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Abstract The persistent temperature and precipitation ex-
tremes may bring damage to the economy and human due to
their intensity, duration and areal coverage. Understanding the
quality of reanalysis datasets in descripting these extreme
events is important for detection, attribution and model eval-
uation. In this study, the performances of two reanalysis
datasets [the twentieth century reanalysis (20CR) and
Interim ECMWF reanalysis (ERA-Interim)] in reproducing
the persistent temperature and precipitation extremes in
China are evaluated. For the persistent temperature extremes,
the two datasets can better capture the intensity indices than
the frequency indices. The increasing/decreasing trend of per-
sistent warm/cold extremes has been reasonably detected by
the two datasets, particularly in the northern part of China. The
ERA-Interim better reproduces the climatology and tendency
of persistent warm extremes, while the 20CR has better skill to
depict the persistent cold extremes. For the persistent precip-
itation extremes, the two datasets have the ability to reproduce
the maximum consecutive 5-day precipitation. The two
datasets largely underestimate the maximum consecutive dry
days over the northern part of China, while overestimate the
maximum consecutive wet days over the southern part of

China. For the response of the precipitation extremes against
the temperature variations, the ERA-Interim has good ability
to depict the relationship among persistent precipitation ex-
tremes, local persistent temperature extremes, and global tem-
perature variations over specific regions.

1 Introduction

Persistent climate extremes have a disproportionate impact on
ecosystems and society compared to changes in mean climate,
due to their intensity, duration, and areal coverage. Different
types of persistent extremes, such as heat wave, severe drought,
cold spell, are expected to increase in frequency and intensity
along with global warming (Liao and Zhang 2013; Sun et al.
2014; Williams et al. 2014; Chen and Zhai 2015). To monitor
risk and changes in the persistent temperature and precipitation
extremes, several global observation datasets of climate extreme
indices based on daily temperature and precipitation have re-
cently been developed (Donat et al. 2013; 2014). However,
the datasets based on daily in situ observations are generally
with coarse horizontal resolution, lack spatial coverage
(Alexander et al. 2006; Donat et al. 2013), as suitable long-
term records are sparse for some regions.

By assimilating certain types of observation data into a frozen
state-of-the-art analysis/forecast system, the reanalysis dataset
has become an important tool of producing observationally
constrained data for studying weather and climate variability
(Bosilovich et al. 2008; Lin et al. 2014; Huang et al. 2016).
Generally, based on operation forecast models, the reanalysis
datasets provide complete spatial and temporal coverage of the
globe with physically consistent data. Additionally, the reanaly-
sis datasets have their own advantages for detecting the climate
extremes. First, the reanalysis data can be a potentially useful
source of data for monitoring long-term changes in extremes in
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data sparse regions. Thismakes it a popular reference for climate
model evaluation (Donat et al. 2014). Second, besides temper-
ature and precipitation variables, the reanalysis datasets also
provide the circulation variables. If the reanalysis datasets have
good skill for detecting the climate extremes, they may be reli-
able tools to capture the associated circulations and further dis-
cuss the physical mechanisms. Third, the grid data may help
solve several issues, including uneven station distribution when
calculating averages (Frich et al. 2002), and minimize the im-
pact of data quality issues at individual stations because of av-
eraging (Donat et al. 2013).

However, the reanalysis datasets should not be equated with
Bobservations^ and Breality,^ due to the systematic biases (e.g.,
the forecast model, input data, and data assimilation) and uncer-
tainties in the climatological variables.On theglobal and regional
scales, several studies have retrieved different variables from re-
analysis datasets to compare the credibility with observations
(Smith et al. 2001; Trenberth et al. 2001; Hodges et al. 2011). In
China, evaluating the reanalysis datasets ismainly focusedon the
climatological surface air temperature and precipitation (Zhao
and Fu, 2006a, b; Ma et al. 2009; Bao and Zhang 2013; Huang
etal.2016).Althoughthereanalysisdatasetscanfairlyidentifythe
surface air temperature and precipitation over China, the results
are sensitive to the studied time period and regions. For example,
the reanalysis datasets (e.g., ERA40, NCEP/NCAR) have good
credibility in the surface air temperature in summer, but not in
winter (Zhao and Fu 2006a; Ma et al. 2008), particularly for the
northern part ofChina. For the precipitation, the results show that
the reasonable identification of the heavy precipitation is still a
challenge(ZhaoandFu2006b;Maetal.2009;Huangetal.2016),
particularly forEasternChinaandTibetanPlateau.Mostprevious
studies have focused on the climatology performances of
reanalysis datasets based on monthly data. However, climate
extremes, including the persistent climate extremes, have
received less attention. Recently, You et al. (2013) demonstrated
better agreement in single-day temperature extremesbetween the
station data and two widespread used reanalysis (NCEP1 and
ERA40) than the persistent temperature extremes.

