresponding values of the
climatology of the weather type of the day.

– LMKResWTC5c2s: regression-kriging with the climatol-
ogy of the weather type of the day as predictor.

– KEDLogWTC5c2s: same as KEDWTC5c2s but with log
transformation of the daily precipitation.

– KEDsqrtWTC5c2s: same as KEDWTC5c2s but with
square root transformation of the daily precipitation.

– OKObs: ordinary kriging of observations only. This
method is here as a naive reference.

All the variograms applied in the seven methods are with
free nugget, range of 80 km and fitting method maximum
likelihood.

To decide between the seven methods, different scores
against observations are produced.

A leave-one-out cross-validation is realized. This cross-
validation consists in putting aside one by one each daily value
of in situ stations and producing an independent estimate of this
value. It was decided to apply this cross-validation only to days
with significant rain (more than 2 mm for the mean value of the
observations of the day). However, this resulted in a very large
sample of about 106 observation-estimation couples.

The RMSE and SEEP score by steps of elevation of 500 m
are presented in Table 3.

The SEEP score (Rodwell et al. 2010) is adapted for pre-
cipitation, based on a 3 × 3 contingency table with two

thresholds for light, median and heavy precipitation (probabil-
ities 0.33, 0.44, 0.22 on the sample of observations).

It should be noted that the score of RMSE is strongly in-
fluenced by heavy precipitation.

The comparison between KEDWTC5c2s and KEDMC is
interesting in terms of choosing the best predictor.
KEDWTC5c2s shows a small advantage over KEDMC (bet-
ter results for RMSE and SEEPS for all the classes).

T h e c om p a r i s o n b e t w e e n KEDWTC 5 c 2 s ,
RatiosWTC5c2s, LMKResWTC5c2s, KEDLogWTC5c2s
and KEDsqrtWTC5c2s is interesting in terms of choosing
the best spatialization technique. It can be seen that the kriging
with external drift after square root transformation shows the
best results for RMSE score, and log transformation has the
best result for the SEEP score.

An apparently disappointing result is that the six methods
with climatology as predictor show only a very small increase
in performance compared to the ordinary kriging of observa-
tions. However, a visual expertise of the daily maps shows im-
mediately that ordinary kriging of observations results in highly
smoothed fields. The true spatial resolution in that case is only
the density of the observation network, and the lack of ancillary
information coming from the climatology is clearly a weakness.

More scores are produced to improve the analysis. Figure 7
shows the RMSE by classes of precipitation intensity (top
panels), the Peirce skill score (middle panels) and the Bias
score (lower panels). The Peirce skill score and Bias score
(also called frequency bias) are based on 2 × 2 contingency
tables over different thresholds covering the distribution (here
1, 2, 5, 10, 20, 30, 40 mm).

Table 3 RMSE and SEEP score (perfect score 1) by step of elevation for seven spatialization methods of daily precipitation (five methods using
weather-type climatology as predictor and two methods as reference for comparison)

RMSE All [0–500] [500–1000] [1000–1500] [1500–2000] [2000–2500]

nbobs 983,853 284,402 314,469 234,772 119,000 30,033

KED5c2s 5.507 5.196 5.238 5.560 6.238 7.211

KEDMC 5.634 5.225 5.336 5.749 6.456 7.555

Ratios5c2s 6.425 5.004 5.478 6.128 6.752 7.997

LMKRes5c2s 5.476 5.075 5.191 5.567 6.279 7.432

KEDLog5c2s 5.577 5.112 5.352 5.649 6.461 7.381

KEDsqrt5c2s 5.364 4.944 5.122 5.452 6.165 7.154

OKobs 5.700 5.229 5.406 5.871 6.481 7.826

SEEPS All [0–500] [500–1000] [1000–1500] [1500–2000] [2000–2500] [2500–

KED5c2s 0.750 0.772 0.764 0.756 0.660 0.559 0.707

KEDMC 0.744 0.772 0.759 0.749 0.645 0.523 0.702

Ratios5c2s 0.765 0.783 0.774 0.777 0.688 0.581 0.719

LMKRes5c2s 0.762 0.783 0.772 0.770 0.676 0.563 0.708

KEDLog5c2s 0.774 0.790 0.782 0.781 0.703 0.605 0.770

KEDsqrt5c2s 0.766 0.783 0.774 0.772 0.694 0.599 0.749

OKobs 0.758 0.783 0.765 0.765 0.679 0.567 0.738

Scores for the methods performing the best are in bold characters
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The Peirce skill score is the difference between probability
of detection (POD) and probability of false detection (POFD).
Figure 7 shows, on the left panels, results for choosing the

predictor and, on the right panels, results for choosing the
spatialization technique. The left panels show that
KEDWTC5c2s always presents slightly better performances.
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Fig. 7 Performances of daily precipitation spatialization (see Section 5).
Top panels: root mean square error (mm, log scale) for classes of
precipitation. Middle: Peirce skill score (perfect score = 1) for different
thresholds. Bottom: Bias score (perfect score = 1) for different thresholds.

