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Abstract This study presents future changes in extreme pre-
cipitation as projected within the New South Wales and
Australian Capital Territory Regional Climate Modelling
(NARCliM) project’s regional climate ensemble for south-
east Australia. Model performance, independence and
projected future changes were considered when designing
the ensemble. We applied a quantile mapping bias correction
to the climate model outputs based on theoretical distribution
functions, and the implications of this for the projected pre-
cipitation extremes is investigated. Precipitation extremes are
quantified using several indices from the Expert Team on
Climate Change Detection and Indices set of indices. The bias
correction was successful in removing most of the magnitude
bias in extreme precipitation but does not correct biases in the
length of maximum wet and dry spells. The bias correction
also had a relatively small effect on the projected future chang-
es. Across a range of metrics, robust increases in the magni-
tude of precipitation extreme indices are found. While these
increases are often in-line with a continuation of the trends
present over the last century, they are not found to be statisti-
cally significant within the ensemble as a whole. The length of

the maximum consecutive wet spell is projected to remain at
present-day levels, while the length of the maximum dry spell
is projected to increase into the future. The combination of
longer dry spells and increases in extreme precipitation mag-
nitude indicate an important change in the character of the
precipitation time series. This could have considerable hydro-
logical implications since changes in the sequencing of events
can be just as important as changes in event magnitude for
hydrological impacts.

1 Introduction

Precipitation extremes can have serious impacts on human
and natural systems. Studies have shown that the majority of
the globe has been experiencing an increasing trend in the
intensity of the maximum annual 1-day precipitation (Westra
et al. 2012), indicating an increase in this natural hazard.
These trends are projected to increase in the future over much
of the globe (Sillmann et al. 2013; Toreti et al. 2013).
Characterising these changes at scales suitable for manage-
ment decisions (10 km or less) is required to enable reasonable
strategies to enhance resilience to these future changes.

Extreme precipitation can occur over relatively small spa-
tial scales due to the influence of local features such as topog-
raphy and dynamics such as the development of convective
cells. This high spatial variability means that the resolution of
a climate model can influence the fidelity with which precip-
itation extremes are represented. Studies have shown that
modelling at resolutions of 10–50 km improves the represen-
tation of precipitation extremes over those present in usual
Global Climate Model (GCM) simulations at resolutions of
150 km or greater (Kopparla et al. 2013). These studies have
been performed over most continents, e.g. Europe (Torma
et al. 2015), Australia (Di Luca et al. 2016a; Andrys et al.
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2015; Evans and McCabe 2013), Asia (Lee and Hong 2014)
andAfrica (Dosio et al. 2014). Studies have also found that the
simulation of precipitation extremes can be further improved
by increasing resolution toward 10 km (Chan et al. 2013; Di
Luca et al. 2016a; Prein et al. 2015a; Tripathi and Dominguez
2013) or by using convection permitting scales (<4 km) (Chan
et al. 2014; Prein et al. 2015b; Westra et al. 2014). The evi-
dence suggests that high-resolution regional climate models
are likely to provide a better, more reliable projection of pre-
cipitation extremes.

A number of studies have evaluated simulations of precip-
itation for south-east Australia based on CMIP3 (Colman et al.
2011; Perkins et al. 2007; Suppiah et al. 2007) and CMIP5
GCMs (Bhend and Whetton 2015; Moise et al. 2015). Hope
et al. (2015) found that CMIP5 GCMs generally agree on a
drying trend across southern Australia though they failed to
capture some synoptic types that are major contributors to
extreme rainfall (e.g. cutoff lows). Over south-east Australia,
this drying has been connected to a projected strengthening
and poleward movement of the sub-tropical ridge (Grose et al.
2015a), though uncertainty exists as these characteristics are
poorly simulated over the recent past. A number of projections
of eastern Australian precipitation were compared by Grose
et al. (2015b). They broadly find projections for decreases in
winter and increases in summer though there is often a large
spread between the various methods examined. Precipitation
change over the Eastern Seaboard has been examined by
Dowdy et al. (2015) who found a projected winter (JJA) de-
crease. This seasonal change has been supported by studies
examining changes in the maritime low systems near the east-
ern seaboard (Dowdy et al. 2013b; Ji et al. 2015; Pepler et al.
2016).