Particularly, previous studies have analyzed precipitation
and temperature extremes separately. However, due to the
thermodynamic relations between precipitation and tempera-
ture, the two variables are closely linked with each other (Li
et al. 2013; Ivancic and Shaw 2016). Associated with back-
ground temperature variation, there is evidence that hot tem-
perature and heavy precipitation extremes will become more
frequent and extreme in a warmer world (Allan and Soden
2008; O’Gorman and Schneider 2009). It is also indicated that
a warm climate is expected to lead to enhance rainfall. This
could result in the increase of flooding and the lengthening of
dry spells between rainfall events (Ivancic and Shaw 2016).
Associated with the local temperature variations, at the inter-
annual scale, the relationship between monthly precipitation
and air temperature anomaly is generally wet and cool or dry

and hot inmost land areas in summer, but wet and warm or dry
and cold across high-latitude land areas during winter
(Trenberth and Shea 2005). At a short time scale, based on
the daily, hourly, and even 5-min station data, several studies
indicated a Clausius-Clapeyron (CC) relationship or even su-
per CC relationship between precipitation extremes and tem-
peratures (Lenderink and van Meijgaard 2008; Lenderink and
van Meijgaard, 2010; Berg et al. 2013; Westra et al. 2014).
Besides the precipitation intensity, Ye et al. (2016) indicated
that increasing atmospheric water vapor was directly related to
the decreased wet days. Governed by CC relationship (the
relationship between temperature and atmospheric water va-
por), the extreme temperature may be linked with frequency
of wet days. Thus, it is necessary to evaluate the ability of the
reanalysis datasets to detect the variation of persistent precip-
itation extremes response to the temperature variations, in-
cluding both global temperature and local temperature.

These motivate us to comprehensively evaluate the persistent
temperature and precipitation extremes over China calculated
from reanalysis datasets against station datasets. The paper is
organized as follows: data and methods are described in
Section 2. The performances of the reanalysis datasets on the
persistent temperature and precipitation extremes are evaluated
in Section 3 and Section 4, respectively. Section 5 provides the
persistent climate extremes response to the temperature varia-
tion, followed by a summary and discussion in Section 6.

2 Data and methods

2.1 Data

Considering fourmain reasons, we chose two reanalysis datasets
in this study, as the twentieth century reanalysis (20CR) (Compo
et al. 2011) and Interim European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis (ERA-Interim) (Dee
et al. 2011). First, the two reanalysis datasets have high skills to
identify theclimatology temperature (includingdailymean,max-
imum and minimum temperature). Second, both reanalysis
datasets have variables of mean temperature, maximum temper-
ature, minimum temperature, and precipitation in daily scale,
which are needed to calculate the persistent climate extremes.
Third, The ERA-Interim, one of the most widespread reanalysis
datasets, has good skill to capture the precipitation overEastAsia
(Huang et al. 2016). Additionally, until recently, the earliest
reanalysis product started from 1948, leaving many important
climate events such as 1930’s dust bowl droughts uncovered.
The 20CR has the longest time serial (1871–) among the
popular reanalysis datasets. Thus, the 20CR have the advantage
to detect the long-term characteristics of persistent extremes.
Table 1 presents detailed information on the two reanalysis
datasets. The reanalysis datasets are produced by different
numerical weather models and assimilation systems; thus,

656 Zhu J. et al.



they are independent from each other. In order to minimize the
impact of resolution, the same horizontal resolution of 2° × 2°
covering the period from 1979 to 2011 is chosen for the two
reanalysis datasets.

The daily maximum, minimum, mean temperature, and
precipitation of 756 stations in China are used (Fig. 1), pro-
vided by the National Meteorological Information Center,
China Meteorological Administration (http://data.cma.
cn/site/index.html). Since the climate extremes show
significant regional diversities, wide ranging China should
be divided into several sub-regions to analyze the regional
characteristics. Following the administrative divisions and
the characteristics of the monsoon climate of China (Wu and
Fu 2013), the following eight sub-regions have been chosen:
Northeastern China (І), North China (II), Yangtze-Huaihe
River Basin (III), South China (IV), Upper Yellow River
(V), Southwestern China (VI), Northwestern China (VII),
and Tibetan Plateau (VII). The details are shown in Fig. 1.