Left panels: results for different predictors. Right panels: results for
different spatialization techniques. Precipitation classes and thresholds
are in millimetres

Daily and climatological fields of precipitation over the Alps 11



But, this advantage is very small. On the right panels, we can
see that KEDLogWTC5c2s and KEDsqrtWTC5c2s show the
best results for RMSE by classes of intensity and
KEDLogWTC5c2s is the best one for Peirce skill score and
Bias score.

The conclusion of the comparison presented here is that all
the methods show only small differences. However,
KEDsqrtWTC5c2s and KEDLogWTC5c2s show the best re-
sults among the seven versions. Other elements for indirect
validation are added in the following section.

The analysis of the scores for all the spatialization methods
for daily precipitation tested in this study shows a smoothing
effect (over estimation of low values and under estimation of
high values). It should be noted that all the kriging techniques
applied were with free nugget value for the fitting of the
variograms and a non-zero nugget can be a part of the cause
of smoothing effect. However, non-zero nugget value is justi-
fied when sampled observations are weakened by a non-
negligible uncertainty and we consider that this is the case in
this study.

6 Section 5: annual mean of precipitation
over the period 1990–2012 and vertical profiles

In this section, several climatological products are compared
(annual means over the 1990–2012 period):

– MCLIM: climatological annual mean produced from the
monthly Aurelhy climatology (step 6a of the flowchart
Fig. 2).

– CLIMDKEDM: climatological annual mean produced
from daily fields, with these daily fields coming from
kriging with external drift with the monthly climatology
as predictor (step 6b of the flowchart Fig. 2).

– WTCLIM: climatological annual mean produced from
the weather-type climatology (five classes, two seasons)
after a weighting according to the frequencies of each
class (step 6d of the flowchart Fig. 2).

– CLIMDKEDWT: climatological annual mean produced
from the daily fields presented in the previous Section 5,
with these daily fields coming from kriging with external
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Fig. 8 Vertical profiles of precipitation (mm) for four zones by step of
elevation of 250 m for two climatologies produced from stations long-
term time series: a WTCLIM: yearly mean from weighting of weather-

type climatologies with Aurelhy, b MCLIM: yearly mean from classical
monthly climatologies with Aurelhy, bottom: surface of the layers for
each zone
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drift with weather-type climatologies as predictor (step 6c
of the flowchart Fig. 2).

– CLIMDOK: climatological annual mean produced from
daily fields, with these daily fields coming from ordinary
kriging of observations only (OKObs presented in the
previous section). This method is here only for a naive
reference in the inter-comparison.

All the fields in this section are on a 1-km grid.
The climatologies are compared through local analysis of

the vertical profiles and through a k-fold cross-validation
experiment.

The capacity of a spatial analysis to reproduce good esti-
mates of precipitation at high elevation is critical. This point
was particularly discussed in the context of snow modelling

and hydrology (Vidal et al. 2010; Tobin et al. 2011; Gottardi
et al. 2012).

To implement the local analysis of vertical profiles, a suit-
able spatial scale has to be chosen.

It was decided to rely on a subdivision of the French Alps
which has been applied for the Safran model of Météo-France
for many years (Durand 1993). The French Alps are divided
into 23 zones which are considered physically and climatolog-
ically homogeneous. The results for all the 23 French zones
were produced but the conclusions for only 4 of them are pre-
sented here. The four most accurately analysed zones are
Chablais (1385 km2, mean elev. 1291 m), Belledonne
(993 km2, mean elev. 1121 m), Haute-Tarentaise (642 km2,
mean elev. 2332 m) and Queyras (843 km2, mean elev.
2127 m). They are shown in Fig. 1, map of the study domain.
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Fig. 9 Vertical profiles of precipitation (mm) for four zones by step of
elevation of 250 m for three climatologies produced from daily fields: a
CLIMDKEDWT: yearlymean from daily fields producedwith KEDwith

weather-type clim. b CLIMDKEDM yearly mean from daily fields
produced with KED with monthly clim. c CLIMDOK: yearly mean
from daily fields produced with ordinary kriging of observations only
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Chablais and Belledonne are in forward position, fully exposed
to the western and northwestern meteorological fluxes. Haute-
Tarentaise and Queyras are more embedded in the alpine ridge
with higher summits andmean elevation. Queyras, more south-
ern, shows some influence of the Mediterranean climate.

