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Abstract In this study, the performance of the Generalized
LInear Modelling of daily CLImate sequence (GLIMCLIM)
statistical downscaling model was assessed to simulate ex-
treme rainfall indices and annual maximum daily rainfall
(AMDR) when downscaled daily rainfall from National
Centers for Environmental Prediction (NCEP) reanalysis and
Coupled Model Intercomparison Project Phase 5 (CMIP5)
general circulation models (GCM) (four GCMs and two sce-
narios) output datasets and then their changes were estimated
for the future period 2041–2060. The model was able to re-
produce the monthly variations in the extreme rainfall indices
reasonably well when forced by the NCEP reanalysis datasets.
Frequency Adapted Quantile Mapping (FAQM) was used to
remove bias in the simulated daily rainfall when forced by
CMIP5 GCMs, which reduced the discrepancy between ob-
served and simulated extreme rainfall indices. Although the
observed AMDR were within the 2.5th and 97.5th percentiles
of the simulated AMDR, the model consistently under-
predicted the inter-annual variability of AMDR. A non-
stationary model was developed using the generalized linear
model for local, shape and scale to estimate the AMDR with
an annual exceedance probability of 0.01. The study shows

that in general, AMDR is likely to decrease in the future. The
Onkaparinga catchment will also experience drier conditions
due to an increase in consecutive dry days coinciding with
decreases in heavy (>long term 90th percentile) rainfall days,
empirical 90th quantile of rainfall and maximum 5-day con-
secutive total rainfall for the future period (2041–2060) com-
pared to the base period (1961–2000).

1 Introduction

An increase in greenhouse gas emissions is raising the earth’s
average temperatures and resulting in climate change around
the world. This has changed the frequency, magnitude and
persistence of extreme events of various climatic variables,
including rainfall, which has been identified in observational
records (Alexander et al. 2006; Alexander and Arblaster 2009;
Evans et al. 2009; Frich et al. 2002). According to the
Intergovernmental Panel on Climate Change (IPCC) Fourth
Assessment Report (AR4, IPCC 2007), climate change has
started to affect the frequency, intensity and duration of ex-
treme temperature, rainfall and drought almost everywhere
around the world over the late twentieth century and this will
continue in future. This is also confirmed by the recent assess-
ment by IPCC in the special report on Managing the Risks of
Extreme Events and Disasters to Advance Climate Change
Adaptation (SREX, IPCC 2012). Projections of future chang-
es in climate extremes are of particular interest due to their
adverse effects on society and ecosystems.

Significant changes in extreme temperature and rainfall during
the twentieth century acrossAustralia have already been identified
in previous studies (Alexander et al. 2006; Alexander and
Arblaster 2009; Alexander et al. 2007; Collins et al. 2000;
Evans et al. 2009; Hennessy et al. 1999; Plummer et al. 1999;
Suppiah and Hennessy 1998). Over the last century, a significant
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decrease in the frequency and intensity of extreme rainfall events
was observed in the southwest region ofWestern Australia. It has
also been reported that there has been a significant increase in the
proportion of total rainfall from extreme events in eastern
Australia (Haylock and Nicholls 2000; Li et al. 2005).
Alexander and Arblaster (2009) observed that Australia is likely
to shift toward increased temperature extremes and much longer
dry spells with increased extreme rainfall according to the
Coupled Model Intercomparison Project Phase 5 (CMIP5) gen-
eral circulationmodels (GCMs). Sillmann et al. (2013) concluded
that according to CMIP5 GCM results, Australia will experience
dry conditions due to an increase in consecutive dry days coin-
ciding with a decrease in both heavy precipitation days and max-
imum consecutive 5-day precipitation over the twenty-first centu-
ry relative to their base period of 1981–2000.

Extreme climate events in South Australia (SA), particularly
droughts, cause severe economic losses for the state’s agricultural
industries and rural populations. In this regard, the future projec-
tion of extreme events is important for climate change adaptation
purposes. However, to date, there has been very limited research
that has attempted to assess the future changes in extreme climate
at the regional level in SA using CMIP5 GCMs which include
more sophisticated climate models and a new suite of forcing
scenarios compared to the former CMIP3 models. In CMIP5,
approximately half of the GCMs have an average longitudinal
resolution finer than 1.3° whereas in CMIP3 only one model fell
into this category (Teng et al. 2012). The CMIP5 models have
been found to be more skilful than CMIP3 models in reproduc-
ing the Asian-Australian monsoon (AAM) (Wang et al. 2014).
Sillmann et al. (2013) concluded that CMIP5 ensembles provide
some improvement to CMIP3 ones in the representation of the
magnitude of extreme precipitation indices, and this
improvement is partly due to the higher spatial resolution of
CMIP5 models compared to CMIP3 models. In a recent study,
Rashid et al. (2015) observed that the 95th percentile of daily
rainfall is likely to decrease over the period 2041–2060 compared
to the historical period of 1961–2000 using statistically down-
scaled daily rainfall from CMIP5 GCM outputs.

GCMs are a widely used tool to project future climate change
under different greenhouse gas emission scenarios (Chu et al.
2010; Hu et al. 2012; Huang et al. 2011; King et al. 2012;
Sachindra et al. 2014). Due to the coarse resolution of GCM
outputs, they are limited in their ability to capture meteorological
processes at sufficiently fine resolutions, and consequently, they
generally cannot be directly used for local-scale projections. In
order to resolve this issue, GCM output datasets are often down-
scaled to a finer resolution for climate change impact studies.
Downscaling methods are broadly divided into two classes,
namely dynamic and statistical. Statistical downscaling is more
widely used due to its ease of application and reduced cost. The
Generalized LInear Modelling of daily CLImate sequence
(GLIMCLIM) is a multi-site stochastic downscaling model
based on a generalized linear model (GLM) (Chandler 2002),

which has been used around the world (Beecham et al. 2014;
Frost et al. 2011; Kigobe et al. 2011; Liu et al. 2012; Mehrotra
et al. 2009;Mirshahi et al. 2008). Although application of GLMs
for multi-site stochastic rainfall simulation is relatively new, suc-
cessful application of thismodel inAustralia is available in recent
studies (Beecham et al. 2014; Frost 2007; Frost et al. 2011).
Rashid et al. (2015) and Beecham et al. (2014) found that
GLIMCLIMwas able to downscale historical and projected daily
rainfall from the National Centers for Environmental Prediction/
National Center for Atmospheric Research (NCEP/NCAR) re-
analysis (termed as NCEP reanalysis hereafter) data and CMIP5
GCM outputs in the Onkaparinga catchment in SA. While the
GLIMCLIM model has been successfully applied for downscal-
ing of daily rainfall, few studies have assessed its capability to
reproduce extreme rainfall. Previous studies have identified that
the GLIMCLIMmodel performed better than other downscaling
models including the non-homogeneous hidden Markov model
(NHMM) and the statistical downscaling model (SDSM) in re-
producing the temporal dependence related extreme rainfall in-
dices such as annual wet/dry days and wet/dry spell lengths (Hu
et al. 2013; Liu et al. 2012).