Eleven comprehensively indices of persistent temperature
and precipitation are chosen in this study. Referring to You
et al. (2013), four persistent temperature extreme frequency

indices are selected, as HWDI, HWFI, CWDI, and CWFI.
Referring to Huang et al. (2010), four persistent temperature
extreme intensity indices are chosen, as HWDM, HWFM,
CWDM, and CWFM. From the ETCCDI list (http://etccdi.
pacificclimate.org/list_27_indices.shtml), three persistent
precipitation extreme indices are selected, as CDD, CWD,
and Rx5d. The detailed descriptions are provided in Table 2.

To represent the background temperature, the surface temper-
ature anomaly dataset (HadCRUT4) on a 5° × 5° grid from the
Climate Research Unit (Morice et al. 2012) is used. It contains
surface air temperature (fromweather stations) over land and sea
surface temperature (SST)overocean (fromshipmeasurements).

The vertically integrated water vapor is calculated as,

Q ¼ 1

g
∫psptopqdp; ð1Þ

Where Ps is the surface pressure and Ptop is the pressure at
the top of the atmosphere, q is the specific humidity. Here, Ptop

is defined to be 300 hPa, since the specific humidity above
300 hPa is small.

Table 1 The characteristics of
the two reanalysis datasets ERA-Interim 20CR

Atmospheric forecast model IFS forecasting system NCEP global forecast system model

Model

Assimilation algorithm 4DVAR Ensemble Kalman Filter

Time period 1979- 1871–2012

Horizontal resolution T255~79 km T62

Vertical layer 60 levels 28 levels

SST and sea-ice forcing Daily OISST HadISST1.1 dataset

Fig. 1 The distribution of the 756
rain gauge stations used in this
study and the eight sub-regions of
China: І, Northeastern China
(NEC, 42° N–52° N, 110° E–
135° E); II, North China (NC, 34°
N–42° N, 110° E–122° E); III,
Yangtze-Huaihe River Basin
(YHRB, 28° N–34° N, 110° E–
122° E); IV, South China (SC, 20°
N–28° N, 110° E–122° E); V,
Upper Yellow River (UYR, 34°
N–43° N, 98° E–110° E); VI,
Southwestern China (SWC, 20°
N–34° N, 98° E–110° E); VII,
Northwestern China (NWC, 34°
N–47° N, 74° E–98° E); VII,
Tibetan Plateau (TP, 27° N–34°
N, 76° E–98° E)
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2.2 Methods

For comparing the extreme indices of station data and the grid
data, specifically, the first step is to calculate the extreme in-
dices at each station and each grid point for station data and
reanalysis datasets, respectively. Then, the extreme index
based on station data is interpolated into a regular grid
(2° × 2° longitude/latitude grid), which is the same as the grid
of reanalysis datasets. Finally, the quality of the reanalysis
datasets is measured by the pattern correlation coefficient
(PCC) and root-mean-square error (RMSE) with reference to
the station data, which is calculated by,

PCC ¼
∑N

I¼1 Eri−Eri

� �
Esi−Esi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1
Eri−Eri

� �2
∑N

i¼1
Esi−Esi

� �2
r ; ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ i¼1

n Eri−Esið Þ2
n

s
; ð3Þ

whereEri andEsi are the extremes indices in each grid i calculated
by reanalysis dataset and station data, respectively. N is the grid
number in each region. The PCC (RMSE) reveals the pattern dis-
tribution similarity (intensity bias) between the reanalysis dataset
and station data. Generally, the reanalysis dataset with large PCC
and lowRMSEmeans it has good performance.Additionally, the
errorbetween the stationdata and reanalysisdataset hasbeenmea-
sured by the relative differences, which is calculated by,

RD ¼ Er−Es

Es
� 100%; ð4Þ

where Er and Es are the extreme indices in each grid calculated
by reanalysis dataset and station data, respectively.

Trend analysis is performed using the Mann-Kendall test
(Mann 1945; Kendall 1975) for monotonic trends to deter-
mine if statistically significant trends exist in annual persistent
climate extreme. The linear fitting is used to quantitatively
diagnose the relationship between precipitation and tempera-
ture (Nicholls 2004).

Table 2 The persistent temperature and precipitation extreme indices

ID Indicator name Indicator definitions Units

Persistent warm
extreme indices
HWDI Heat wave duration index Annual account number of days when, intervals

of at least 6 consecutive days, TX > Tnorm + 5 °C
Days

HWDM Heat wave duration magnitude The magnitude of temperature (per day) of the l
ongest heat wave duration event

°C/d

HWFI Warm spell days index Annual account number of days when, intervals of
at least 6 consecutive days, TG >90th percentile
of 1961–1990

days

HWFM Warm spell magnitude The magnitude of temperature (per day) of the
longest warm spell event

°C/day

Persistent cold
extreme indices
CWDI Cold wave duration index Annual account number of days when, intervals of

at least 6 consecutive days, TN <Tnorm-5 °C
days

CWDM Cold wave duration magnitude The magnitude of temperature (per day) of the
longest cold wave duration event