Fewer studies have explicitly examined precipitation ex-
tremes in this region. Over Tasmania, White et al. (2013) used
an ensemble of regional climate projections (0.1° resolution)
and showed that both the annual maximum 1-day precipita-
tion (Rx1day) and the length of the annual maximum consec-
utive dry day sequence (CDD) were projected to increase in
the future. Using CMIP5 GCMs Sillmann et al. (2013) also
found CDD and very wet days to be increasing over much of
Australia. This suggests a more variable climate with longer
dry spells and heavier rainfall in between. Evans and McCabe
(2013) examined a single high-resolution climate projection
over south-east Australia and similarly found that increases in
extreme precipitation could be co-located with decreases in
mean precipitation, though these changes need not be consis-
tent with the driving GCM.

Bias correction techniques are commonly applied in hydro-
logical studies of future conditions given a global warming
scenario (Argüeso et al. 2013; Chen et al. 2013; Quintana
Seguí et al. 2010; Teng et al. 2015; Teutschbein and Seibert
2012). It is important to know how these bias corrections are
impacting the precipitation extremes which are subsequently

applied to hydrological systems. Previous studies have inves-
tigated this in the context of droughts (Johnson and Sharma
2015) finding that applying bias correction can substantially
change the projected drought characteristics which are strong-
ly related to persistence in the precipitation time series. While
many bias correction techniques have also been shown to
produce similar changes to mean values, they can produce a
range of changes to the high precipitation extremes (e.g.
Teutschbein and Seibert 2012).

This study uses an ensemble of high-resolution (10 km)
Regional Climate Model (RCM) projections to examine the
future of precipitation extremes in south-east Australia. The
ensemble performance, including projected changes in mean
precipitation, was examined by Olson et al. (2016). They
show that while the RCM ensemble is able to improve the
representation of mean precipitation compared to the driving
GCMs, a general overestimation remained. They also found
that future changes in mean precipitation were mostly non-
significant compared to inter-annual variability, with summer
and autumn having increases, while winter and spring had
little change or even decreases. This study builds on the mean
precipitation analysis through an examination of precipitation
extremes. The RCM ensemble is first evaluated against obser-
vations of extreme precipitation indices. This evaluation is
repeated on the ensemble after bias correction. Then, the fu-
ture projections of these indices are examined across the 12-
member ensemble to determine whether the projected changes
are significant compared to current inter-annual variability,
whether they are consistent across the full ensemble, and
how they are affected by bias correction.

2 Method

2.1 Observations

Here, we present observed precipitation indices calculated
from the AWAP data produced by the Bureau of
Meteorology (Jones et al. 2009). AWAP is a daily dataset at
5 km by 5 km spatial resolution. The dataset is generated by
interpolating surface station measurements of precipitation.
AWAP data starts in 1900 for precipitation and extends to
the present. During most of the period of NARCliM historical
runs (1990–2009), AWAP gridded dataset includes informa-
tion from ~6000 to 7000 rainfall stations. This dataset was
examined for its efficacy in reproducing extreme rainfall char-
acteristics by King et al. (2013). They determined that this
gridded dataset can be used to investigate extreme rainfall
trends and variability, though they noted a tendency to under-
estimate the extreme heavy rainfall events compared to station
data. Before analysis, we interpolate the AWAP observations
onto the NARCliM domain 2 (10 km) grid using a simple
inverse distance weighting method.
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2.2 Regional climate model ensemble

The NARCliM project was designed to create regional scale
climate projections for use in climate change impacts and
adaptation studies and, ultimately, to inform climate change
policy (Evans et al. 2014). Details on NARCliM can be found
on the website http://www.ccrc.unsw.edu.au/NARCliM/. Data
produced in NARCliM underpins the AdaptNSW website
http://www.climatechange.environment.nsw.gov.au/Climate-
projections-for-NSW/About-NARCliM/.