Two types of descriptions are generally used to analyse rain-
fall extremes (Klein Tank et al. 2009). One is based on the
various climate extreme indices that represent moderate meteo-
rological extremes with re-occurrence periods of year, seasonal
or monthly (Alexander et al. 2006; Huang et al. 2012;
Hundecha and Bárdossy 2008; Jeong et al. 2012; Tebaldi
et al. 2006; Yang et al. 2011). The other approach involves
fitting a distribution to the annual extreme rainfall and then to
estimate the extreme events with multi-year to multi-decadal
recurrence commonly known as frequency analysis of annual
maximum daily rainfall (Frei et al. 2006; Hashmi et al. 2011;
Kharin et al. 2007; Tryhorn and DeGaetano 2011). This ap-
proach is important for engineering design and planning.

The classical frequency analysis technique considering the
stationary condition is no longer valid in the context of climate
change (López and Francés 2013; Tramblay et al. 2013;
Villarini et al. 2009). One way of incorporating non-
stationarity in the frequency model might be by making the
distribution parameters dependent on large-scale climatic var-
iables such as NCEP reanalysis and/or GCM output datasets.
To date, only a few research studies have considered climatic
variables rather than time as covariates in a non-stationary
frequency model. Over the last decade, some researchers have
successfully incorporated climatic variables as external covar-
iates for non-stationary frequency analysis (Aissaoui-Fqayeh
et al. 2009; El Adlouni et al. 2007; Kwon et al. 2008; López
and Francés 2013; Ouarda and El-Adlouni 2011; Tramblay
et al. 2013). The generalized additive model for location, scale
and shape (GAMLSS), proposed by Rigby and Stasinopoulos
(2005), provides a flexible modelling framework. The depen-
dence of the distribution parameters on the covariates can be
represented in terms of linear or non-linear, parametric and/or
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additive non-parametric functions. GAMLSS has been suc-
cessfully used by López and Francés (2013) and Villarini
et al. (2009) for non-stationary frequency analysis.

The objectives of the research described in this paper are to
assess the performance of the GLIMCLIM downscaling mod-
el in terms of simulating extreme rainfall using downscaled
daily rainfall fromNCEP reanalysis and CMIP5GCMoutputs
and to estimate changes for the future period 2041–2060 com-
pared to the base period of 1961–2000. In doing so,
Frequency Adapted Quantile Mapping (FAQM) was applied
to correct the bias in the simulated daily rainfall and a non-
stationary frequency analysis was employed to estimate the
annual maximum daily rainfall (AMDR) for an exceedance
probability of 0.01 (equivalent to a 100-year annual recur-
rence interval for stationary frequency analysis). This will be
termed as the 100-year AMDR hereafter.

2 Study area and data

The study focuses on the Onkaparinga catchment in SA. The
catchment is situated approximately 25 km to the southeast of
the city of Adelaide. Being a significant source of water sup-
ply for metropolitan Adelaide as well as providing water to
farm dams and for the natural environment to maintain envi-
ronmental flows, the water resources of the Onkaparinga
catchment are crucial. Moreover, strong spatial variability of
rainfall over this small catchment of approximately 560 km2

in area makes it a challenging case study catchment for model-
ling and downscaling of extreme rainfall (Rashid et al. 2014).
Heneker and Cresswell (2010) studied climate change impacts
in the Mount Lofty Ranges (MLR) and estimated that there
would be a 30% potential reduction in the annual runoff in the
Onkaparinga catchment over the period 2035 to 2065. In ad-
dition, Teoh (2003) identified that farm dams divert between 8
and 10 % (4.5 GL) of the catchment’s surface water and that
this was forecast to increase to around 7 to 10 GL under the
current management policies, as at 2002. In general, approx-
imately 60 % of water for Adelaide is collected from the
catchment, with the remaining demand being met by pumping
water from theMurray River. Considering this, a key manage-
ment issue for the Onkaparinga catchment is the potential risk
of climate change to Adelaide’s water supply. In order to un-
derstand the future changes of extreme rainfall in the catch-
ment, nine rainfall stations were considered as shown in
Fig. 1. Details of these rainfall stations are shown in Table 1.
These daily rainfall data for the period 1961–2000 were collect-
ed from the SILO database of the Queensland Climate Change
Centre of Excellence (www.longpaddock.qld.gov.au/silo/).

NCEP reanalysis datasets were collected from the National
Oceanic and Atmospheric Administration/Earth System
Research Laboratory (NOAA/ESRL) for the period 1961–
2000. The model was calibrated and validated using the daily

NCEP reanalysis datasets over the periods 1961–1986 and
1987–2000 respectively. Historical daily outputs of CMIP5
GCMs for the period 1961–2000 and future daily outputs for
the period 2041–2060 under Representative Concentration
Pathway (RCP) 4.5 and RCP 8.5 scenarios were collected
from the Earth System Grid data distribution portal (www.
earthsystemgrid.org). NCEP reanalysis and GCM output
data were extracted from 12 grid points around the
Onkaparinga catchment, as shown in Fig. 1. The GCM
outputs were linearly interpolated to match with the NCEP
reanalysis resolution (2.5° × 2.5°). Four CMIP5 GCMs were
considered in this study, namely CSIRO-MK3.6.0 by the
Commonwealth Scientific and Industrial Research
Organization in collaboration with the Queensland Climate
Change Centre of Excellence (termed CSIRO hereafter),
GFDL-ESM2M by NOAA Geophysical Fluid Dynamics
Laboratory (termed GFDL hereafter), MIROC-ESM by the
Japan Agency for Marine-Earth Science and Technology
(termed MIROC hereafter), BCC-CSM 1.1 by the Beijing
Climate Center and China Meteorological Administration
(termed BCC hereafter) and CanESM2 by the Canadian
Centre for Climate Modelling and Analysis (termed CAN
hereafter).

3 Methodology

3.1 Statistical downscaling model

In this study, daily rainfall was statistically downscaled at nine
rainfall stations in the Onkaparinga catchment using the
GLIMCLIMdownscalingmodel. Details of this model are avail-
able in Chandler (2002), Chandler andWheater (2002) andYang
et al. (2005). The version of the model used in this study is
available at http://www.ucl.ac.uk/~ucakarc/work/software/rain_
glm.zip. The application of this model for statistical
downscaling of multi-site daily rainfall in SA is reported in
Beecham et al. (2014). In GLIMCLIM, the GLM is used to
downscale daily rainfall in a two-stage approach. Rainfall occur-
rence is modelled using logistic regression and then a gamma
distribution is used to model the rainfall amount for any wet
days. The logistic regression model can be defined as follows
(Chandler and Wheater 2002; Yang et al. 2005):

ln
pi

1−pi

� �
¼ X iβ ð1Þ

where pi is the probability of rain for any day i associated with
predictor vector Xiwith coefficient vector β. The mean rainfall
μi for the ith wet day is conditional on a covariate vector ξi and
coefficient vector α that can be estimated as follows:

ln μið Þ ¼ ξiα ð2Þ
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Calibration and validation of the model were performed
using predictor variables from NCEP reanalysis datasets.
The model was calibrated for the period 1961–1986 and val-
idated over the period 1987–2000. Nineteen large-scale atmo-
spheric and circulation variables from NCEP reanalysis
datasets were selected as probable predictor variables based
on the previous literature which were subsequently reduced to

ten potential variables based on their correlation with ob-
served rainfall. Each predictor variable was extracted from
the 12 reanalysis grid points (2.5° × 2.5°) around the study
area, and the average of these 12 values gave a single series for
each predictor variable used in the downscaling model.
Details of the predictor selection process are reported in
Beecham et al. (2014). The final selected predictor variables