°C/day

CWFI Cold spell days index Annual account number of days when, intervals
of at least 6 consecutive days, TG <10th
percentile of 1961–1990

days

CWFM Cold spell magnitude The magnitude of temperature (per day) of the
longest cold spell event

°C/day

Persistent precipitation
extreme indices
CDD Consecutive dry days Let PRij be the daily precipitation amount on day i

in period j (year). Count the largest number of
consecutive days where PRij <1 mm

Days

CWD Consecutive wet days Let PRij be the daily precipitation amount on day i
in period j (year). Count the largest number of
consecutive days where PRij >1 mm

Days

Rx5d Consecutive 5-day precipitation Let PRkj be the precipitation amount for the 5-day
interval ending k, period j. The maximum 5-day
values for period j (year) are as follows: Rx5dj
= max (PRkj)

mm/day

Notes: TX daily maximum temperature, TN daily minimum temperature, TG daily mean temperature, TNnormmean of daily minimum temperature for
the period of 1961–1990
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3 Performance of the persistent temperature
extremes

3.1 Climatology

The 33-year (1979–2011) mean climatology of the warm ex-
treme indices based on station data and the relative differences
between reanalysis dataset and station data are shown in
Fig. 2. Station data shows long duration of heat wave over
the middle and northern part of China, but shows short dura-
tion over the eastern part of China (Fig. 2a). Differences be-
tween the two reanalysis datasets and station data show that
the 20CR has ability to capture the feature of the heat wave
duration, with a little discrepancy over northeastern China
(Fig. 2b). The ERA-Interim, by contrast, has largely
overestimated (underestimated) the heat wave duration over
the northwestern part of China (the southern part of China and
Tibetan Plateau) (Fig. 2c). In comparison of the PCC and
RMSE, the 20CR has high skill in reproducing the climato-
logical HWDI. The HWFI index, named as a percentile index,
indicates the persistent warm spell day. The station data shows
shorter duration of warm spell over the eastern part of China,
while the duration is longer over the western part of China
(Fig. 2d). Combined with the results of PCC and RMSE, the
two reanalysis datasets have poor abilities (Fig. 2e, f) in re-
producing HWFI, particularly for the western part of China.
For the intensity indices (Fig. 2g, j), the HWDM and HWFM
have gradually decreased from the southeastern to the north-
western part of China. This is quite similar to the distribution
of climatological temperature. Different from the performance
of the frequency indices, both the two reanalysis datasets have
better ability to capture the intensity indices, particularly the
ERA-Interim (the PCC ≥0.33 and the RMSE ≤9). It should be
noticed that both reanalysis datasets underestimate the inten-
sity indices over the western part of China (Fig. 2h, i, k, l).

The climatology mean (1979–2011) of the cold extremes
indices based on station data and the differences ratio between
reanalysis datasets and station data are shown in Fig. 3. For the
two frequency indices of CWDI and CWFI, station data
shows quite homogeneous distribution over China (Fig. 3a,
d). As shown in the relative differences, both reanalysis
datasets have overestimated the cold wave duration over the
western part of China (Fig. 3b, c). Moreover, the ERA-Interim
has underestimated the cold wave duration over Northeastern
China (Fig. 3c). Large discrepancies are also indicated in the
CWFI differences between the two reanalysis datasets and
station data (Fig. 3e, f). In comparison of the PCC and
RMSE, two reanalysis datasets have poor abilities to capture
the two frequency indices. For the intensity indices (Fig. 3g, j),
station data shows that the CWDM and CWFM have gradu-
ally decreased from southeast to northwest over China. The
two reanalysis datasets have better ability to capture the inten-
sity indices than the frequency indices. To sum up, for the

climatological persistent temperature indices, the two reanal-
ysis datasets have the ability to capture the intensity indices.
However, the persistence in frequency is poorly identified by
the two reanalysis datasets. Also, the two reanalysis datasets
exhibit large discrepancies for all indices over the western part
of China (west to 95° E). Since the western part of China
includes a huge terrain (Tibetan Plateau), how to well repre-
sent the persistent climate extremes over there is still an open
issue.

