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Abstract This study used a quantile autoregressive distribut-
ed lag (QARDL) model to capture asymmetric impact of rain-
fall on food production in India. It was found that the coeffi-
cient corresponding to the rainfall in the QARDL increased till
the 75th quantile and started decreasing thereafter, though it
remained in the positive territory. Another interesting finding
is that at the 90th quantile and above the coefficients of rainfall
though remained positive was not statistically significant and
therefore, the benefit of high rainfall on crop production was
not conclusive. However, the impact of other determinants,
such as fertilizer and pesticide consumption, is quite uniform
over the whole range of the distribution of food grain
production.

1 Introduction

India is currently passing through a crucial time, when over a
decade, India’s food grain production has remained stagnant,
or increased marginally, while population is registering a
steady growth of 2 % annually. This has put the issue of food
security at the centre of the discussion for every policy maker.
What makes the issue so alarming is that Indian agriculture is
till date predominantly rain fed with only 47.8 % of the culti-
vated land is covered under assured irrigation (Government of
India 2013). India tops the list among the nations that follow

rain-fed farming in terms of coverage as well as output
(Sharma et al. 2010). The rain-fed food production is under
tremendous pressure due to shift in rainfall pattern, wide var-
iation on hydrological setting as well as overdependence on
ground water (Khan and Hanjra 2009). Rainfall pattern in
India, more precisely the southwest monsoon that provides
nearly 74 % of India’s annual rainfall, has become highly
inconsistent and prediction has become much challenging
due to more of climatic variability (Deka et al. 2013; Goyal
2014; Mandal et al. 2015; Chattopadhyay and Chattopadhyay
2016). Additionally, India also faces rising demand for water
from industrial and domestic sources thus reducing the avail-
ability of water for agriculture. Finally, overextraction of
ground water has depleted the ground water aquifer (Gandhi
and Namboodiri 2009) and that to the yearly depletion of
54 ± 9 km3 between early 2002 and mid 2008 (Tiwari et al.
2009). Lack of assured water supply as well as delayed rainfall
is believed to be contributing mostly to low crop yield
(Panigrahi and Panda 2002). This makes annual precipitation
most crucial for good harvest in India.

Several attempts have been made to assess the extent to
which India’s food grain production is affected by the varia-
tion in rainfall. As for example, Sarma and Gandhi (1990)
estimated a production function for food grain in India
employing rainfall, area under irrigation, fertilizer use and
the area under high-yielding varieties (HYV) as explanatory
variables. Singh (1993) investigated possible association be-
tween production variability of food grain with adoption of
new technology. Working on a dataset from 1966 to 1967 to
1998 to 1999, Gandhi et al. (2004) used a Cobb–Douglas
production function for wheat with the rainfall index, percent-
age of irrigated area, fertilizer use and the percentage of the
area under HYVas input. Gadgil and Gadgil (2006) assessed
the impact of summer monsoon on India’s food grain produc-
tion during 1951 to 2003. In these studies, rainfall has evolved
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as the most significant variable affecting India’s food grain
production. They found that owing to near stagnant growth
of irrigation coverage, India’s food grain production largely
depends on rainfall. As all these scholarly contributions pre-
cisely relied upon the linear effect of the rainfall and other
exogenous variables on the food grain production, ordinary
least squares (OLS) method was commonly used. However, a
low rainfall, without adequate irrigation facility, would obvi-
ously affect crop production, but a heavy precipitation with
every possibility could also adversely affect total output by
creating water logging in the field or even flood-like situa-
tions. Hence, rainfall is expected to carry a nonlinear impact
on food grain production. Any presence of such asymmetric
responses may question the efficacy of linear modelling been
used so far in assessing food grain production with time series
data.

We attempt to fill this gap by using the quantile
autoregressive distributed lag model (QARDL), to examine
whether rainfall carries asymmetric impact on food grain pro-
duction. The QARDL model, proposed by Cho et al. (2015),
that estimates conditional quantile function over time is capa-
ble of delivering significant insights on the nonlinear dynam-
ics in time series modelling by controlling lagged explanatory
variables and exogenous covariates.

