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Abstract In this paper, a stochastic model for the anal-
ysis of the daily maximum temperature is proposed.
First, a deseasonalization procedure based on the trun-
cated Fourier expansion is adopted. Then, the Johnson
transformation functions were applied for the data nor-
malization. Finally, the fractionally autoregressive inte-
grated moving average model was used to reproduce
both short- and long-memory behavior of the tempera-
ture series. The model was applied to the data of the
Cosenza gauge (Calabria region) and verified on other
four gauges of southern Italy. Through a Monte Carlo
simulation procedure based on the proposed model,
105 years of daily maximum temperature have been
generated. Among the possible applications of the mod-
el, the occurrence probabilities of the annual maximum
values have been evaluated. Moreover, the procedure
was applied for the estimation of the return periods of
long sequences of days with maximum temperature
above prefixed thresholds.

1 Introduction

Nowadays, investigation on air temperature has achieved rel-
evant importance because of its influence on all natural sys-
tems and human activities, such as crop growth (Verdoodt
et al. 2004; Bechini et al. 2006), agro-ecological zoning
(Caldiz et al. 2001; Ye et al. 2008), and food security assess-
ment (Ye and Van Ranst 2009, 2002; Ye et al. 2013).
Moreover, high temperatures can cause an increase of death
rates, especially when the data rise above critical values
(Kunst et al. 1993; Curriero et al. 2002; Hajat et al. 2002;
Keellings and Waylen 2012).

Stochastic modeling and simulation of daily meteorologi-
cal data is a prominent subject in literature since several de-
cades. A classical approach for the analysis of temperature
data, based on the procedures presented by Yevjevich
(1972), was proposed by Richardson (1981), who considered
maximum and minimum temperatures as continuous multi-
variate stochastic processes. Generally, the stochastic models,
used to reproduce climatic and hydrological series, are the
autoregressive (AR), the moving average (MA), the
autoregressive moving average (ARMA), and the
autoregressive integrated moving average (ARIMA) models
(Box and Jenkins 1976; Grimaldi et al. 2005). A limitation of
these models is that they can only capture the short-range
dependence, thus presenting a lack of flexibility in reproduc-
ing the combined effect of short- and long-memory (Box and
Jenkins 1976). Since Hurst (1951) detected the presence of
long-term persistence in data series studying the Nile River
levels, the need of long memory in time series modeling has
been pointed out. In fact, long-range dependence has been
encountered in various hydrological data (Lye and Lin 1994;
Pelletier and Turcotte 1997; Koscielny-Bunde et al. 2006;
Ehsanzadeh and Adamowski 2010). Doukhan et al. (2003)
evidenced that long-range dependent processes are
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characterized by a hyperbolic decrease of the autocorrelation
function and are closely related to self-similarity. Recently,
Prass et al. (2012) found that long-range dependence may
affect the performance of time series models with a short time
step. Moreover, incorporating long-range dependence into
time series modeling is also conceptually important, since
the model should capture the behavior of the data as realisti-
cally as possible. To this aim, Granger and Joyeux (1980) and
Hosking (1981) proposed the fractionally differencedARIMA
models (FARIMA or ARFIMA) as an extension of the
ARIMA models. The differencing order of the FARIMA
models can be fractional, thus providing flexibility in that they
can capture both short- and long-memory behavior, by vary-
ing the autoregressive and moving average components and
using few parameters (Lohre et al. 2003; Montanari et al.
1997; Prass et al. 2012). This is an advantage of the
FARIMA modeling framework because other long-memory
models, capable of reproducing the Hurst phenomenon, such
as the fractional Gaussian noise, have no flexibility in the
choice of the short-memory autocorrelation structure
(Koutsoyiannis 2002). In fact, it is shown that the fractionally
integrated time series models are much more accurate than the
traditional autoregressive models employing a similar number
of parameters (Caballero et al. 2002).

Many studies have been developed on FARIMAmodels in
literature. Bisaglia and Grigoletto (2001) proposed a
bootstrap-based method to construct prediction intervals for
FARIMA processes. Rupasinghe and Samaranayake (2012)
and Rupasinghe et al. (2014) introduced a simpler alternative
method, based on the sieve bootstrap approach of Alonso et al.
(2002) and Alonso et al. (2003). Several contributions have
been proposed in hydrology (e.g., Hosking 1984), climatolo-
gy (e.g., Baillie and Chung 2002), and temperature (e.g.,
Smith 1993). As regards in particular hydrological studies,
Montanari et al. (1997) proposed a FARIMA model for the
analysis of monthly and daily inflows of Lake Maggiore
(Italy). Montanari et al. (2000) applied a special form of the
generalized FARIMA process to the Nile River monthly flows
at Aswan. They combined the generalized FARIMA approach
with a multiplicative ARIMA approach, which allowed to
model seasonal and non-seasonal long and short memory.
Sheng and Chen (2011) developed a new model, based on
FARIMA with stable innovations, to analyze the data and
predict the future elevation levels of Great Salt Lake. Yang
and Bowling (2014) used a FARIMA model to estimate the
long memory in daily stream flow for basins in the Upper
Great Lakes region.