NARCliM is a unique project because its design used a
bottom-up approach, heavily involving end users input. This
was intended to facilitate usability of model outputs by the end
users (e.g. adaptation community). A remarkable benefit of
early end-user involvement is the improved understanding
by the end users of the climate modelling process and its
limitations. The project includes a 12-member RCM ensem-
ble. This has been created by choosing four global climate
models (GCMs) and downscaling each of these with three
different RCMs (three versions of the Weather Research and
Forecasting (WRF) modelling system V3.3 (Skamarock et al.
2008) that used different parameterizations of sub-grid atmo-
spheric physics). All RCM simulations were performed at
10 km resolution over NSW/ACT. The NARCliM domain is
shown in Fig. 1.

The three RCMs are used to downscale four GCMs in three
20-year time slices (1990–2009, ‘present day’; 2020–2039,
‘near future’; 2060–2079, ‘far future’). For future projections,
the SRES A2 emission scenario is used. This scenario as-
sumes an overall relatively high growth rate of atmospheric
greenhouse gas emissions. A careful choice of both RCMs
and GCMs is required for this small ensemble to adequately
sample the model uncertainty. This choice was made by con-
sidering model performance (to ensure no consistently poor
performing models were chosen (Evans et al. 2012; Ji et al.
2014)), model independence (to ensure we retain as much

information in the small ensemble as possible (Bishop and
Abramowitz 2013; Evans et al. 2013)) and the span of
projected future changes in temperature and precipitation in
the region (to include all plausible future changes). The GCMs
chosen are from the Coupled Model Intercomparison Project
phase 3 (CMIP3) archive and are MIROC3.2, ECHAM5,
CCCMA3.1 and CSIRO-MK3.0. The chosen RCMs and the
parametrizations used therein are given in Table 1. These are
versions of the WRF model for different parametrizations of
planetary boundary layer, surface layer, cumulus physics and
radiation. The final ensemble therefore contains 12 members
where each of four GCMs drives each of three RCMs.

The RCM simulated precipitation contains biases. This
study uses the bias-corrected RCM output (i.e. RCM output
corrected for biases between the models and observations).
This correction uses a quantile matching technique as de-
scribed in Piani et al. (2010) that allows correction of the full
distribution of daily precipitation. First, Gamma distributions
are fitted to the observed andmodelled daily precipitation time
series. Then, corrections are applied so that the fitted distribu-
tions of daily RCM output match the fitted distributions of
daily observations. As opposed to empirical techniques, the
use of fitted distributions allows corrections to be applied to all
future values even if they are outside the present-day range.
The AWAP observations for period 1990–2009 are used to
calculate corrections. These corrections are assumed to be
independent of future climate change and the same corrections
are also applied to the precipitation values in the future pro-
jections. Note that as this method relies on fitting a theoretical
distribution, errors in this fitting can result in bias remaining
after the correction is applied.

2.3 ETCCDI indices

In order to establish a baseline set of indices that character-
ise moderate extremes of temperature and precipitation, the

Fig. 1 NARCliM 10 km
resolution domain
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CCl/CLIVAR/JCOMM Expert Team on Climate Change
Detection and Indices (ETCCDI) (http://etccdi.pacificclimate.
org) has compiled a set of 27 indices, 11 of which pertain to
precipitation. While the full set of indices was calculated, only
the subset shown in Table 2 is presented here.

The official definitions are used for all indices, except
R95p which relies on percentiles calculated on a base period.
The official base period is 1961–1990; here, we use 1990–
2009 as our base period. Note that Rx1day is defined on a
monthly basis, while all the other indices are defined on an
annual basis.