We assume that rainfall, the proportion of land under
HYV, fertilizer consumption and pesticide use would be
the major contributing factors towards food grain pro-
duction. The additional variable proposed here, i.e. pes-
ticide use, is related to plant health and likely to carry a
positive impact on production by minimizing pest and
disease infestation. As this study did not find a signif-
icant effect of the proportion of land under HYV on
food grain production, we include the rest three explan-
atory variables in the food grain production function for
India. This is consistent with the analysis of Rao et al.
(1988), which have shown that the introduction of HYV
from 1966 to 1967 does not have a significant effect on
total food grain production as HYV only boosted the
yield of wheat crop while yield of several other food
crops either remained unchanged or even declined.

This work contributes primarily in two ways. First, it
captures an asymmetric impact of rainfall on India’s
food grain production, contravening the earlier efforts
that assumed a linear effect of rainfall on food grain
production. Second, here, we apply QARDL model,
which has not yet been explored in the context of cli-
matology and more specifically to capturing the nonlin-
ear effect of precipitation on crop production.

The remaining of the paper is arranged as follows: in
section 2, we outlay an overview of spread of rainfall in
India. In section 3, we describe data. The econometric
model is presented in section 4. Section 5 discusses the
results. Section 6 concludes.

2 Spread of rainfall in India

India experiences uneven distribution across the country. The
availability of assured rainfall is limited to only 8 % of the
geographical area with another 20 % under high precipitation
range. The balance 72 % of the geographical area receives
medium to low rainfall (Table 1). Besides, annual rainfall is
concentrated in a particular short period of the year. Table 2
shows data on season-wise distribution of annual rainfall and
highlights that around three fourths of the annual rainfall is
received within 4 months, i.e. June to September. Finally, due
to varying hydrogeological settings across the country, there
lies a wide variation in ground water recharge capacity.

Further, there lies wide disparity in irrigation coverage
across food crops, while during 2010–2011, 92.1 % of the
cultivated area under wheat crop had assured irrigation facility
and for the rice crop only 58.6 % of the cultivated area was
covered under irrigation (Government of India 2013). On the
contrary, irrigation coverage regarding coarse cereals was
much less and pegged at only 14.4 % during the correspond-
ing period. This uneven reach of irrigation facility resulted in
increased production risk for rain-fed coarse cereals (Singh
1993).

3 Data

To carry out the empirical investigation, we used annual time
series data from 1971 to 1972 to 2011 to 2012. Table 3 de-
scribes data and lists the sources.

Table 4 outlays the summary statistics for the underlying
variables. During the study period, India’s total food grain
production varied between 813.04 and 2059.01 million tonnes
with an average of 1357.71 million tonnes and standard devi-
ation of 364.04 t. Annual rainfall ranged between 697.40 and
1094.10 mm with standard deviation of 89.41 mm that por-
trays a wide variation in annual rainfall over years. Use of
fertilizer has increased from as minimal as 21.77 to 281.22
million tonnes. Pesticide consumption has experienced a
threefold increase from 24.32 to 75.89 thousand tonnes. The

Table 1 Geographical spread of annual rainfall in India

Rainfall
classification

Amount of rainfall
(millimetre)

% of total
geographical area

Low/dry Less than 750 30

Medium 750–1150 42

High 1150–2000 20

Very high/assured Above 2000 8

Total 100

Source: Fertiliser Association of India (2013)
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third moment indicates that the distributions are positively
skewed except for annual rainfall which is negatively skewed.
The fourth moment shows that the distributions are
leptokurtic, i.e. distributed with positive excess kurtosis or
fatter tails.