Fig. 1 NCEP reanalysis grid
point (2.5° × 2.5°) around the
catchment (top). Location of the
rainfall stations (bottom)
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were air temperature at 700 hPa; geopotential height at 700
and 800 hPa; relative humidity at 500, 700 and 850 hPa; zonal
wind component at 700 and 850 hPa and meridional wind
component at 500 and 700 hPa. The historical (1961–2000)
and future (2041–2060) model outputs of four GCMs
(CSIRO, GFDL, BCC and CAN) corresponding to the poten-
tial predictors were standardized with the means and standard
deviations of the NCEP reanalysis outputs of the calibration
period. These historical and future model outputs of each
GCM were then used in the downscaling model to simulate
the past historical rainfall and to project the future rainfall
respectively at each of the nine stations in the catchment.

3.2 Bias correction

Rainfall downscaled fromNCEP reanalysis and various GCM
output datasets were bias corrected using the Frequency
Adapted Quantile (FAQM) technique for the calibration
(1961–1986), validation (1987–2000) and projection (2041–
2060) periods. A detailed description of the FAQM bias-
correction technique is found in the studies by Themeßl
et al. (2012) and Rashid et al. (2015). In frequency adaptation,
when the number of dry days of the downscaled rainfall is less
than that of the observed rainfall, all the modelled rainfall that
has a probability equal to or less than the probability of the
observed zero rainfall is transferred to zero. On the other hand
when the number of dry days of the downscaled rainfall is
greater than that of the observed rainfall, a fraction of the
simulated dry days is converted to wet days using randomly
generated values following the gamma distribution of the
downscaled rainfall. Once the frequency of the downscaled
rainfall was corrected, quantile mapping (QM) was applied
to correct the downscaled rainfall using a parameter free em-
pirical distribution. In QM, the correction factor was estimated
for each empirical cumulative distribution function (ecdf) of
the downscaled rainfall by differencing the inverse cumulative
distribution function (ecdf−1) of downscaled and observed
rainfall for the calibration period. Then the downscaled rain-
fall for the validation and future periods was corrected by

adding the correction factor to the uncorrected rainfall. If the
downscaled rainfall in the validation or projection periods was
outside the range of the rainfall in the calibration period, the
new extreme rainfall valueswere corrected by constant extrap-
olation of the correction factor neglecting the four highest and
lowest quantiles of the calibration period considering the as-
sumption that the tail of the correction factor was likely to be
noisy. The FAQM bias correction was applied to each down-
scaled rainfall series (downscaled from NCEP reanalysis and
GCM datasets) considering the observed station rainfall as the
base. In the case of downscaled rainfall fromNCEP reanalysis
datasets, correction factors for each quantile were estimated
based on the observed rainfall for the calibration period. These
correction factors were applied to correct rainfall for the cali-
bration and validation periods. In the same way, correction
factors were also estimated for the rainfall downscaled from
GCM output datasets and used to correct rainfall for the his-
torical (calibration and validation) and future projection
periods.

3.3 Extreme rainfall indices

Extreme rainfall indices (listed in Table 2) were estimated
from the observed and downscaled daily rainfall forced by
NCEP reanalysis and GCM output datasets. The downscal-
ing model performance was assessed for its ability to

Table 1 Details of rainfall
stations BOM station ID Station

code
Latitude (decimal
degree)

Longitude (decimal
degree)

Elevation (m) Annual median
rainfall

023726 G1 −34.9 138.87 459 887

023750 G2 −34.96 138.74 487 1034

023707 G3 −35.01 138.76 445 987

023720 G4 −35.03 138.81 341 779

023709 G5 −35.06 138.66 376 897

023713 G6 −35.1 138.79 370 746

023710 G7 −35.11 138.62 267 756

023730 G8 −35.18 138.76 356 821

023753 G9 −35.27 138.56 104 615

Table 2 Extreme rainfall indices

Extreme
rainfall indices

Description Unit

RMD Mean of daily rainfall on all days mm/day

RDL90 Number of event > long-term 90th
percentile rainfall

day

RQ90 Empirical 90th quantile of rainfall mm

R5D Maximum 5-day consecutive total rainfall mm

CDD Maximum number of consecutive
dry days (daily rainfall < 1 mm)

day
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reproduce the extreme rainfall indices for the calibration
and validation periods in terms of the coefficient of deter-
mination (R2), coefficient of efficiency (CE), mean bias
(MB) and Nash-Sutcliffe efficiency (NS). Finally, the per-
centage change of the extreme rainfall indices was estimat-
ed for the future period (2041–2060) compared to the base
period (1961–2000). The extreme rainfall indices consid-
ered in this study are listed in Table 2. These indices have
also been used in different previous studies (Evans et al.
2009; Hashmi et al. 2011; Huang et al. 2012; Tryhorn and
DeGaetano 2011; Yang et al. 2011).

3.4 Frequency analysis

Annual maximum daily rainfall (AMDR) series obtained from
observed and downscaled daily rainfall (historical and
projected) was used to estimate the 100-year AMDR. For this
purpose, both stationary and non-stationary models were
used. In the stationarymodel, the fitted distribution parameters
are constant over the time. On the other hand, in the non-
stationary model, the distribution parameters are considered
as a function of certain explanatory variables so that parame-
ters vary over time. GAMLSS (Rigby and Stasinopoulos
2005) has a flexible modelling framework which is suitable
for non-stationary modelling of AMDR. In GAMLSS, the
random response variable (AMDR for this study) has a para-
metric distribution function whose parameters can be
modelled as a function of selected covariates (NCEP reanaly-
sis and GCM output datasets in this study). Air temperature at
700 hPa; geopotential height at 700 and 800 hPa; relative
humidity at 500, 700 and 850 hPa; zonal wind component at
700 and 850 hPa; and meridional wind component at 500 and
700 hPa were considered as the external covariates. The win-
ter (June–August) means of these variables were extracted
from the 12 grid points around the study area and spatially
averaged which gives a single series for each variable used as
a covariate for fitting a GAMLSS. The rationale of consider-
ing the winter average is that the most of the rainfall occurs
over this period in this study area and in general the maximum
correlation between observed AMDR and selected covariates
occurred in winter.