The three indices chosen to represent extreme precipita-
tion include a threshold exceedance measure in R20mm, a
wet-day percentile measure in R95p and an all-day percen-
tile measure in Rx1day (equivalent to the all-day percentile
of ~99.7 % for the annual values and ~98.9 % for the sea-
sonal values.). The consecutive wet and dry day measures do
not reflect extreme precipitation per se; instead, they are
indicators of precipitation timing and sequencing. These
characteristics are very important when assessing the impact
of changes in precipitation time series on many different
natural and human systems.

2.4 Statistical significance

For each GCM-RCM simulation, the present-day bias and the
future changes are tested for significance using a non-
parametric Mann-Whitney U test (α = 0.05) to see if the two
samples come from the same population. This procedure tests
whether the bias or change is large compared to the inter-
annual variability in the time series, given the number of sam-
ples. In the observations, trends are estimated using a linear

trend model employed in the Intergovernmental Panel on
Climate Change (IPCC) Fifth Assessment Report (IPCC
2013). Trend slopes in such a model are the same as those in
a standard Ordinary Least Squares regression model but allow
for first-order autocorrelation in the residuals. Statistical sig-
nificance is tested at the 5 % level using a non-parametric
Mann-Kendall test.

We present our ensemble results on significance following
Tebaldi et al. (2011). The multi-model biases and changes are
separated into three categories. In ‘insignificant’ areas, less
than half of the models show a significant bias or change.
Here, multi-model mean bias or change is shown in colour.
In ‘significant agreeing’ areas (stippled), at least half of the
models have significant biases or changes and at least 80 % of
the significant models agree on the direction. Finally, in ‘sig-
nificant disagreeing’ areas (shown in white over land), at least
half of the models have significant biases or changes but less
than 80 % of significant models agree on the direction. The
terms ‘insignificant’, ‘significant agreeing’, and ‘significant
disagreeing’ are used throughout the document to refer to
the three categories above.

3 Results

First, the NARCliM ensemble is compared to the observed
climatology for the present day (1990–2009). This establishes
a baseline for model performance to consider while examining
future changes. Next, observed trends over the past century
are presented. These provide context when assessing the
projected future changes.

Table 1 Physics
parameterisations used in WRF
based RCMs

NARCliM
ensemble
member

Planetary boundary layer
physics/surface layer
physics

Cumulus
physics

Shortwave/longwave
radiation physics

Micro-
physics

R1 MYJ / Eta similarity KF Dudhia / RRTM WDM 5 class

R2 MYJ / Eta similarity BMJ Dudhia / RRTM WDM 5 class

R3 YSU / MM5 similarity KF CAM / CAM WDM 5 class

Table 2 Precipitation-related ETCCDI indices used in this study

Indicator ID Name Calculation Units

Rx1day Monthly maximum
1-day precipitation

Let RRij be the daily precipitation amount on day i in period j. The maximum 1-day value
for period j is: Rx1dayj = max(RRij)

mm

R20mm Number of very heavy
precipitation days

Let RRij be the daily precipitation amount on day i in period j. Count the number of days
where: RRij ≥ 20 mm

days

R95p Contribution from very
wet days

Let RRwj be the daily precipitation amount on a wet day (RR ≥ 1 mm) in period j and
let RRwn95 be the 95th percentile on wet days in the 1990–2009 period. If W represents
the number of wet days in the period then: R95pj ¼ ∑W

w¼1RRwjwhereRRwj > RRwn95

mm

CDD Consecutive dry days Maximum number of consecutive days with RR < 1 mm days

CWD Consecutive wet days Maximum number of consecutive days with RR ≥ 1 mm days

1088 Evans J.P. et al.

http://etccdi.pacificclimate.org
http://etccdi.pacificclimate.org


3.1 Present-day climatology

The observed present-day (1990–2009) precipitation extreme
indices are shown in Figs. 2 and 3. For the Rx1day, the east
coast has a clear maximum on an annual basis, with values
generally decreasing toward the west and south. On the north-
east coast, the highest values occur in summer and autumn,

while on the south-east coast they are more evenly distributed
throughout the year. Similar distributions are found for
R20mm and R95p (Fig. 3a, b) though the Snowy Mountains
region in the south-east has values as large or larger than those
found along the east coast. The CDD (Fig. 3c) has a minimum
in the south-east with just over 10 days per year. CDD in-
creases toward the arid zone in the north-west where the