In this paper, a stochastic model which adopts the
FARIMA approach is proposed for the analysis of daily tem-
perature. Specifically, the different steps of the proposed mod-
el concern the data deseasonalization, by means of a truncated
Fourier series expansion; the data normalization, through the
transformations introduced by Johnson (1949); and the

analysis of the correlation structure through a FARIMA mod-
el. The model was applied to a maximum temperature series
and verified on other four southern Italian gauges. As an ex-
ample of the possible model applications, some features of the
maximum daily temperature have been evaluated by means of
a Monte Carlo simulation procedure.

2 Stochastic modeling of daily temperature

Let us indicate with i=0 , 1 , 2 , . . . the days from a generic
starting point, and let us define T(i) as the temperature char-
acterizing the generic i-day. The T(i) values can be the maxi-
mum, Tmax(i), or the minimum, Tmin(i), or even the mean
temperature, Tmean(i), of the day. A sequence of T(i) observa-
tions can be explained as a realization of a discrete parameter
stochastic process which shows a cyclostationarity condition,
with period D equal to a year (D = 365.25 days).

2.1 Deseasonalization

The temperature is not a stationary variable (Jewson and
Caballero 2003; Campbell and Diebold 2005), where the
non-stationarity can be caused by a deterministic seasonal
component or by a monotonic trend. Assuming the trend com-
ponent equal to zero, the T(i) process can be reduced to a
weakly stationary standardized process, Y(i), through the
transformation (Grimaldi 2004; Montanari et al. 1997, 2000;
Prass et al. 2012)

Y ið Þ ¼ T ið Þ−μT ið Þ
σT ið Þ ð1Þ

where μT(i) and σT(i) are the mean and the standard deviation
functions of the T(i) process, respectively. The mean and the
variance functions can be described by means of the truncated
Fourier series

μT ið Þ ¼ 1

2
aμ;0

þ
X
j¼1

nh;μ

aμ; jcos
2π j
D

i
� �

þ bμ; jsin
2π j
D

i
� �� �

ð2Þ

σ2
T ið Þ ¼ 1

2
aσ2;0

þ
X
j¼1

nh;σ2

aσ2; jcos
2π j
D

i
� �

þ bσ2; jsin
2π j
D

i
� �� �

ð3Þ

in which nh , μ and nh;σ2 are the number of harmonics, while
aμ , 0 ,aμ , j ,bμ , j and aσ2;0; aσ2; j; bσ2; j are the coefficients of the
Fourier expansion of the mean and the variance functions,
respectively.
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Given a sample of observed temperature, t(ik), with
k=1 , 2 , . . .K which corresponds to the days i1 , i2 , . . . , ik,
the functions μT(i) and σ2

T ið Þ can be estimated through their

analogous sample values, mT(i) and s2T ið Þ.
By using the least squares method, the Fourier coefficients

of the mean function can be estimated by minimizing the
following function:

S2μ aμ;0; aμ;1; bμ;1; :::
� �

¼
XK
k¼1

t ikð Þ− 1

2
aμ;0−

X
j¼1

nh;μ

f μ ik j; aμ; j; bμ; j
� �( )2

ð4Þ

where fμ(ikj;aμ , j,bμ , j) =aμ , j cos (2π ikj/D) +bμ , j sin (2π ikj/D).
Analogously, the coefficients of the Fourier expansion of

the variance function can be estimated using the same sample,
by minimizing the following function:

S2σ2 aσ2;0; aσ2;1; bσ2;1;⋯
� �

¼
XK
k¼1

t ikð Þ−μT ikð Þ½ �2− 1

2
aσ2;0−

Xnh;σ2
j¼1

f σ2 ik j; aσ2; j; bσ2; j
� �8<

:
9=
;

2

ð5Þ

whe r e f σ2 ik j; aσ2; j; bσ2; j
� � ¼ aσ2; jcos 2π ik j=Dð Þ þbσ2; jsin

2π ik j=Dð Þ.
If the temporal span of the sample is a multiple of the

period D, and the series does not have any missing days, the
trigonometric interpolation theory provides the estimation of
the coefficients in explicit form (Prass et al. 2012). The num-
ber of harmonics (nh;μ and nh;σ2 ) must be estimated by assur-
ing the absence of the periodicity of the process Y(i), with
respect to the criterion of the parameter parsimony. The Y(i)
data obtained through the deseasonalization of t(ik) are gener-
ally correlated, but the tests employed for the estimation of the
number of harmonics require a random sample. Therefore, for
each prefixed couple nh ,μ and nh;σ2 , a transformed random sub-
sample of y(ik), namely, y ik*ð Þ ¼ t ik*ð Þ−μT ik*ð Þ½ � =σT ik*ð Þ
with k* = 1 , 2 , . . . ,K*, can be created. This subsample
can be obtained by extracting values sampled every δ days
(temporal span), with δ long enough to limit the stochastic
dependence effect, however assuring a reliable sample length.
The subsample is subdivided into M classes, assigning to each
generic mth class the Nm values of y ik*ð Þ for which it holds

m−1ð Þ=M ≤ ikmodDð Þ=D < m=M m ¼ 1; 2; :::M ð6Þ

Indicated as μY , m and σ2
Y ;m the mean and the vari-

ance values of each class, it is possible to test the
hypotheses H0 , μ :μY , 1 =μY , 2 = . . . =μY ,M =μY and
H0;σ2 : σ