A GAMLSS model assumes that for any observations for
i = 1, 2, 3,... n independent observations, Yi has a cumulative
distribution function Fy(Yi|θi), where θi = θi1, θi2, θi3,...... θip is
a vector of p distribution parameters accounting for location,
scale and shape of the distribution. The number of parameters
p generally varies from one to four. The model parameters are
related to the covariates by a monotonic link function gk(.)
where k = 1, 2, 3.... p and the parameters are modelled through
link functions. In this study, identity and logarithm link
functions were considered. Details of GAMLSS are
available in Stasinopoulos and Rigby (2007) and Rigby and
Stasinopoulos (2005). While GAMLSS have several different

possible models, a semi-parametric additive model formula-
tion was used in this study as follows:

gk θkð Þ ¼ ηk ¼ X kβk þ
X
j¼1

jk

hjk
�
xjk

�
ð3Þ

where θk and ηk are vectors of length n, Xk is a matrix of

covariates of order n × jk, βk β1k ; ::::::; β jk k

� �
is a parameter

vector of length jk and hjk(.) represents the dependence func-
tion of the distribution parameters on covariates. The depen-
dence could be linear, or a smoothing term can be included to
allow more flexibility for modelling the dependence of the dis-
tribution parameters on the covariates. Four distribution func-
tions were considered in this study, namely the Gumbel,
Lognormal, Weibull and Gamma distributions, as shown in
Table 3. A stepwise model fitting approach proposed by Rigby
and Stasinopoulos (2005)was followed to identify the significant
covariates and distribution functions. In addition to the Akaike
information criterion (AIC) and the Bayesian information crite-
rion (BIC), model efficiency statistics such as the coefficient of
determination (R2), the root mean square error (RMSE) and the
Nash-Sutcliffe (NS) efficiency were also assessed at each step of
the model fitting. In addition, the normality and independence of
the residuals were assessed by examining the first four moments
of the residuals, by the Filliben correlation coefficient (Filliben
1975) and by visual inspection of a diagnostic plot of the resid-
uals. Once the model was fitted, the distribution parameters were
estimated for each data point and the 100-year AMDR were
estimated based on the time-varying estimates of the model pa-
rameters θ1 and θ2 for the selected stations.

In order to assess the magnitude of the 100-year AMDR
during the historical period (1961–2000) and the changes over
the future period (2041–2060), four rainfall stations (G1, G3,
G7 and G9) were considered for this study. These stations were
selected to represent the upper, middle and downstream (near
the coast) regions of the Onkaparinga catchment (Fig. 1).

4 Results

4.1 Calibration and validation of the model

The model was able to reasonably reproduce the monthly
statistics and variability of the extreme rainfall indices for both
the calibration (1961–1986) and validation (1987–2000) pe-
riods. Figure 2 shows the observed and median simulated
extreme rainfall indices for different months of the year for
the validation period. Simulations were driven by the NCEP
reanalysis and GCM historical datasets. In general, the simu-
lation driven by the NCEP reanalysis datasets showed better
agreement with the observed extreme rainfall indices than the
simulation driven by GCM historical datasets. This is due to
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the bias between the NCEP reanalysis and GCM datasets. The
FAQM correction technique that was applied significantly re-
duced the bias in extreme rainfall indices. However, the max-
imum 5-day rainfall total was still underestimated by all sim-
ulations during the months from June to October. This might
be due to an underestimation of rainfall amounts and consec-
utive wet days during this period of the year. The maximum
consecutive dry days (CDD) was also underestimated for the
months January to May for all simulations.

Table 4 shows the performance after bias correction of the
statistical downscaling model driven by NCEP reanalysis data
and different GCMs in terms of the coefficient of determination
(R2), coefficient of efficiency (CE), mean bias (MB) and Nash-
Sutcliffe efficiency (NS) for the validation period. The efficien-
cy statistics were found to be reasonable for all models, and in
general, the model driven by NCEP reanalysis data showed
better performance than the model driven by GCM historical
outputs. The values shown in italic text in Table 4 are the NS
statistics before bias correction. The results show that the
FAQM technique was able to reasonably correct the bias for
extreme rainfall indices such as RDM, RDL90, RQ90 and
R5D. However, in contrast, the model efficiency for CDD de-
teriorated after bias correction. For the FAQM bias correction
technique, when the number of dry days of the downscaled
rainfall was greater than that of the observed rainfall, a certain
fraction of the simulated dry days was converted to wet days by
randomly replacing the values obtained from randomly gener-
ated values following the gamma distribution of the modelled
rainfall. This is likely to break the long dry spells which even-
tually reduces the maximum consecutive dry days (CDD).

Moreover, quantile mapping (QM) can correct the bias in rain-
fall quantity but it cannot correct the sequence of dry and wet
days. While uncorrected downscaled daily rainfall showed a
good degree of efficiency in terms of reproducing CDD statis-
tics, as listed in Table 4, downscaled daily rainfall series with-
out correction were used instead to estimate the future changes
of CDD. However, it is expected that developing a bias correc-
tion technique based on the transitional probability of dry and/
or wet days and applying this technique to simulated CDD
series would reduce the bias in CDD.

4.2 Future changes in extreme rainfall indices

Changes in the extreme rainfall indices for different GCMs
under RCP4.5 and RCP8.5 scenarios over the period 2041–
2060 compared to the base period 1961–2000 are shown in
Fig. 3 (RDM, RDL90 and RQ90) and Fig. 4 (R5D and
CDD). Future projected changes are shown for each month of
the year. Although a few model-month combinations showed
that RDM, RDL90 and R5D would increase and CDD would
decrease, most of the model-month combinations showed that
RDM, RDL90, RQ90 and R5D would decrease whereas CDD
would increase for both the RCP4.5 and RCP8.5 scenarios.
Future changes of RDM, RDL90, RQ90, R5D and CDD range
from 12.65 to −40.19 %, 23.27 to −50 %, 11.25 to −47.53 %,
21.76 to −37.26 % and 34.68 to −12.96 %, respectively, for the
RCP4.5 scenario and 16.9 to −45.66 %, 22.12 to 67.3 %, 19.16
to 51.69 %, 22.81 to −40.32 % and 30.23 to −7.31 %, respec-
tively, for the RCP8.5 scenario. The highest reduction in ex-
treme indices is seen to occur during September to January

Table 3 Probability density functions and their corresponding link functions

Distribution type Probability distribution function Link function g(.)

θ1 θ2

Gumbel
f y yjθ1; θ2ð Þ ¼ 1

θ2
exp

y−θ1
θ2

� �
−exp

y−θ1
θ2

� �� �

−∞ < y < ∞; −∞ < θ1 < ∞; θ2 > 0

Identity () ln ()

Lognormal
f y yjθ1; θ2ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πθ2
p 1

y
exp −

log yð Þ−θ1f g2
2θ22

" #

y > 0; θ1 > 0; θ2 > 0

Identity () ln ()

Weibull
f y yjθ1; θ2ð Þ ¼ θ2yθ2−1

θ1
θ2

exp −
y
θ1

� �� �

y > 0; θ1 > 0; θ2 > 0

ln () ln ()

Gamma

f y yjθ1; θ2ð Þ ¼ 1

θ22
	 
 1

θ2
2

y
1
θ2
2

−1
exp −y

θ22θ1
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whereas the lowest reduction occurs during the period May to
August. This tendency is more prominent under the RCP8.5
than RCP4.5 scenario. This reveals that there is a possibility of
higher reductions in rainfall amount-related indices (RDM,
RDL90, RQ90 and R5D) in the dry season compared to the
wet season, which indicates that a regional drought will be
intensified in the future (2041–2060) compared to the historical
period (1961–2000). Rashid et al. (2015) also observed signif-
icant reductions in annual and seasonal rainfall for the future
period 2041–2060 in the Onkaparinga catchment.