3.1 Econometric specification

The proposed multivariate model is given below:

Y ¼ f R; F;Pð Þ ð1Þ
where Y is the major food grain production (in million tonnes),
R is the annual rainfall (in millimetre), F stands for consump-
tion of fertilizer (in million tonnes) and P represents the con-
sumption of pesticide (in thousand tonnes).

First, we test the order of integration among the variables
used in this study by employing augmented Dickey–Fuller
test (Dickey and Fuller 1979) and Phillips–Perron test
(Phillips and Perron 1988). We choose the number of lags
according to Schwarz–Bayesian information criteria. We
found that while annual rainfall was integrated of order zero
i.e. stationary at levels, food grain production, fertilizer con-
sumption and pesticide usage were stationary at their first
differences.

As three of the underlying variables were nonstationary at
levels, we checked whether the underlying variables were
cointegrated. Cointegration is mainly applicable to nonstation-
ary time series variables that would yield stationary residuals
in the model. Following Xiao (2009), Lee and Zeng (2011)
and Burdekin and Siklos (2012), the conventional

cointegration relationship between the model proposed in
Eq. (1) is represented as follows:

Y t ¼ a0 þ b1Rt þ b2Ft þ b3Pt þ εt ð2Þ

where t = time period = 1, 2,…, n and εt is the random error.
We performed Trace test and Maximum Eigenvalue test

advanced by Johansen (1991) as also employed in Lee and
Zeng (2011) prior to using quantile cointegration regression
proposed by Xiao (2009). Both the tests indicated that the
underlying variables were cointegrated, i.e. there holds long-
run association among the underlying variables.

Further, the long-run cointegrating target production rela-
tionship can be expressed into a form following an
(unrestricted) autoregressive distributed lag (ARDL) model
suggested by Pesaran et al. (2001) and Cho et al. (2015),

ΔY t ¼ α0 þ β1Y t−1 þ β2Rt−1 þ β3Ft−1 þ β4Pt−1

þ ∑
n1

i¼1
γ1iΔY t−i þ ∑

n2

i¼0
γ2iΔRt−i þ ∑

n3

i¼0
γ3iΔFt−i

þ ∑
n4

i¼0
γ4iΔPt−i þ εt ð3Þ

whereΔ is the first difference operator, α0 is the drift compo-
nent and n1, n2 and n3 are lag orders and εt is the error.

The advantages of ARDL are as follows: first, ARDL can
be made use irrespective of whether the variables are station-
ary at levels, stationary at their first difference or fractionally
integrated. Second, it is possible to simultaneously estimate
both long- and short-run parameters. Finally, ARDL can be

Table 2 Season-wise distribution
of annual rainfall in India Rainfall Duration Share of annual rainfall (%)

Pre-monsoon March–May 10.4

Southwest monsoon June–September 73.7

Post-monsoon October–December 13.3

Winter or northeast monsoon January–February 2.6

Total Annual 100.0

Source: Fertiliser Association of India (2013)

Table 3 Data and sources

Variable Description Source

Y Major food grain production (in million tonnes) Ministry of Agriculture, Government of India,
Database on Indian Economy - Reserve Bank of India

R Annual rainfall (in millimetre) from June to September Data Portal India, data.gov.in/

F Consumption of fertilizer (nitrogen + phosphorous + potash)
(in million tonnes)

Pattern of land use and select inputs for agricultural production.
Agricultural Statistics at a Glance, Ministry of Agriculture,
Government of India

P Consumption of pesticides (technical grade materials)
(thousand tonnes)

Chand and Birthal (1997)
Database on Indian Economy - Reserve Bank of India
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used even when the independent variables are endogenous
(Pesaran et al. 2001).

We also conducted F test of bounds testing approach pro-
posed by Pesaran et al. (2001) to probe the existence of
cointegrating relationship among the underlying variables at
level values. The null hypothesis of no cointegration among
the underlying variables in Eq. (3) isH0 : β1 = β2 = β3 = β4 = 0
against H1 : β1 ≠ β2 ≠ β3 ≠ β4 ≠ 0 which is denoted as
FY(Y| R , F , P).