3.2 Temporal variations

In this section, we evaluated the ability of two reanalysis
datasets to identify the year-to-year variations and trends.
The reanalysis dataset with good performance (temporal
correlation higher than 0.35 and small RMSE) has been
chosen. Taking the HWFI as an example, Fig. 4 shows the
time serials of regional-mean HWFI over the 7 sub-
regions in 1979–2011. In comparison of the PCC and
RMSE, the ERA-Interim has good ability to capture tem-
poral variation of HWFI in most regions, except
Northwestern China. For other indices, the reanalysis
dataset of good performance and the sub-regions are sum-
marized in Table 3. Overall, the ERA-Interim has high
skill to identify the temporal variation of warm persistent
extremes, particularly in North China, Northeastern
China, Yangtze-Huaihe River Basin and Upper Yangtze
Basin, while the 20CR has quite good ability to capture
the year-to-year variation of the cold persistent extremes
indices over the western part of China. This result is also
in agreement with the performance of the climatological
extreme indices.

In the period of 1979–2011, the HWDI and HWFI signif-
icantly increase over most parts of China, particularly over the
northern part of China (Fig. 5a, d). In comparison, the ERA-
Interim has better ability in reproducing the tendency of
HWDI and HWFI than the 20CR (Fig. 5b–f). It should be
noticed that there is still some inconsistence in the western
China. For the frequency indices of cold extremes, CWDI
and CWFI weakly increase over the middle parts of China,
while decrease over the other regions (Fig. 5g, j). The 20CR
has the ability to capture this increasing tendency (Fig. 5h, k).
The two reanalysis datasets have overestimated the decreasing
tendencies over the western part of China. In comparison, the
20CR has better ability to capture the significant trend of
CWFI, particularly over the Northwestern China. Quite con-
sistent distribution lies in the tendency of HWDM and
HWFM: significant increasing trends cover most regions
(Fig. 5m, p). The two reanalysis datasets have the ability to
detect the increasing tendency, but overestimate the intensity
(Fig. 5n–r). However, the two reanalysis datasets have quite a
poor ability to detect the tendencies of CWDM and CWFM
(Fig. 5s–x).
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4 Performance of the persistent precipitation extreme

The climatological mean (1979–2011) of CDD is shown
in Fig. 6. The station data indicates long (short) duration
of dry day lies in the northern part of China (middle
reach of Yangtze River). Two reanalysis datasets can

capture the CDD over the eastern part of China, partic-
ularly for the ERA-Interim. However, in the northern
part of China (100°–135° E, 37.5°–55° N, red box in
F ig . 6 ) , two reana lys i s da ta se t s have la rge ly
underestimated the CDD. The uncertainty may remind
us to further discuss the possible reasons. On one hand,

Fig. 2 The climatological annual mean (1979–2011) of warm extreme
indices (HWDI: a–c, HWFI: d–f, HWDM: g–i, HWFM: j–l) in station
data (the left column) and the relative differences between the 20CR (the
middle column), ERA-Interim (the right column) and the station data. The

PCCs and RMSEs of each reanalysis dataset are shown in the upper-left
and lower-left corner, respectively (the middle and right columns). The
values ≥50 % and ≤"-50" % have been shaded in the middle and right
column figures
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what we are not concerned is that whether the occurrence
season of CDD from reanalysis dataset is in consistent
with that of station data. The station data indicates that
maximum consecutive dry day occurs in autumn (purple
color) over Southeastern China, while it frequently oc-
curs in winter (green color) over the central China
(Fig. 7a). Over the northern part of China, the dry day
persistently occurs in spring and winter. The two reanal-
ysis datasets can capture the occurrence season (autumn)
of CDD over the eastern part of China. However, for the

northern part of China, the two reanalysis datasets detect
that winter is the only occurrence season. This is not
consistent with station data, which may be one of the
possible reasons for the large discrepancies over the
northern part of China. On the other hand, we further
compare the numbers of dry days (daily precipitation
<1 mm) in the two reanalysis datasets during the occur-
rence season (from January to May) (Fig. 7d–f). Clearly,
the ERA-Interim has good skill to capture the numbers
of dry days during winter to spring (Fig. 7f). However,

Fig. 3 Same as Fig. 2, but for the climatological annual mean (1979–2011) of cold extreme indices (CWDI: a–c, CWFI: d–f, CWDM: g–i, CWFM: j–l)
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the 20CR underestimates the dry days over most parts of
China, particularly over the southern and the northern
part of China (Fig. 7e). This may be associated with
the underestimation of CDD over North China.