An increase in the maximum number of consecutive dry days
(CDD) may also intensify the droughts that are periodically ex-
perienced in the Onkaparinga catchment. These changes of daily
rainfall occurrence sequences and reduction in the rainfall
amount will reduce the runoff potential, which will eventually

affect regional water availability. Obviously, the magnitude of
changes in the extreme rainfall indices varies with the models
and scenarios due to differences in the model settings and sce-
narios. However, in general, the direction of changes was found
to be consistent for all models and scenarios.

4.3 AMDR

The downscaling model was able to reasonably reproduce the
AMDR when forced by NCEP reanalysis and GCM historical
datasets. Figure 5 shows a comparison between the observed
and simulated AMDR when forced by NCEP reanalysis
datasets at nine rainfall stations for the calibration (1961–
1986) and validation (1987–2000) periods. The 2.5th and
97.5th percentiles of the AMDR series were generated from

Fig. 2 Comparison of extreme rainfall indices from observed and median simulated rainfall driven by NCEP reanalysis and GCM historical datasets for
the validation period (1987 to 2000)
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1000 sets of simulations and are presented as dotted lines. The
thick black line represents the median simulated AMDR. For
most of the year, the AMDR were within the simulation envel-
op for all stations. Similar model efficiency was also observed
for the simulations driven by the GCM historical datasets in-
cluding CSIRO, GFDL, BCC and CAN after bias correction.
However, the model was limited in its ability to reproduce the
inter-annual variability of the AMDR for all simulations forced
by the NCEP reanalysis and GCM historical datasets at all
stations. AMDR is the maximum daily rainfall value over a
year. For a daily rainfall model, it is difficult to accurately
reproduce such extreme values for each year over the model-
ling period. Moreover, the gamma distribution used in the
downscaling model has limited ability to capture the extreme
rainfall (Rashid et al. 2014). In addition, downscaling of
AMDR is challenging due to its high spatial and temporal
variability and non-linear nature. Direct downscaling of
AMDR from reanalysis and GCM output datasets by consid-
ering AMDR as a predictand might resolve this problem.

4.4 Frequency analysis of AMDR

Figure 6 shows the results of the non-stationary modelling of the
observed rainfall and 100-year AMDR magnitude for the repre-
sentative sites. The non-stationary model was developed by
fitting a GAMLSS to the observed AMDR considering the
NCEP reanalysis variables as external covariates. In the same
way for the median simulated AMDR driven by different
GCMs, historical and projected (RCP4.5 and RCP8.5) GCM
output datasets were considered as external covariates. Several
of the selected external covariates were found to vary between
the rainfall stations. It was found that the gamma (for station G1)
and lognormal distributions (for stations G3, G7 and G9) gave
the best overall results for the observed AMDR. The non-linear
dependence of external covariates using cubic splines was found
to be significant for the distribution parameter θ1 for all stations.
To reduce overfitting of the model, the distribution parameter θ2
was considered constant. The model efficiency statistics such as
the coefficient of determination (R2), root mean square error
(RMSE) and Nash-Sutcliffe (NS) were found to be reasonable
for each station. Figure 6 shows the magnitude of the 100-year
AMDR under both stationary and non-stationary conditions. In
the non-stationary frequency analysis, the distribution parameters
were considered to be varied over time whereas in the stationary
modelling they were considered constant. It was observed that
the non-stationary model showed significant variability in the
AMDR frequency. The results show that the stationary model
could lead to significant underestimation or overestimation of the
rainfall compared to the non-stationary model. For example, at
site G9, the non-stationary frequency analysis indicated that the
100-year AMDR during the 40 years (1961–2000) of the obser-
vation period varied from amaximum of 142mm/day in 1969 to
aminimumof 28.5mm/day as shown in Fig. 6, whereas the 100-
year AMDR was 83.52 mm/day for the stationary frequency
analysis. Similar results were also observed for other stations.

The non-stationary frequency analysis of AMDR obtained
from the downscaled simulations driven by different GCM
datasets shows that the 100-year AMDR (annual exceedance
probability of 0.01) varies significantly (decreases and in-
creases) over the periods 1960–2000 and 2041–2060. So in
the non-stationary frequency analysis, the 100-year AMDR
includes maximum and minimum values over a historical or
future period. Table 5 lists the change in the maximum and
minimum values of the 100-year AMDR for the future period
(2041–2060) compared to the base period (1961–2000). It
was observed that the degree of change varies with the select-
ed models and scenarios. In general, maximum and minimum
values of the 100-year AMDR are likely to decrease over the
period 2041–2060 for all models and scenarios. An exception
was observed for the downscaled simulation forced by the
CSIRO GCM, which showed that the maximum of the 100-
year AMDR would increase during the period 2041–2060 for
the RCP8.5 scenario.

Table 4 Downscaling model efficiency for the validation period after
bias correction

Indices Model R2 CE MB NS

RDM NCEP 0.98 0.74 −0.20 0.91 (0.87)

CSIRO 0.81 0.55 −0.27 0.76 (0.71)

GFDL 0.87 0.64 0.05 0.83 (0.65)

BCC 0.91 0.62 −0.13 0.82 (0.64)

CAN 0.89 0.65 −0.12 0.87 (0.66)

RDL90 NCEP 0.97 0.82 −0.08 0.95 (0.87)

CSIRO 0.77 0.54 −0.20 0.8 (0.75)

GFDL 0.82 0.62 0.21 0.81 (0.72)

BCC 0.91 0.65 0.01 0.87 (0.69)

CAN 0.89 0.67 0.07 0.88 (0.72)

RQ90 NCEP 0.94 0.76 −0.32 0.91 (0.85)

CSIRO 0.72 0.52 −0.62 0.74 (0.70)

GFDL 0.79 0.59 0.33 0.77 (0.67)

BCC 0.86 0.60 −0.26 0.80 (0.65)

CAN 0.80 0.58 0.05 0.80 (0.63)

R5D NCEP 0.93 0.58 −5.02 0.80 (0.78)

CSIRO 0.71 0.32 −7.21 0.73 (0.50)

GFDL 0.79 0.49 −3.35 0.71 (0.51)

BCC 0.83 0.39 −4.81 0.59 (0.38)

CAN 0.80 0.49 −4.80 0.70 (0.53)

CDD NCEP 0.88 0.54 −1.59 0.69 (0.88)

CSIRO 0.73 0.48 −1.52 0.59 (0.59)

GFDL 0.70 0.30 −2.48 0.26 (0.73)

BCC 0.91 0.57 −1.57 0.74 (0.89)

CAN 0.81 0.27 −2.64 0.25 (0.77)

Italic text in brackets represents the NS statistics before bias correction

R2 coefficient of determination, CE coefficient of efficiency, MB mean
bias, NS Nash-Sutcliffe efficiency
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5 Discussion

Even though the magnitude of changes in extreme rainfall varies
for the future period, the direction of changes is consistent for all
CMIP GCMmodels and scenarios. This gives some confidence
in the projected changes presented in this study, although uncer-
tainties still need to be considered. The future changes of extreme

rainfall indices and annual maximum daily rainfall projected in
this study may not account for the full range of climate change
impacts because these are based on a small number of GCMs
and scenarios due to data availability. Nevertheless, the method-
ology developed in this study can be applied to assess the future
changes of extreme rainfall for other GCM scenarios through
downscaling rainfall from those GCMs and scenarios.