For the implementation of a cross-validation of the clima-
tological products, a leave-one-out cross-validation was not
conceivable for computational reasons. Consequently, a k-
fold technique is applied. Five sub-samples of 50 stations
are randomly selected among the stations with less than
10 % missing values (each station is selected once and can
be only in one sub-sample). Then, the different climatological
products are calculated five times, with one of the validation
samples put aside each time. It must be noted that 50 stations
are about 9 % of the total number of stations available for the
climatological fields. With such a low percentage, the density
of stations is not seriously damaged. Finally, an independent
estimate of the climatological value is available for 247 pre-
cipitation stations (for 3 stations, the process could not be
applied). This final cross-validation showed some interesting
results but also has certain limits: the sample is not very large
and lacks high elevation stations.

Figure 8 shows the vertical profiles of precipitation for
Chablais, Belledonne, Hte-Tarentaise and Queyras for
WTCLIM and MCLIM. The steps of elevation are by
250 m. It can be seen through the histograms at the bottom
of the figure that the four zones have very different distribu-
tion of elevation. The climatological conditions are very dif-
ferent for Chablais and Belledonne than for Hte-Tarentaise
and Queyras with more precipitation for the first ones and a
strong slope of precipitation with elevation, in agreement with
the idea of more rain for the first slopes of a mountain ridge
and less rain for the inner zones, though higher in elevation.

It is interesting to note that the amounts of precipitation for
each step of elevation are very close for WTCLIM and for
MCLIM.

Figure 9 shows the vertical profiles of precipitation for the
same zones for CLIMDKEDWT, CLIMDKEDM and
CLIMDOK. The profiles for CLIMDKEDWT and
CLIMDKEDM are very similar and absolutely consistent
with those presented before in Fig. 8. This is not the case for
CLIMDOK. CLIMDOK is not able to reproduce realistic
quantities of precipitation at high elevation. CLIMDOK is
now disqualified compared to the other methods presented
in this study.

Figure 10 shows the results for RMSE after cross-
validation for 247 stations for MCLIM (blue), WTCLIM
(red) and CLIMDKEDWT (yellow). Because of the small
sample of stations, a bootstrap is applied to produce an esti-
mate of the uncertainty. One thousand samples were drawn
from re-sampling with replacement of the original 247 couples
observation-estimation, and the RMSE is computed each
time. The results are presented for all the stations but also by

steps of elevation of 500 m. However, the number of stations
above 1500 m is small. The sample size is given for each step
of elevation.

This figure shows that the performance of the climatology
realized from the daily fields (CLIMDKEDWT) is slightly
higher than the two spatialization of long-term time series
from stations (MCLIM and WTCLIM).

7 Discussion and conclusion

In this study, several different problems were analysed. These
include the following:

1. The advantage of a weather-type classification as predic-
tor for the spatialization of daily fields of precipitation in
mountain terrain

2. The parameterization of the spatialization techniques
3. The advantage of producing climatology from the average

of daily fields compared to climatology produced by the
spatialization of climatological means of in situ stations
time series

4. The difficulty to estimate and to validate precipitation at
high elevation

The weather-type classification developed in this study
highlights clearly different meteorological situations for the
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Fig. 10 Cross-validation for annual mean climatology 1990–2012 for
precipitation. Boxplot of RMSE after bootstrap (for all the stations
available and by step of elevation, with size of the sample). Blue:
annual mean from monthly climatologies (MCLIM). Red: annual mean
from weighting of weather type climatologies (WTCLIM). Yellow:
annual mean from daily fields with weather-type climatologies as
predictor (CLIMDKEDWT)
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study domain throughout the year. The annual climatology
over the period of 1990–2012 produced from the weighting
of the weather-type climatologies seems to be of good quality
and shows realistic vertical gradients. Using weather-type cli-
matology of the class of the day as predictor for the
spatialization of daily fields has proven to be a good choice
after a cross-validation against the observations. However,
and this is probably one of the most important conclusions
of the study, using weather-type climatology as predictor
shows only a small advantage compared to using simple
monthly climatology despite the efforts in this study to pro-
duce a classification with a methodology closely adapted to
the needs.