Figure 8 shows the climatological mean CWD. The
CWD of station data decreases from the southeastern to
the northwestern part of China (Fig. 8a). The two

reanalysis datasets have the ability to capture this pattern
(Fig. 8a–b), with highest consistency over Northwestern
China. However, they largely overestimate the maximum
consecutive rain days over the southern part of China (red
boxes in Fig. 8). To detect the possible reasons, the oc-
currence season of CWD and the numbers of rain days are
compared. In the station data (Fig. 9a), the maximum

Fig. 4 Time serials of the HWFI over seven sub-regions in 1979–2011. The temporal correlations (left corner) and RMSEs (right corner) of 20CR and
ERA-Interim are shown in the upper-left and lower-left corner, respectively

Table 3 The sub-regions with
good performance of the
reanalysis datasets in reproducing
the temporal variations of
persistent temperature and
precipitation extremes (the
temporal correlation coefficients
are given in the parentheses)

Indices ERA-Interim 20CR

HWDI NEC (0.81), NC (0.84), YHRB (0.86), SC (0.87) UYB (0.64), SC (0.72),
SWC (0.6)

HWDM NEC (0.78), NC (0.82), YHRB (0.69), UYB (0.75), NWC (0.74)

HWFI NEC (0.87), NC (0.74), YHRB (0.96), SC (0.79), UYB (0.96),
SWC (0.94)

HWFM NEC (0.73), NC (0.86), YHRB (0.93), UYB (0.94), SWC (0.71),
NWC (0.81), SC (0.67)

CWDI NEC (0.45), YHRB (0.65), UYB (0.45) SWC (0.61), NWC (0.46)

CWDM NC (0.61), UYB (0.35), NWC (0.44) NEC (0.49)

CWFI YHRB (0.62), SC (0.69), SWC (0.51) NWC (0.65), NC (0.5),
UYB (0.38)

CWFM NC (0.84), YHRB (0.77), UYB (0.7), SWC (0.69), NWC (0.57) NEC (0.65), SC (0.54)

CDD NEC (0.52), NC (0.76), YHRB (0.71), SC (0.47), SWC (0.43)

CWD NEC (0.54), UYB (0.51), NWC (0.44)

Rx5d NEC (0.76), NC (0.64), YHRB (0.84), SC (0.4), UYB (0.6),
NWC (0.44)
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consecutive rain day occurs in summer over Northeastern
China, while it occurs in autumn in the middle part
of China. In the southern part of China, the maximum
consecutive rain day easily occurs in spring and summer

over the eastern and the western part of China, respective-
ly. The two reanalysis datasets cannot capture the
occurrence season. This may be associated with the
large biased lies in depicting the CWD from the two

Fig. 5 The trends of HWDI (a–c), HWFI (d–f), CWDI (g–i), CWFI (j–l),
HWDM (m–o), HWFM (p–r), CWDM (s–u), CWFM (v–x) in station
data (the first column), 20CR (the second column) and ERA-Interim (the

third column) in 1979–2011. Values with magnitude significant at the
90 % confidence level are marked in black dots
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reanalysis datasets. Secondly, the numbers of rain days
(daily precipitation >1 mm) in the occurrence season
(from March to August) are shown in Fig. 9d–f. Clearly,
the two reanalysis datasets largely overestimate the num-
bers of rain days over the southern part of China, partic-
ularly for the 20CR. This may be another possible reason

for the overestimation of CWD over the southern part of
China. Thus, we may infer that the discrepancies of CWD
and CDD between station data and the reanalysis dataset
may be due to the incorrectly identification of occurrence
season, or the unreal numbers of dry days/rain days de-
tected by reanalysis datasets.

Fig. 5 continued.
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Figure 10 shows the climatological mean Rx5d. In the
station data, the Rx5d gradually decreases from the
southeastern to the northwestern part of China
(Fig. 10a). The two reanalysis datasets can capture this
decreasing pattern (Fig. 10a–b), with highest consistency
over Northwestern China. The difference is that the
20CR has better ability to capture the intensity, while

the ERA-Interim has better ability to capture the spatial
distribution.

For the year-to-year variation of the three persistent precipita-
tion indices, the performance of the two reanalysis datasets has
been summarized in Table 3. It shows that the ERA-Interim has
better ability to capture variation of CDD, CWD and Rx5d than
the 20CR, particularly over the eastern part of China (not shown).

Fig. 7 The climatological (1979–2011) occurrence season of CDD (a–c)
and the numbers of dry days during winter and spring (d–f) in station data
(the left column), 20CR (the middle column) and ERA-Interim (the right

column). The red dashed boxes in Figs. 7d-f indicate the northern part of
China (100°–135° E, 37.5°–55° N)

Fig. 6 The climatological annual mean (1979–2011) of CDD in station
data (a), 20CR (b) and ERA-Interim (c). The PCCs and RMSEs of each
reanalysis dataset are shown in the upper-left and lower-left corner,

respectively, in (b) and (c). The red dashed boxes indicate the northern
part of China (100°–135° E, 37.5°–55° N)
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5 The variation of persistent climate extremes
response to the temperature variations

In the above, we evaluated the ability of two reanalysis
datasets to depict persistent precipitation extremes and persis-
tent temperature extremes, separately. As indicated in the in-
troduction, the relationship between the precipitation (includ-
ing precipitation extremes) and temperature (including global
temperature and local temperature) is also important (Nicholls
2004). In this section, the relationship between the persistent

precipitation extremes and temperature variations has been
examined.