Fig. 3 Changes in extreme rainfall indices (RDM, RDL90 and RQ90) for different GCMs under scenarios RCP4.5 (left column) and RCP8.5 (right
column) for the future period (2041 to 2060) compared to the base period (1961 to 2000)

Fig. 4 Same as Fig. 2 but for R5D and CDD
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Fig. 5 Observed and NCEP simulated annual maximum daily rainfall at different rainfall stations for the calibration (1961 to 1986) and validation (1987
to 2000) periods

Fig. 6 Non-stationary modelled AMDR (blue line) and quantile estimates of AMDR with 0.01 annual exceedance probability for the period 1961 to
2000 based on stationary (dotted black line) and non-stationary (red line) models. The small black circles represent the observed AMDR
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Extreme climate conditions depend on large-scale process-
es that modify the stability of the atmosphere by exchanging
mass and energy from the oceans to the atmosphere and from
the equator to the poles. The specific influence of large-scale
processes on South Australian extreme rainfall is not well
understood. Evans et al. (2009) concluded that extreme rain-
fall over SA is linked to the large-scale rearrangement of cir-
culation patterns. Their study reveals that meridional sea sur-
face temperature (SST) in the eastern Indian Ocean (EIO)
influences extreme rainfall events over SA. During dry win-
ters, pole-ward shifts of the westerlies to the south of Australia
and increased offshore flow over the northwest of Australia
reduce advection of moist warm air into SA from the north-
west and moist cold air along the southern coastline. Thus, the
interaction of these air masses is reduced which eventually
decreases rainfall in SA (Evans et al. 2009). In addition to
large-scale processes, mesoscale weather system is also re-
sponsible to modulate the local-scale extreme rainfall. So,
extreme rainfall is location specific. While extreme rainfall
is likely to increase over the southern and southwestern flat-
lands (east) of Australia (CSIRO and BOM 2015; IPCC
2012), our study shows that amount-related extreme rainfall
indices and AMDR are likely to decrease in future over the
Onkaparinga catchment. It should be noted that the GCMs are
unable to capture the mesoscale atmospheric features such as
geography that modifies the atmospheric flow, small horizon-
tal shifts in storm movement, land use changes and clouds

which essentially influence the local-scale extreme rainfall
(Tisseuil et al. 2010; Willems et al. 2012). Moreover, rainfall
events averaged over a large spatial scale are not able to rep-
resent the extreme rainfall events that occur at a far smaller
spatial scale. This reveals the necessity of catchment scale
assessment of extreme rainfall in a changed climate.

In addition to natural variations in the climatic system,
anthropogenic-induced climate change due to greenhouse
gas emissions changes the hydrological cycle creating a situ-
ation whereby stationarity in hydro-climatic variables such as
rainfall is no longer valid. This study has shown that using
large-scale climatic variables as covariates in a non-stationary
model of AMDR can produce reliable scenarios of future ex-
treme rainfall.

6 Conclusion

In this study, the performance of the GLIMCLIM statistical
downscaling model was first assessed in terms of its ability to
simulate extreme rainfall indices and annual maximum daily
rainfall (AMDR) when daily rainfall was downscaled from
NCEP reanalysis and CMIP5 GCM output datasets. Then
the changes in extreme rainfall indices and 100-year AMDR
were estimated using four different CMIP5 GCMs (CSIRO,
GFDL, BCC and CAN) under RCP4.5 and RCP8.5 scenarios
for the future period of 2041–2060 compared to the base pe-
riod of 1961–2000. The downscaling model was able to rea-
sonably reproduce the monthly statistics and variability of the
extreme rainfall indices for both the calibration (1961–1986)
and validation (1987–2000) periods when driven by the
NCEP reanalysis datasets. However, the model showed less
skill in reproducing the extreme rainfall indices when forced
by the CMIP5 GCM historical output datasets.

Frequency Adapted Quantile Mapping was applied to the
simulated daily rainfall series, and this significantly reduced
the bias in the extreme rainfall indices. However, the model
efficiency for consecutive dry days (CDD) deteriorated after
bias correction. This might be due to the fact that during the
frequency adaptation, imputation of random values to turn the
dry days to wet days might break the dry spell and reduce the
maximum consecutive dry days. The downscaling model was
found to be able to reasonably reproduce the AMDR for both
the calibration and validation periods. For almost all years, the
observed AMDR were within the 2.5th and 97.5th percentiles
of the simulated rainfall. However, inter-annual variability of
AMDR was underestimated in all models.

This study has shown that extreme indices related to rain-
fall amount are likely to decrease for all models and scenarios.
This reduction will be higher during the dry season compared
to the wet season, which points toward a regional water scar-
city situation in the future (2041–2060), when the dry season
will be drier compared to the present time (1961–2000). In

Table 5 Change in maximum and minimum values of 100-year
AMDR for different GCMs and scenarios for the future period (2041–
2060) compared to the base period (1960–2000)

Station GCM Maximum 100-year
AMDR

Minimum 100-year AMDR

RCP4.5 RCP8.5 RCP4.5 RCP8.5

G1 CSIRO −7 %↓ +5 %↑ −3 %↓ −8 %↓

GFDL −21 %↓ −12 %↓ −16 %↓ −15 %↓

BCC −24 %↓ −25 %↓ −18 %↓ −20 %↓

CAN −35 %↓ −26 %↓ −16 %↓ −11 %↓

G3 CSIRO −6 %↓ +16 %↑ −6 %↓ −5 %↓

GFDL −13 %↓ −9 %↓ −17 %↓ −11 %↓

BCC −19 %↓ −18 %↓ −15 %↓ −15 %↓

CAN −29 %↓ −28 %↓ −11 %↓ −10 %↓

G7 CSIRO −1 %↓ +29 %↑ −7 %↓ −3 %↓

GFDL +1 %↑ −5 %↓ −19 %↓ −18 %↓

BCC −22 %↓ −22 %↓ −18 %↓ −23 %↓

CAN −42 %↓ −34 %↓ −14 %↓ −10 %↓

G9 CSIRO −1 %↓ +14 %↑ −13 %↓ −6 %↓

GFDL −3 %↓ 0 % = −21 %↓ −20 %↓

BCC −14 %↓ −18 %↓ −20 %↓ −21 %↓

CAN −27 %↓ −28 %↓ −6 %↓ −7 %↓
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addition, the maximum number of consecutive dry days
(CDD) will increase in future and this will intensify future
droughts in the Onkaparinga catchment.

It was also found in this study that the GAMLSS provides a
flexible modelling framework for representing the non-
stationary behaviour of AMDR. In particular, the gamma
and lognormal distributions gave the best fit for AMDR.
Non-linear dependence of external covariates (NCEP reanal-
ysis and CMIP5 GCM output datasets) was found to be sig-
nificant for selected distribution parameters. In general, future
projections show that both the minimum andmaximum values
of the 100-year AMDR are likely to decrease over the future
period (2041–2060) compared to the base period (1961–2000)
for all models and scenarios at all selected rainfall stations.
However, an exception was observed for the CSIRO GCM,
which projected that the maximum 100-year AMDR will in-
crease for all selected sites under the RCP8.5 scenario.