Fig. 2 Present-day (1990–2009)
seasonal and annual AWAP
maximum 1-day precipitation
(Rx1day). White circles (left to
right): Adelaide, Melbourne,
Sydney, Brisbane
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maximum dry spell can last over 3 months. CWD (Fig. 3d)
has a pattern almost inverse to CDD with arid zone (north-
west) wet spells lasting less than 4 days, and wet spells on the
north-east coast and Snowy Mountains lasting around
2 weeks.

3.2 Present-day biases

In this section, ensemble biases as compared to observations
are presented. In the bias plots, the ‘insignificant’ areas are
where the bias in most models is relatively small, which is
the most desired outcome. In ‘significant agreeing’ areas (stip-
pled), the ensemble bias tends in one direction, which is the
least desired outcome. Note that no ‘significant disagreeing’
areas are present. Grey indicates missing data in the observa-
tional dataset. In this case, if any year has missing data, that
location is simply masked as missing. These regions occur in
the north-west of the domain where station density is very low
and hence the observations are least reliable.

The raw model ensemble contains a general overestimate
of the mean precipitation (Olson et al. 2016), and this trans-
lates to a general overestimate of the extreme precipitation
indices (Supplementary Figs. 1 and 2). Here, we examine
the biases remaining in the extreme precipitation after appli-
cation of a theoretical quantile mapping bias correction. It
should be noted that since the extremes are a very small part
of the total daily precipitation time series, the fitting of the
theoretical distribution is not influenced by these points very
much; hence, a perfect match to the extremes is not
guaranteed.

For Rx1day (Fig. 4), R20mm (Fig. 5a) and R95p (Fig. 5b),
few significant agreeing biases are present. Some seasonal
influence can be seen in the Rx1day biases with a small area
of significant agreeing overestimates in Autumn and signifi-
cant agreeing underestimates in winter. This provides confi-
dence in using this ensemble to examine these extreme rainfall
indices. CWD (Fig. 5d), however, shows the ensemble to con-
tain significant agreeing underestimation biases over much of
the domain, while the east and south coastal areas have sig-
nificant agreeing overestimation biases. In this coastal region,
CDD (Fig. 5c) has a significant agreeing underestimation in-
dicating an overall wetter regime with small magnitude rain
days more common in the model ensemble than the observa-
tions. This concurs with previous work that also found WRF
to underestimate CDD (Barrera-Escoda et al. 2014). Inland,
however, like CWD, CDD also has significant agreeing un-
derestimation biases. In this region, the model ensemble fails
to capture the persistence in the hydrologic cycle (wet days
and dry days) and produces more day-to-day variability than
is present in the observations. This contrasts with Andrys et al.
2016 who found that CDD was overestimated by their WRF
models in inland south-west Western Australia and perhaps
indicates a strong location dependence to this bias.

3.3 Observed trends

Examining observed trends in extreme precipitation over the
last century reveals a general increase in the magnitude of
these extremes, though in many cases these increases are not
significant. Most of the significant increasing trends in

a b

c d

Fig. 3 Present-day (1990–2009)
average AWAP annual. aNumber
of very heavy precipitation days
(R20mm), b contribution from
very wet days (R95p), c
maximum consecutive dry days
(CDD) and d maximum
consecutive wet days (CWD).
White circles (left to right):
Adelaide, Melbourne, Sydney,
Brisbane
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Rx1day (Fig. 6) occur in summer, and the fewest significant
trends occur in spring. The trends in R20mm (Fig. 7a) and
R95p (Fig. 7b) are quite similar to the annual Rx1day trends
with increases almost everywhere and significant increases
in a swath through the centre of the region. Over much of
the region, there is a significant trend toward shorter

consecutive dry day periods (Fig. 7c), while the trends in
CWD are mixed though only the decreasing trends in the
south are significant. This southern area is unique in having
significant decreasing trends in both CDD and CWD, sug-
gesting a decrease in the hydrologic persistence in this
region.