The test statistic of Pesaran and Shin (1998) and
Pesaran et al. (2001) provided two separate sets of crit-
ical F statistic for I(0) and I(1) applicable on large sam-
ples. Another two sets of F statistic was developed by
Narayan (2005) for comparatively smaller samples rang-
ing from 30 to 80. As this study covers annual time
series data spanning from 1971 to 1972 to 2011 to
2012, we followed Narayan (2005) for referring to F
statistic. If the test statistic exceeds the upper bounds
critical value, null of no cointegration is not accepted,
and it can be established that a long-run relationship
exists. If the calculated F statistic falls below the
bounds critical value, then the null of no cointegration
is not rejected. If calculated F statistic falls within the
upper and lower bounds critical value, inference would
be inconclusive. Here, the test statistic of F test had a
value of 6.7586 that exceeded the upper bound value
(i.e. 5.455 at 1 % level) suggested by Narayan (2005).
Hence, the null of no cointegration was rejected and the
presence of cointegration among the underlying vari-
ables was further confirmed.

In general, quantile regression (QR) proposed by Koenker
and Bassett (1978) models conditional quantiles as functions
of the explanatory variables. While OLS captures the change
in the conditional mean of the regrassand associated with a
change in explanatory variables, the QR models variations
over the conditional quantile. QR is preferred when there is
asymmetry.

Cho et al. (2015) extended the idea of quantile
cointegration proposed by Koenker and Xiao (2006) to
develop a dynamic QARDL modelling approach which
can simultaneously capture both long-run relationship
and the associated short-run dynamics across a range
of quantiles of the conditional distribution of the
regressand in a fully parametric setting.

Following Cho et al. (2015), the quantile counterpart of the
Eq. (3) i.e. the QARDL model at τth quantile is as follows:

ΔY t ¼ α0 τð Þ þ β1 τð ÞY t−1 þ β2 τð ÞRt−1 þ β3 τð ÞFt−1

þ β4 τð ÞPt−1 þ ∑
n1

i¼1
γ1i τð ÞΔY t−i þ ∑

n2

i¼0
γ2i τð ÞΔRt−i

þ ∑
n3

i¼0
γ3i τð ÞΔFt−i þ ∑

n4

i¼0
γ4i τð ÞΔPt−i þ ε1t τð Þ ð4Þ

where τ ∈ (0,1) is a quantile index and n1, n2 and n3 are lag
orders.

The conditional long-run model for Yt can be attained by
employing ARDL approach and the reduced form solution of
Eq. (4) following the QARDL version of Cho et al. (2015) is
as follows:

Y t ¼ λ1 τð Þ þ λ2 τð ÞRt þ λ3 τð ÞFt þ λ4 τð ÞPt þ νt τð Þ ð5Þ
where λ2(τ) = − β2(τ)/β1(τ), λ3(τ) = − β3(τ)/β1(τ) ,
λ4(τ) = − β4(τ)/β1(τ) and νt(τ) is the random error.

4 Results and discussion

Setting τ= 0.05 , 0.10 , 0.15 , 0.20 , … , 0.90 , 0.95, we estimat-
ed Eq. (5) using QARDL method. For the purpose of
comparison, Eq. (5) was also estimated using the OLS
method. The estimation results are given in Table 5.
These results are complemented by the figures of the
coefficients for each variable in Eq. (5). For each of
the three covariates, we plot 19 different QARDL esti-
mates for τ ranging between 0.05 and 0.95 as the solid
curve. These point estimates show the impact of one-
unit change of the covariate across various quantile on
the food grain production keeping other covariates con-
stant. Thus, each of the plots in Fig. 1a–c has a hori-
zontal quantile, or τ, scale, and the vertical scale in
million tonnes indicating the impact of the covariates.
The dotted line in each plot indicates the OLS estimate
of the conditional mean impact. The shaded area plots a
confidence band of ±1 standard error (s) for the
QARDL long-run coefficients.