The Aurelhy method remains an interesting technique for
spatialization at the climatological time scale. The advantages
of the parameters of the topography as predictors at this time
scale are recognized. Aurelhy is able to estimate the most
important topography predictors after the elevation for a par-
ticular region with the advantages of PCA (parameters sorted
by importance, without correlation, noise reduced). The ques-
tion of the best horizontal spatial scale to build the relation
between the topography and the meteorological variable is an
important one. However, the tests produced in this study may
not be sufficient (only three possibilities were tested here for
the Aurelhy landscapes). Hence, it is worth performing further
tests in the future. With the new Aurelhy software, it is possi-
ble to combine two different spatial scales in the analysis of
the topography.

Differences between the climatologies produced from
long-term time series stations and the climatologies produced
from accumulation or average of daily fields have been
analysed in this paper. It seems that the latter take advantage
of a better density of input data. For climatologies produced
from long-term time series stations, the most important prob-
lem is that the density of stations without gaps is low. A com-
promise must be found between density and length of the
series selected. Some techniques like a preliminary comple-
tion of the station gaps with daily estimates can improve the
quality of the results. This was proven previously by Journée
et al. (2015).

Conversely, working from daily fields to build climatology
can be a response to the problem of stations with incomplete
daily data. This can be considered as a kind of weighting of
the stations according to the length of their presence.
However, in this case, the density must be as stable as possible
throughout the period of the study and quality control is an
important preliminary step.

Estimating precipitation at high elevation, though analysed
in many studies, is still a difficult question. Methods based on
the climatological relation between orography parameters and
the meteorological variables are a solution. In this study, four
different methods analysed in Section 6 show very close cli-
matological vertical gradients of precipitation with elevation.

These gradients seem realistic because they are strong enough
and they comply with the regional variability expected. It is
not possible to validate the precipitation estimation at high
elevation through comparison with in situ measurements.
Rain gauge data are too scarce at high elevation and with high
uncertainty.

Consequently, we must look for more elements from
other fields of investigation. These elements can be found
in meteorological modelling, snow modelling and
hydrology.

Meteorological models are now a promising field with the
development of regional re-analysis. The dynamic methods
for the downscaling of global coarse resolution re-analysis to
regional and then high resolution non-hydrostatic models are
available. The European project UERRA is expected to deliv-
er such results for Europe ( http://www.uerra.eu/ ). But today,
the reference re-analysis for precipitation with a high resolu-
tion meteorological model over the Alps is still awaited.

The snow models are another source of indirect validation
of the precipitation (and temperature) estimates. The most
interesting information coming from the snow models is at
the seasonal time scale. The difficulty is that precipitation
and temperature are only two of the numerous input elements
of snow modelling, and the complex evolution of snow along
the winter season results in great uncertainty. This uncertainty
is too large for an accurate validation of precipitation input.
However, we can say that snow modelling has proven that
long-term vertical gradient of precipitation must be strong.
Very often, the input estimate of precipitation at high elevation
is considered too low in regard with the snow depth (Durand
et al. 1993; Gottardi et al. 2012).

Hydrology is a third indirect mean of validation but, as for
snow models, with a lot of difficulties. The final runoff of
rivers is the consequence of many different phenomena, each
of which is accompanied by its own particular uncertainty in
the models. Precipitation is only one of the contributions of
the sum of uncertainties of the hydrological models. The prob-
lem is particularly challenging at high elevation because river
basins are small and measurements are scarce and realized
under difficult conditions (Tobin et al. 2011; Vidal et al. 2010).

The results presented in this study are limited to the period
of 1990–2012 because of the lack of sufficient high density
data covering the study domain for a longer period. But, we
expect to produce 30-year climatology for 1981–2010 for the
French side of the Alps. To this end, we need first to determine
the weather type classes for the decade 1981–1990. This is
possible despite the lack of in situ data covering all the do-
mains for 1981–1990. The canonical variables for the latter
period can be computed with only the ERA-Interim data cov-
ering 1981–1990 and the canonical vectors previously com-
puted on 1990–2012. With this new data set, we plan to pro-
duce a comparison over a long period with two reference
climatologies: the first one is the Safran re-analysis (Durand
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et al. 2009) and the second one is the Alpine Precipitation
Gridded Dataset (Isotta et al. 2013).

The results presented in this study are only for precipita-
tion, but all the developments were also realized for minimum
and maximum temperature. The results for temperature are
similar to the ones for precipitation. The most suitable classi-
fication for temperatures was with four classes and four
seasons.
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