Fig. 4 Present-day (1990–2009)
multi-model average bias (model
output minus AWAP
observations) for seasonal and
annual maximum 1-day
precipitation (Rx1day). Stippling
indicates that the bias is
‘significant agreeing’ at the 5 %
level.White circles (left to right):
Adelaide, Melbourne, Sydney,
Brisbane

Bias-corrected regional climate projections of extreme rainfall 1091



3.4 Future changes

Changes into the future are presented as the present-day mean
(1990–2009) subtracted from the future mean (2060–2079).
In the future change figures, areas with insignificant changes
(shown in colour) occur where less than half of the models
show a significant change compare to inter-annual variability.
Here, projected changes tend to be relatively small. In ‘signif-
icant agreeing’ areas (stippled), at least half of the models
show a significant change and at least 80 % of the significant
models agree on the direction of change. This indicates a
robust projected change in a particular direction. Finally, in
‘significant disagreeing’ areas (shown in white), at least half
of the models show a significant change and less than 80 % of
significant models agree on the direction of the change. This is
the least desired outcome from a policy perspective as any
future change remains highly uncertain.

Future increases in Rx1day (Fig. 8) are projected over
most of the region in summer, autumn and on an annual
basis. Little change is projected in winter and spring.
These projected future changes are however not significant.
The future change in R20mm and R95p (Fig. 9a, b) similarly
shows increases everywhere, though few places have in-
creases that are significant agreeing. It is worth noting that
a number of individual ensemble members do produce sig-
nificant increases into the future (supplementary Fig. 5), so
from a risk analysis perspective, the largest plausible chang-
es are indeed significant. CDD displays insignificant in-
creases almost everywhere (Fig. 9c), while CWD shows lit-
tle change (Fig. 9d) except perhaps for some insignificant
decreases over the southern coast region.

4 Discussion

The changes in extreme precipitation discussed here take
place within the context of overall changes in the mean pre-
cipitation field. These changes, as present in the NARCliM
ensemble, were examined by Olson et al. (2016). They found
that future changes in mean precipitation were mostly non-
significant with summer and autumn having increases, while
winter and spring had little change or even decreases. The
seasonal difference in future precipitation is reflected in
CMIP5 projections for southern Australia (Hope et al. 2015)
and in both CMIP5 and downscaled (statistical and dynamic)
projections for eastern Australia (Grose et al. 2015b).

The bias-corrected NARCliM ensemble is able to simulate
the various extreme precipitation indices with little bias pro-
viding a reliable platform from which to examine future
changes in extremes. This, however, is not true for the hydro-
logic persistence measures, CDD and CWD, which display
large areas of significant agreeing underestimation bias. For
CDD, this represents a decrease in the significant agreeing
underestimation biases compared to the raw model ensemble
(Supplementary Fig. 2). For CWD, the raw ensemble displays
significant agreeing areas of high biases across the northern
part of the domain. The bias correction applied has altered
these biases considerably, producing significant agreeing un-
derestimation biases in the interior and overestimation biases
along the eastern (and southern) seaboard. The dry spells
(CDD) are underestimated by around 15–30 %, while the
wet spells (CWD) are more variable but are underestimated
by similar proportions in many locations. Like all bias correc-
tion techniques, it is the magnitude of precipitation each day