Overall, the downscaling model was able to reasonably
simulate the extreme rainfall indices and AMDR in the
Onkaparinga catchment. Generally, the direction of changes
was consistent for all models and scenarios. This indicates that
the Onkaparinga catchment will experience drier conditions
due to an increase in consecutive dry days coinciding with
decreases in heavy rainfall days, empirical 90th quantile of
rainfall and maximum 5-day consecutive total rainfall for the
future period (2041–2060) compared to the base period
(1961–2000).

References

Aissaoui-Fqayeh I, El-Adlouni S, Ouarda T, St-Hilaire A (2009) Non-
stationary lognormal model development and comparison with non-
stationary GEV model. Hydrol Sci J 54:1141–1156

Alexander LV, Arblaster JM (2009) Assessing trends in observed and
modelled climate extremes over Australia in relation to future pro-
jections. Int J Climatol 29:417–435

Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A,
Haylock M, Collins D, Trewin B, Rahimzadeh F (2006) Global
observed changes in daily climate extremes of temperature and pre-
cipitation. J Geophys Res Atmos (1984–2012):111

Alexander LV, Hope P, Collins D, Trewin B, Lynch A, Nicholls N (2007)
Trends in Australia’s climate means and extremes: a global context.
Aust Meteorol Mag 56:1–18

Beecham S, Rashid M, Chowdhury RK (2014) Statistical downscaling of
multi-site daily rainfall in a South Australian catchment using a
Generalized Linear Model. Int J Climatol R Meteorol Soc 34. doi:
10.1002/joc.3933

Chandler RE (2002) GLIMCLIM: generalised linear modelling for daily
climate time series (software and user guide)

Chandler RE, Wheater HS (2002) Analysis of rainfall variability using
generalized linear models: a case study from the west of Ireland.
Water Resour Res 38:1–11. doi:10.1029/2001wr000906

Chu J, Xia J, Xu C-Y, Singh V (2010) Statistical downscaling of daily
mean temperature, pan evaporation and precipitation for climate

change scenarios in Haihe River, China. Theor Appl Climatol 99:
149–161

Collins D, Della-Marta P, Plummer N, Trewin B (2000) Trends in annual
frequencies of extreme temperature events in Australia. Aust
Meteorol Mag 49:277–292

CSIRO BOM (2015) Climate change in Australia information for
Australia’s natural resource management regions: technical report.
CSIRO and Bureau of Meteorology, Australia

El Adlouni S, Ouarda T, Zhang X, Roy R, Bobée B (2007) Generalized
maximum likelihood estimators for the nonstationary generalized
extreme value model. Water Resour Res 43:W03410. doi:10.1029
/2005WR004545

Evans AD, Bennett JM, Ewenz CM (2009) South Australian rainfall
variability and climate extremes. Clim Dyn 33:477–493.
doi:10.1007/s00382-008-0461-z

Filliben JJ (1975) The probability plot correlation coefficient test for
normality. Technometrics 17:111–117

Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future
change of precipitation extremes in Europe: intercomparison of sce-
narios from regional climate models. J Geophys Res Atmos (1984–
2012):111

Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Klein Tank
A, Peterson T (2002) Observed coherent changes in climatic ex-
tremes during the second half of the twentieth century. Clim Res
19:193–212

Frost AJ (2007) Australian application of a statistical downscaling tech-
nique for multi-site daily rainfall: GLIMCLIM. Model Simul Soc
Aust N Z 553–559

Frost AJ, Charles SP, Timbal B, Chiew FHS, Mehrotra R, Nguyen KC,
Chandler RE, McGregor JL, Fu G, Kirono DGC, Fernandez E, Kent
DM (2011) A comparison of multi-site daily rainfall downscaling
techniques under Australian conditions. J Hydrol 408:1–18.
doi:10.1016/j.jhydrol.2011.06.021

HashmiMZ, Shamseldin AY,Melville BW (2011) Comparison of SDSM
and LARS-WG for simulation and downscaling of extreme precip-
itation events in a watershed. Stoch Env Res Risk A 25:475–484

Haylock M, Nicholls N (2000) Trends in extreme rainfall indices for an
updated high quality data set for Australia, 1910-1998. Int J
Climatol 20:1533–1541

Heneker TM, Cresswell D (2010) Potential impact on water resource
availability in the Mount Lofty Ranges due to climate change.
Technical report DFW 2010/03. Department for Water,
Government of South Australia

Hennessy KJ, Suppiah A, Forland E, Zhai P (1999) Australian rainfall
changes, 1910-1995. Australian Meteorology Magazine 48:1–13

Hu Y, Maskey S, Uhlenbrook S (2012) Downscaling daily precipittion
over the Yellow River source region in China: a comparison of three
statistical downscalingmethods. Theor Appl Climatol 112:447–460.
doi:10.1007/s00704-012-0745-4

Hu Y, Maskey S, Uhlenbrook S (2013) Downscaling daily precipitation
over the Yellow River source region in China: a comparison of three
statistical downscaling methods. Theor Appl Climatol 112:447–460

Huang J, Zhang J, Zhang Z, Xu CY, Wang B, Yao J (2011) Estimation of
future precipitation change in the Yangtze River basin by using
statistical downscaling method. Stoch Env Res Risk A 25:781–792

Huang J, Zhang J, Zhang Z, Sun S, Yao J (2012) Simulation of extreme
precipitation indices in the Yangtze River basin by using statistical
downscaling method (SDSM). Theor Appl Climatol 108:325–343.
doi:10.1007/s00704-011-0536-3

Hundecha Y, Bárdossy A (2008) Statistical downscaling of extremes of
daily precipitation and temperature and construction of their future
scenarios. Int J Climatol 28:589–610

IPCC (2007) Change 2007: the physical science basis. Contribution of
Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge
University Press, Cambridge, UK and New York, NY USA

Simulation of extreme rainfall and projection of future changes 465

http://dx.doi.org/10.1029/2001wr000906
http://dx.doi.org/10.1029/2005WR004545
http://dx.doi.org/10.1029/2005WR004545
http://dx.doi.org/10.1007/s00382-008-0461-z
http://dx.doi.org/10.1016/j.jhydrol.2011.06.021
http://dx.doi.org/10.1007/s00704-012-0745-4
http://dx.doi.org/10.1007/s00704-011-0536-3


IPCC (2012) Managing the risks of extreme events and disasters to ad-
vance climate change adaptation. A special report of Working
Groups I and II of the Intergovernmental Panel on Climate
Change. Cambridge University Press, Cambridge, UK, and New
York, NY, USA

Jeong DI, St-Hilaire A, Ouarda TBMJ, Gachon P (2012) Projection of
future daily precipitation series and extreme events by using a multi-
site statistical downscaling model over Montréal, Québec, Canada.
Hydrol Res 44(1):147–168. doi:10.2166/nh.2012.183

Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temper-
ature and precipitation extremes in the IPCC ensemble of global
coupled model simulations. J Clim 20:1419–1444