To assess whether the effect of drought as well as flood
carries forward to the next period, we initially included lags

Table 4 Summary statistics
Variable Mean Maximum Minimum Standard deviation Skewness Kurtosis

Y 1357.71 2059.01 813.04 364.04 0.02 1.75

R 879.99 1094.10 697.40 89.41 −0.17 2.77

F 122.89 281.22 21.77 74.96 0.44 2.27

P 48.99 75.89 24.32 12.50 0.60 2.73
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in our model. We started with two lags to be sure that whether
the effect of drought or flood carries forward for two succes-
sive years. To reach a parsimonious model, we followed a
general-to-specific modelling method by sequentially
dropping variables with high p values, i.e. those do not carry

statistically significant effect on food grain production. As
both the lags were attached with high p values they were not
included in the model. Hence, we attain zero lag of rainfall in
our final model. The choice of lag was also confirmed by
Schwarz–Bayesian information criteria. This seems plausible

Table 5 Estimated QARDL models for different quantiles of food grain production

τ β2(τ) β3(τ) β4(τ) R2/pseudo R2 λ2(τ) λ3(τ) λ4(τ)

OLS 0.453*** 3.448*** 1.998* 0.4268 0.725*** 5.516*** 3.197*

(−0.146) (−0.871) (−1.014) (0.2348) (1.3949) (1.6231)

0.05 0.595** 5.616*** 2.824 0.4925 0.599** 5.656*** 2.8447

(0.2674) (1.6084) (1.4992) (0.2694) (1.6199) (1.5099)

0.1 0.680** 5.467*** 2.031 0.3849 0.682** 5.478*** 2.0359

(0.2708) (1.5681) (1.461) (0.2714) (1.5713) (1.4639)

0.15 0.550* 4.488*** 1.908 0.3270 0.672* 5.484*** 2.3315

(0.2876) (1.5917) (1.6009) (0.3514) (1.9448) (1.956)

0.2 0.406 3.379** 1.036 0.3087 0.6937 5.773** 1.7712

(0.2522) (1.4886) (1.6335) (0.4309) (2.5431) (2.7906)

0.25 0.526** 4.357** 2.136 0.3196 0.676** 5.591** 2.7418

(0.2655) (1.6) (1.6834) (0.3408) (2.0533) (2.1604)

0.3 0.473* 4.026** 2.069 0.3016 0.666* 5.659** 2.9084

(0.2729) (1.6273) (1.6329) (0.3836) (2.2872) (2.2951)

0.35 0.509* 4.194** 2.178 0.2813 0.678* 5.583** 2.8995

(0.2854) (1.6586) (1.5781) (0.3799) (2.2077) (2.1006)

0.4 0.358 3.231** 1.637 0.2589 0.655 5.901** 2.9905

(0.2575) (1.5439) (1.6132) (0.4703) (2.82) (2.9466)

0.45 0.404 3.431** 1.702 0.2397 0.681 5.777** 2.8661

(0.2559) (1.5296) (1.7548) (0.4308) (2.5751) (2.9542)

0.5 0.510* 3.502** 1.427 0.2304 0.792* 5.436** 2.2161

(0.2606) (1.5732) (1.7542) (0.4045) (2.4418) (2.7227)

0.55 0.511** 3.501** 1.422 0.2272 0.7938** 5.4344** 2.2079

(0.2427) (1.458) (1.7123) (0.3766) (2.2627) (2.6574)

0.6 0.449* 3.309** 2.127 0.2506 0.748* 5.510** 3.5415

(0.2333) (1.3976) (1.7685) (0.3885) (2.327) (2.9445)

0.65 0.4225 2.887** 1.468 0.2846 0.8141 5.563** 2.8297

(0.2282) (1.3941) (1.8415) (0.4397) (2.6863) (3.5485)