a b

c d

Fig. 5 Present-day (1990–2009)
multi-model average annual bias
(model output minus AWAP
observations) for: a Number of
very heavy precipitation days
(R20mm), b contribution from
very wet days (R95p), c
maximum consecutive dry days
(CDD) and d maximum
consecutive wet days (CWD).
Stippling indicates that the bias is
‘significant agreeing’ at the 5 %
level.White circles (left to right):
Adelaide, Melbourne, Sydney,
Brisbane
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that is altered not the temporal sequencing of wet and dry
days. The differences caused by bias correction are due to
days being shifted across the 1 mm/day threshold to be classed
as dry days when they were previously classed as wet days.
The actual corrections required to cross this threshold can be
very small but can lead to fairly large changes in CDD and
CWD. We also note that the tendency for the ensemble to
underestimate the persistence in wet and dry spells is at least

partly due to the lack of persistence in the GCM boundary
conditions (Rocheta et al. 2014) and needs to be kept in mind
when examining projected future changes.

The observations over the last century often show signifi-
cant increasing trends in extreme precipitation over most of
the region. As a general rule, these trends are projected to
continue into the future. In fact, for the annual Rx1day, the
future change projected for the centre of the domain is very

Fig. 6 AWAP trends from 1911
to 2014 in seasonal and annual
maximum 1-day precipitation
(Rx1day). Stippling indicates that
the trend is significant at the 5 %
level.White circles (left to right):
Adelaide, Melbourne, Sydney,
Brisbane

Bias-corrected regional climate projections of extreme rainfall 1093



similar to what would be expected by a continuation of the
observed trend. This is also true for R20mm and R95p, sug-
gesting that while most projected future changes are not sig-
nificant agreeing, the overall projection of increases in precip-
itation extremes is robust to the definition of extreme used.
These future changes are also relatively unaffected by the bias
correction with very similar patterns of (slightly larger) chang-
es present in the raw ensemble (supplementary Figs. 3 and 4).
Rx1day also shows distinct seasonality in future increases
with summer and autumn, which often produce the largest
extremes today, projected to have the largest increases in these
extremes in the future.

Current observed climatology shows that the largest pre-
cipitation extremes occur along the east coast. A significant
proportion of these extremes is produced by maritime storm
systems known as East Coast Lows (ECLs). ECLs can be
identified using a variety of methods ranging from large-
scale vorticity-based methods (Dowdy et al. 2013a; Ji et al.
2015) to local mean sea level pressure gradient methods (Di
Luca et al. 2015; Pepler et al. 2014). The NARCliM ensemble
has been shown to provide a good representation of the cli-
matology of ECLs (Di Luca et al. 2016b). By applying a range
of these methods to the NARCliM ensemble, Pepler et al.
(2016) showed that a robust decrease in winter ECLs is
projected, while little change, or a small increase, is expected
in summer. This is consistent with Fig. 8 where a decrease in
Rx1day on the Eastern Seaboard is projected in winter. On an
annual basis, Rx1day increases in this region in agreement
with the findings of Dowdy et al. (2015) due to increases in
summer and autumn.

These results can be compared to those projected directly
by the CMIP5 ensemble for late in the twenty-first century

(Sillmann et al. 2013). For R95p, the CMIP5 results generally
show an increase that is not significant in agreement with the
high-resolution results presented here. It is worth noting, how-
ever, that CMIP5 ensemble produces a more mixed result with
some areas, showing a significant increase and others
decreases that are not significant, while the NARCliM
ensemble results are more consistent across the region.
Sillmann et al. (2013) also report R10mm as showing a con-
sistent, though not significant, decrease across the region.
Though not directly comparable, this is in contrast to the
R20mm results reported here and their own R95p result.

In terms of hydrologic persistence measures, the projected
future change in CWD is also broadly similar to a continuation
of the observed trend over the last century. CDD, however,
projects a reversal of the observed trend from a decrease to an
increase. That is, if the observed trend was to continue to 2070
in the centre of the domain, where a CDD of 65 days is cur-
rently observed, then a decrease of around 14 days would be
expected. Instead, the ensemble projects an increase of around
6 days. Examining the observed trend over the last 30 years
(since 1984) shows that large parts of the region are already
showing an increasing trend in CDD over recent decades. The
future projections suggest that this change to an increasing
CDD will spread throughout the region over coming decades.
The CMIP5 ensemble also projects an increase in CDD for
this region.