On one hand, the global-mean surface temperature anom-
aly (GTemp) has been identified as the background tempera-
ture. Based on station data, the normalized CDD, CWD,
Rx5d, and GTemp over eight sub-regions in 1979–2011 is
calculated. The linear fitting is used to quantitatively diagnose
the response of the persistent precipitation extremes against
the temperature variations. Specifically, only the results with
significance at the 90% confidence level are shown in Fig. 11.

Fig. 9 The climatological (1979–2011) occurrence season of CWD (a–c)
and the numbers of rain days during spring and summer (d–f) in station
data (the left column), 20CR (the middle column) and ERA-Interim (the

right column). The red dashed boxes in panels d–f indicate the southern
part of China (90°–120° E, 20°–35° N)

Fig. 8 Same as Fig. 6, but for the climatological annual mean (1979–2011) of CWD. The red dashed boxes indicate the southern part of China (90°–
120° E, 20°–35° N)
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Fig. 10 Same as Fig. 6, but for the climatological annual mean (1979–2011) of Rx5d

Fig. 11 Normalized annual CWD against normalized annual global
temperature anomaly over UYR (a), SWC (b), and NWC (c),
normalized annual CDD against normalized annual global temperature
anomaly over UYR (d) and NWC (e), and normalized annual Rx5d

against normalized annual global temperature anomaly over NEC (f)
and NC (g) in 1979–2011 from station data. The linear fitting line
(sloping solid line in each figure) and the correlation coefficient (left
title in each figure) are shown
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It shows that significant negative correlations between CWD
and GTemp mainly locate over UYR and SWC, while the
positive correlations are over NWC (Fig. 11a–c). It suggests
that associated with global warming, the longest persistent wet
day has shortened over UYR and SWC and elongated over
NWC. By comparison between the two reanalysis datasets,
only significant negative between CWD and GTemp over
SWC can be detected by the ERA-Interim (Table 4). For the
relationship between CDD and GTemp, significant negative
correlations exist over UYR and NWC (Fig. 11d–e). It sug-
gests that associated with global warming, the maximum per-
sistent dry days have shortened. For the relationship between
Rx5d and GTemp, significant negative correlations lie over
NEC and NC. It suggests reduced persistent precipitation in-
tensity is associated with global warming. Both the two re-
analysis datasets have the ability to detect the negative corre-
lations between CDD and GTemp or between Rx5d and
GTemp, particularly for the ERA-Interim (Table 4).

On the other hand, the relationship between the persistent
temperature and persistent precipitation extremes has been
analyzed, which represents the response of the precipitation
extremes against the local temperature change. Since the two
reanalysis datasets have better performances on the intensity
indices of persistent temperature extremes (particular for the
HWFM and CWFM), we chose HWFM and CWFM to iden-
tify the local temperature variations. Based on the normalized
CDD and CWFM, CWD and HWFM, and Rx5d and CWFM
in the period of 1979–2011, the linear fittings over significant
regions are shown in Fig. 12. For the relationship between
CDD and CWFM, significant negative correlations exist over
NEC, NC, and UYR (Fig. 12a–c). It suggests that associated
with the longer consecutive dry days, the larger magnitude of
the longest cold spell extremes would exist over the northern
part of China. However, the two reanalysis datasets cannot
detect the relationship between the CDD and CWFM
(Table 5). For the relationship between CWD and HWFM,

Table 4 The correlation
coefficients of linear fitting
between CWD, CDD, Rx5d and
global temperature variation over
specific regions. Values with
magnitude significant at the 90 %
confidence level are in italics

CWD vs. GTemp CDD vs. GTemp Rx5d vs. GTemp

Region UYR SWC NWC UYR NWC NEC NC

Station −0.32 −0.45 −0.35 −0.33 −0.37 −0.3 −0.36
20CR −0.15 0.11 −0.16 −0.15 −0.16 −0.32 −0.18
ERA−Interim 0.36 −0.39 −0.12 −0.38 −0.16 −0.31 0.01

Fig. 12 Normalized annual CDD against normalized annual CWFM
over NEC (a), NC (b) and UYR (c), normalized annual CWD against
normalized HWFM over NEC (d), and normalized annual Rx5d against

normalized CWFM over SWC (e) and NWC (f) in 1979–2011 from
station data. The linear fitting line (sloping solid line in each figure) and
the correlation coefficient (left title in each figure) are shown
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significant negative relationships lie over NEC. It indicates
that associated with the longer consecutive wet days, the larg-
er magnitude of the longest warm spell extremes may exist
over NEC. Both the reanalysis datasets can detect the signif-
icant negative correlations between CWD and HWFM
(Table 5). For the relationship between Rx5d and CWFM,
significant negative (positive) correlations have been indicat-
ed over SWC (NWC). However, the two reanalysis datasets
cannot detect the relationship (Table 5). In all, the ERA-
Interim reanalysis has quite a better ability than the 20CR to
identify the response of the persistent precipitation extremes
against the temperature variations.