Kigobe M, McIntyre N, Wheater H, Chandler R (2011) Multi-site sto-
chastic modelling of daily rainfall in Uganda. Hydrol Sci J 56:17–33

King LM, Irwin S, Sarwar R, McLeod AIA, Simonovic SP (2012) The
effects of climate change on extreme precipitation events in the
upper Thames River basin: a comparison of downscaling ap-
proaches. Canadian Water Resources Journal 37:253–274

Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysis of
extremes in a changing climate in support of informed decisions for
adaptation. Climate data and monitoring WCDMP No72, WMO-
TD No 1500, 56 pp

Kwon HH, Brown C, Lall U (2008) Climate informed flood frequency
analysis and prediction in Montana using hierarchical Bayesian
modeling. Geophys Res Lett 35:L05404. doi:10.1029/2007
GL032220

Li Y, CaiW, Campbell E (2005) Statistical modeling of extreme rainfall in
southwest Western Australia. J Clim 18:852–863

Liu W, Fu G, Liu C, Charles SP (2012) A comparison of three multi-site
statistical downscaling models for daily rainfall in the North China
Plain. Theor Appl Climatol. doi:10.1007/s00704-012-0692-0

López J, Francés F (2013) Non-stationary flood frequency analysis in
continental Spanish rivers, using climate and reservoir indices as
external covariates. Hydrol Earth Syst Sci 17:3189–3203

Mehrotra R, Sharma A, Srikanthan S, Frost AJ (2009) Comparison of
statistical downscaling techniques for multisite daily rainfall condi-
tioned on atmospheric variables for the Sydney region. Australian
Journal of Water Resources 13:1–15

Mirshahi B, Onof C, Wheater HS (2008) Spatialtemporal daily rainfall
simulation for a semi-arid area in Iran: a preliminary evaluation of
generalised linear models. Sustainable Hydrology for the 21st
Century, Proceedings of the 10th BHS National Hydrology
Symposium, 2008, 145–152

Ouarda T, El-Adlouni S (2011) Bayesian nonstationary frequency analy-
sis of hydrological variables 1. Wiley Online Library

Plummer N, Salinger MJ, Nicholls N, Suppiah R, Henessy KJ, Leighton
RM, Trewin B, Lough JM (1999) Twentieth century trends in cli-
mate extremes over the Australian region andNewZealand. Climate
Change 42:183–202

Rashid MM, Beecham S, Chowdhury RK (2014) Statistical characteris-
tics of rainfall in the Onkaparinga catchment in South Australia.
Journal of Water and Climate Change, IWA Publishing 6:352–372.
doi:10.2166/wcc.2014.031

RashidM, Beecham S, Chowdhury RK (2015) Statistical downscaling of
CMIP5 outputs to rainfall and projections of future changes. Science

of the Total Environment, Elsevier 530:171–182. doi:10.1016/j.
scitotenv.2015.05.024

Rigby R, Stasinopoulos D (2005) Generalized additive models for loca-
tion, scale and shape. J R Stat Soc: Ser C: Appl Stat 54:507–554

Sachindra D, Huang F, Barton A, Perera B (2014) Statistical downscaling
of general circulation model outputs to precipitation—part 2: bias-
correction and future projections. Int J Climatol 34:3282–3303.
doi:10.1002/joc.3915

Sillmann J, Kharin V, Zhang X, Zwiers F, Bronaugh D (2013) Climate
extremes indices in the CMIP5 multimodel ensemble: part 1. Model
evaluation in the present climate. Journal of Geophysical Research:
Atmospheres 118:1716–1733

Stasinopoulos DM, Rigby RA (2007) Generalized additive models for
location scale and shape (GAMLSS) in R. J Stat Softw 23:1–46

Suppiah R, Hennessy KJ (1998) Trend in total rainfall, heavy-rain events
and number of dry days in Australia, 1910-1990. Int J Climatol 10:
1141–1164

Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the
extremes: an intercomparison of model-simulated historical and fu-
ture changes in extreme events. Clim Chang 79:185–211.
doi:10.1007/s10584-006-9051-4

Teng J, Chiew FH, Vaze J (2012) Will CMIP5 GCMs reduce or increase
uncertainty in future runoff projections. American Geophysical
Union–Fall Meeting, 3–7 December 2012, San Francisco, USA

Teoh KS (2003) Estimating the impact of current farm dams development
on the surface water resources of the Onkaparinga River Catchment.
DWLBC Report 2002/22, Department of Water, Land and
Biodiversity Conservation, for the Government of South Australia

Themeßl MJ, Gobiet A, Heinrich G (2012) Empirical-statistical down-
scaling and error correction of regional climate models and its im-
pact on the climate change signal. Clim Chang 112:449–468

Tisseuil C, Vrac M, Lek S, Wade AJ (2010) Statistical downscaling of
river flows. J Hydrol 385:279–291

Tramblay Y, Neppel L, Carreau J, Najib K (2013) Non-stationary fre-
quency analysis of heavy rainfall events in southern France.
Hydrol Sci J 58:280–294

Tryhorn L, DeGaetano A (2011) A comparison of techniques for down-
scaling extreme precipitation over the northeastern United States. Int
J Climatol 31:1975–1989

Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF
(2009) Flood frequency analysis for nonstationary annual peak re-
cords in an urban drainage basin. Adv Water Resour 32:1255–1266

Wang B, Yim S-Y, Lee J-Y, Liu J, Ha K-J (2014) Future change of Asian-
Australian monsoon under RCP 4.5 anthropogenic warming scenar-
io. Clim Dyn 42:83–100

Willems P, Olsson J, Arnbjerg-Nielsen K, Beecham S, Pathirana A,
Gregersen IB, Madsen H, Nguyen VTV (2012) Impacts of climate
change on rainfall extremes and urban drainage systems. IWA
Publishing

Yang C, Chandler RE, Isham VS, Wheater HS (2005) Spatial-temporal
rainfall simulation using generalized linear models. Water Resource
Research 41:1–13. doi:10.1029/2004wr003739

Yang T, Li H, Wang W, Xu CY, Yu Z (2011) Statistical downscaling of
extreme daily precipitation, evaporation, and temperature and con-
struction of future scenarios. Hydrol Process 26:3510–3523

466 Rashid M. et al.

http://dx.doi.org/10.2166/nh.2012.183
http://dx.doi.org/10.1029/2007GL032220
http://dx.doi.org/10.1029/2007GL032220
http://dx.doi.org/10.1007/s00704-012-0692-0
http://dx.doi.org/10.2166/wcc.2014.031
http://dx.doi.org/10.1016/j.scitotenv.2015.05.024
http://dx.doi.org/10.1016/j.scitotenv.2015.05.024
http://dx.doi.org/10.1002/joc.3915
http://dx.doi.org/10.1007/s10584-006-9051-4
http://dx.doi.org/10.1029/2004wr003739

	Simulation of extreme rainfall and projection of future changes using the GLIMCLIM model
	Abstract
	Introduction
	Study area and data
	Methodology
	Statistical downscaling model
	Bias correction
	Extreme rainfall indices
	Frequency analysis

	Results
	Calibration and validation of the model
	Future changes in extreme rainfall indices
	AMDR
	Frequency analysis of AMDR

	Discussion
	Conclusion
	References