Over most of the domain, a combination of increasing
length of maximum dry spell (CDD) and increasing magni-
tude of extreme precipitation exists. Thus, while much of the
region shows relatively little change in the annual precipita-
tion (Olson et al. 2016), the nature of the precipitation is
changing toward heavier downpours interspersed with longer

a b

c d

Fig. 7 AWAP trends from 1911
to 2014 in annual. a Number of
very heavy precipitation days
(R20mm), b contribution from
very wet days (R95p), c
maximum consecutive dry days
(CDD) and d maximum
consecutive wet days (CWD).
Stippling indicates that the trend
is significant at the 5 % level.
White circles (left to right):
Adelaide, Melbourne, Sydney,
Brisbane
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dry spells, as well as being seasonally redistributed. This com-
bination of an increase in the length of dry spells (CDD) and in
the intensity of extreme precipitation (R95p) has also been
found in locations such as the Mediterranean basin (Argüeso
et al. 2012; Barrera-Escoda et al. 2014) and Tasmania (White
et al. 2013).

Recently, Schär et al. (2016) pointed out the use of all-day
percentiles (such as Rx1day) or wet-day percentiles (such as

R95p) can produce very different results when examining fu-
ture changes. In this work, we find remarkable consistency in
the future projections revealed by these measures. Schär et al.
(2016) show that wet-day percentiles are sensitive to changes
in the wet-day frequency. Here, we find that wet-day frequen-
cy has only minor changes into the future (supplementary
Fig. 6). Despite the bias correction producing substantial
changes in wet-day frequency in some locations in the present,

Fig. 8 Multi-model mean
changes between the present day
(1990–2009) and far future
(2060–2079) in seasonal and
annual maximum 1-day
precipitation (Rx1day). Stippling
indicates that the changes are
‘significant agreeing’ at the 5 %
level.White circles (left to right):
Adelaide, Melbourne, Sydney,
Brisbane
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the future changes are little affected. As a result, the various
extreme precipitation indices produce a consistence change
into the future.

5 Conclusions

This study presents future changes in extreme precipitation as
projected within the NARCliM regional climate ensemble for
south-east Australia. The ensemble is built by driving three
RCMs with boundary conditions derived from four GCMs to
create a 12 member ensemble. Both the RCMs and the GCMs
were carefully chosen to maximise the information content of
the ensemble (by considering model independence) as well as
spanning the plausible future climate changes present in the
full CMIP3 ensemble. It is shown that applying a theoretical
distribution function-based quantile mapping bias correction
technique is successful in removing most of the magnitude
bias in extreme precipitation but does not correct biases in
the length of maximumwet and dry spells. The bias correction
also had a relatively small effect on the projected future chang-
es. Due to the removal of present-day bias and the robustness
of the future changes, the bias-corrected data is recommended
for use in climate change impacts and adaptation studies that
may have sensitivities to particular precipitation thresholds.

Across a range of metrics, robust increases in the magni-
tude of precipitation extreme indices are found. While these
increases are often in-line with trends present over the last
century, they are not found to be significant within the ensem-
ble as a whole. It is worth noting that several ensemble mem-
bers have large areas with statistically significant increases so

that, from a risk analysis perspective, a highest plausible sce-
nario would include significant increases.

The length of the maximum consecutive wet spell is
projected to remain unchanged, while the length of the max-
imum dry spell is projected to increase into the future. While
not all members of the ensemble agree that this increase is
significant, the combination of longer dry spells and increases
in extreme precipitation magnitude indicate an important
change in the character of the precipitation time series. This
could have significant hydrological implications since chang-
es in the sequencing of events can be just as important as
changes in event magnitude for hydrological impacts. These
changes in the nature of the precipitation regime will present
water resource managers with challenges not encountered in
the historical record and emphasises the need to include more
than just annual mean future changes in their planning
processes.
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