6 Conclusions and discussions

In this study, the performance of 20CR and ERA-Interim re-
analysis datasets on depicting the persistent temperature and
precipitation extremes has been evaluated during the period of
1979–2011. For the persistent temperature extremes, two re-
analysis datasets have higher skill of depicting the intensity
indices than depicting the frequency indices, with the lowest
skills of depicting the percentile frequency indices (HWFI

and CWFI). Despite the regional differences, the two reanal-
ysis datasets have the ability to detect that China has experi-
enced significant increase of persistent warm extremes and
decrease of the persistent cold extremes, particularly over
the northern part of China. Generally, ERA-Interim quite rea-
sonably reproduces the climatology and tendency of persistent
warm extremes, while the 20CR has quite good skill for the
persistent cold extremes.

The ERA-Interim can well capture the CDD and CWD
over Eastern and Northwestern China, respectively.
However, the two reanalysis datasets have largely
underestimated (overestimated) the CDD (CWD) over the
northern (southern) part of China. This is partially due to the
incorrectly reproduced occurrence season and great underes-
timation (overestimation) of the dry days (rain days). The two
reanalysis datasets also have the ability to capture the clima-
tological Rx5d, particularly over the northern part of China.
To sum up, the two reanalysis datasets have good skills to
capture the persistent temperature extremes, while large un-
certainties lie in depicting the persistent precipitation ex-
tremes. These are also consistent with Yin et al.’s (2015) latest
study.

The variation of persistent precipitation extremes
responding to the temperature variation has been further ex-
amined. Responding to the background temperature variation,
the longest persistent wet day has prolonged over UYR and
SWC, while shortened over NWC. For the relationship be-
tween CDD and GTemp, significant negative relationships
exist over UYR and NWC. The Rx5d significantly decreases
in a warm climate over NEC and NC. In comparison, the
ERA-Interim has better ability to capture the relationship than
the 20CR. For the local temperature variation, both the two
reanalysis datasets have good ability to detect the negative
correlations between CWD and HWFM over NEC.

Table 5 The correlation coefficients of linear fitting between CWD,
CDD, Rx5d and CWFM and HWFM over specific regions. Values with
magnitude significant at the 90 % confidence level are in italics

CDD vs. CWFM CWD vs. HWFM Rx5d vs. CWFM

Region NEC NC UYR NEC SWC NWC

Station 0.34 0.41 0.34 −0.33 −0.32 0.32

20CR 0.18 0.26 0.01 −0.38 0.12 −0.07
ERA-Interim 0.13 0.13 0.3 −0.31 0.25 0.19

Fig. 13 Normalized annual CWD against normalized annual vertically
integrated water vapor over northern part of China (including NEC and
NC) in 1979–2011 from 20CR (a) and ERA-Interim (b). The linear fitting

line (sloping solid line in each figure) and the correlation coefficient (left
title in each figure) are shown
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Associated with the long consecutive dry days, the large mag-
nitude of the longest cold spell extremes would exist over the
northern part of China. However, the two reanalysis datasets
cannot capture the relationship between the CDD and CWFM.
Either they cannot capture the positive (negative) correlations
between Rx5d and CWFM over SWC (NWC).

As indicated in the relationship between precipitation and
temperature extremes, the northern part of China may be a
very sensitive region. Focused on Beijing, a megacity in
North China, Chen and Lu (2014) has linked the extreme heat
and water vapor. They indicated that under a suitable large-
scale circulation, reduced water vapor flux may enhance the
solar radiation at the surface, and therefore provides a benefit
condition for the temperature extremes. This is in agreement
with our results based on the two reanalysis datasets about the
negative correlations between CWD and HWFM over the
northern part of China (including NEC and NC), since signif-
icant positive correlations link the CWD and vertically inte-
grated water vapor (Fig. 13). Moreover, Chen and Lu (2015)
and Lu and Chen (2016) revealed that the extreme heat over
northeastern China can be classified as typical extratropical
pattern and emphasize the role of the anticyclone. The anticy-
clone may influence the water vapor transportation and there-
fore affect the precipitation. However, they focused on single-
day extreme, and the mechanism for the linkage between per-
sistent temperature and precipitation extremes should need a
further analysis.
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