0.7 0.421* 2.836** 1.329 0.3046 0.831* 5.559** 2.606

(0.2313) (1.3975) (1.6791) (0.4535) (2.7398) (3.2919)

0.75 0.425* 2.836** 1.329 0.3137 0.834* 5.559** 2.606

(0.2178) (1.3148) (1.5777) (0.4269) (2.5777) (3.0929)

0.8 0.409** 3.040** 2.309 0.3182 0.757** 5.624** 4.2716

(0.1929) (1.2366) (1.7203) (0.3568) (2.2874) (3.1821)

0.85 0.390** 3.150*** 3.019* 0.3125 0.705** 5.691*** 5.454*

(0.1503) (1.0049) (1.6233) (0.2714) (1.8152) (2.9321)

0.9 0.259 2.352** 3.221* 0.3559 0.650 5.907** 8.091*

(0.1676) (1.1557) (1.677) (0.421) (2.9027) (4.2119)

0.95 0.250 2.376** 3.565** 0.4253 0.616 5.850** 8.778**

(0.1587) (1.0841) (1.5428) (0.3907) (2.6689) (3.7981)

Standard errors are shown in parentheses

***Significant at a level of 1 %, **significant at a level of 5 %, *significant at a level of 10
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as given wide geographical spread of Indian territory the effect
of scanty as well as bounty precipitation is felt regionally,
unless the shortfall or excess rainfall is experienced across
the country. As during our study period, drought or flood
has been experienced regionally; their effect is marginal on
India’s total food grain production. Hence, the effect of annual
precipitation—whether shortfall or excess—remained con-
fined to the particular year.

According to the OLS estimation, annual rainfall was pos-
itively affecting the food grain production and statistically
significant at the convention levels. The QARDL results,
while supplementing the OLS outcome, painted a different
picture. The higher the quantiles were, the greater the estimat-
ed values of λ2(τ) and reached to its peak (i.e. 0.834) at
τ = 0.75 and further reduced and came down to 0.616 at
τ = 0.75, which was closer to the estimated values of λ2(τ) at
τ = 0.05(i.e. 0.599). The decreasing trend of λ2(τ) values
above 75th quantile indicated that excess rainfall is detrimen-
tal to crop production, while this feature could not be captured

in OLS. The inverted ‘U’ shape of the coefficient associated
with the rainfall parameter (refer Fig. 1a) was expected as food
grain production was adversely affected by both scanty rain-
fall and drought and incremental benefit of rainfall reduces in
case of excessive rainfall, i.e. above the 75th quantile. The
coefficients corresponding to rainfall though remained posi-
tive was not statistically significant at 90th and 95th quantiles.

Fertilizer use was associated with a modest increase in food
grain production. It had a reasonably uniform impact over the
entire range of the distribution of around 5.5 million tonnes
(b). The behaviour was consistent with the earlier research
(see for example, Sharma and Thaker, 2010) which indicated
that heavy subsidization of nitrogenous fertilizer (e.g. urea)
while in one hand had led to imbalanced use of nitrogen,
phosphorous and potash and hence negatively affected soil
fertility and productivity, on the other hand, had also resulted
in uneven use of fertilizer across crops. Therefore, a uniform
effect of fertilizer on food grain production seems to be
plausible.

Coefficient associated with the pesticide use was found to
be positive and significant at the level of 10 % under the OLS.
This indicates that pesticide use carries positive impact on
food grain production though not highly significant. This
seems plausible as right use of pesticide prevents crop loss
from pest and disease attack. The results of the QARDL por-
tray a different picture to that of the OLS (c). The results of
OLS show a uniform boosting effect of pesticide use on the
food grain production. However, under QARDL pesticide use
was significant only at 85th quantile and above however sig-
nificant only at the level of 10 %. In the lower quantiles
though the coefficients were positive, they were not statisti-
cally significant. This indicates that the effect of pesticide use
on food grain production varies with the extent of pesticide
use. This means that the restricted use of pesticide has only
limited effect in preventing crop loss.

5 Conclusion and policy implication

This study confirms asymmetric impact of rainfall on India’s
food grain production. This result is important for India as
food grain production in India is heavily dependent on rainfall
and only 47.8 % of the cultivated area is covered under irri-
gation. The irrigation facilities developed so far have been
largely sustained on ground water resources. Groundwater
irrigates (27 million hectares) a larger total area than surface
water (21 million hectares). However, water table is declining
almost all over the country due to heavy dependence on
ground water irrigation. This has become a serious concern
for policy makers in terms of retaining self-sufficiency in food
grain against an annual population growth of 2 %. With irri-
gation being the ‘leading input’ (Ishikwa 1967) as precondi-
tion for other technological improvements to yield higher

(a) Annual rainfall

(b) Fertilizer use

(c) Pesticide consumption

Fig. 1 a–c OLS and QARDL estimates for the long-run coefficients of
food grain production model
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production and given depleting water table due to overdepen-
dence on ground water, government puts more thrust on sur-
face irrigation. A further addition of the surface irrigation fa-
cility, in the one hand, would reduce dependence on rainfall
and on the other would ensure an outflow of stagnant water
from the flooded regions.

The importance of rainfall in Indian agriculture also
arises due to the uneven distribution of rainfall across the
country. Availability of assured rainfall is limited to 8 %
of the geographical area with another 20 % under high
precipitation range. The balance 72 % of geographical
area receives medium to low rainfall. These necessities
developing water resources for assured water supply
across the region as well as across seasons remain vital
to achieve the desired growth in agricultural production.
In India, where dearth of public investment in the devel-
opment of surface water irrigation has forced the farmers
to opt for private investment to extract ground water, the
innovation of the semi-circular check dam is a boon. So,
one can construct more dams at the same cost required to
build a single straight line check dam (Gupta 2007). In
low rainfall or drought prone areas, ten small dams with
a catchment of 1 ha each are capable of collecting more
water than a single dam with 10 ha of catchment area
(Agarwal 2001). Low-cost precision irrigation systems
may also be advocated for the judicious use of water as
drip and sprinkler irrigation save water to the extent of
50 and 25 %, respectively (Dhawan 2001).

Furthermore, around three fourth of India’s rainfall is con-
centrated within a 4-month period, i.e. June to September, that
is credited to the southwest monsoon. Given limited check
dam facility, a major part of the water either percolates to soil
or drains to ocean. Building adequate number of check dams,
reservoirs as well as water harvesting facilities are advocated
to store rain water which can be used for food grain production
during the deficit years. The storage tanks as well as reservoirs
would harvest water during the rainy season to mitigate water
requirement during the post-monsoon dry spells (Jain and
Kumar 2012). Harvesting the excess rain water would arrest
the devastating impacts of the dry spells on rain-fed
agriculture.

Innovative crop practices such as intermittent submergence
and transplanting of paddy seedlings during the onset of mon-
soon that saves 25–40 % of irrigation water (Dhawan 2001)
should be promoted to reduce the dependence on rainfall.

Finally, participatory water resource management is the
need of the hour where communities have to be encouraged
to manage, maintain and finance their water supply systems. It
is also necessary to build the capacity of water managers and
local organizations, to help them use participatory approaches,
carry out needs assessments and plan and design systems
creatively in partnership with farmers for promoting
judicious use of rain water.

In this work, we used the quantile ARDL method of Cho
et al. (2015) to find the determinants of food grain production
in India. QARDL modelling approach jointly captures both
short-run dynamics and long-run cointegration across a range
of quantiles of the conditional distribution of the response
variable. Significant differences were observed between the
quantiles and OLS estimates. We found an asymmetric effect
of precipitation on food grain production. The impact of rain-
fall increased till 75th quantile and started decreasing thereaf-
ter, though it remained in the positive territory.
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