2
Y ;1 ¼ σ2

Y ;2 ¼ ::: ¼ σ2
Y ;M ¼ σ2

Y . The hypothes is

H0 , μ is tested through the statistics S2V , approximately

distributed according to a Fisher variance-ratio law v2(f1, f2).
The hypothesis H0;σ2 is tested through the Barlett’s test

(Snedecor and Cochran 1989) based on the statistics S2B
approximately distributed according to a χ2(f1) law. Both the
procedures are detailed in Appendix 1.

2.2 Gaussianization procedure

The Gaussianization procedure (e.g., Chen and Gopinath
2000; Hólm et al. 2002; Servidio et al. 2011) is a necessary
condition to respect the coherence of the linear stochastic
model. In this case, the sample values y(ik) of the random
variable Y have a null mean value, mY=0, and a unit variance,
s2Y ¼ 1, but generally show skewness (g1 , Y) and kurtosis
(g2 , Y) coefficients, which significantly differ from the theoret-
ical values expected for a Gaussian variable (γ1 , Y=0 and
γ2 , Y=3, respectively). In this case, it is possible to transform
the original variable, Y, into a standardized Gaussian variable,
Z= f(Y). For this purpose, the transformation functions intro-
duced by Johnson (1949) are well suited,

Z ¼ ηþ θln f :ð Þ
Y y;α;βð Þ

h i
ð7Þ

where −∞ <η< +∞, θ>0, −∞ <α< +∞, and β>0 are the

parameters of the transformation and f ⋅ð Þ
Y y;α;βð Þ can take

one of the following forms:

f Uð Þ
Y y;α; βð Þ ¼ y−αð Þ=β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y−αð Þ2=β2

q
−∞ < y < þ∞ ð8Þ

f Lð Þ
Y y;α;βð Þ ¼ y−αð Þ=β y > α ð9Þ

f Bð Þ
Y y;α;βð Þ ¼ y−αð Þ= αþ β−yð Þ α < y < αþ β ð10Þ

Specifically, Eqs. (8) and (10) are known as unbounded and
bounded Johnson transformations, respectively, while Eq. (9)
implies that the random variable y is distributed according to a
log-normal law with three parameters. The choice of the func-

tion f ⋅ð Þ
Y y;α;βð Þ to be adopted depends on the sample values

of the skewness coefficient, g1 , Y, and the kurtosis coefficient,
g2 , Y. In fact, given that

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g21;Y=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21;Y 1þ g21;Y=4

	 
r
3

s
ð11Þ

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g21;Y=2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21;Y 1þ g21;Y=4

	 
r
3

s
ð12Þ

G2 ¼ 6 R2
1 þ R2

2

� �þ g21;Y−8
	 


R1 þ R2ð Þ−2g21;Y þ 7 ð13Þ
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Equation (8) has to be used if g2 , Y >G2, Eq. (10) if
g2 , Y <G2, while Eq. (9) concerns only the special case
g2 , Y=G2.

The different techniques used for the estimation of
the transformation parameters are based on the method
of moments. In the proposed model, only the parameters
η and θ have to be effectively estimated, since α and β
are linked to the former through analytical expressions,
being μY= 0 and σ2

Y ¼ 1.
If the unbounded Johnson transformation must be

adopted, in order to estimate the parameters η and θ,
the following equation in the variable ω = exp (0/θ2)
has to be numerically resolved (Tuenter 2001):

ω−ω*½ � 2ωþ ω* þ 3½ � 2−4g21;Y ¼ 0 ð14Þ

where

ω* ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
ω2−

g2;Y þ 3

ω2 þ 2ωþ 3

� �s
−1

" #
ð15Þ

Otherwise, if the bounded Johnson transformation
must be applied, the parameter estimation is less simple.
In fact, for the estimation of the parameters η and θ, the
following non-linear system should be numerically re-
solved:

γ1;Y η; θð Þ ¼ g1;Y
γ2;Y η; θð Þ ¼ g2;Y

�
ð16Þ

in which also the values of the functions γ1 , Y(η, θ) and
γ2 , Y(η, θ) should be numerically evaluated.

Fig. 1 Localization of the temperature gauges on a DEM

Table 1 Gauges used for the
application Gauge Latitude Longitude Altitude (masl) Number of data Missing values (%)

Cosenza 39° 17′ 11″ 16° 15′ 55″ 242 20,694 5.6

Catanzaro 38° 54′ 39″ 16° 35′ 09″ 334 21,062 3.9

Crotone 39° 05′ 13″ 17° 07′ 52″ 5 20,433 6.8

Potenza 40° 38′ 12″ 15° 48′ 05″ 811 19,937 9.0

Villapiana Scalo 39° 47′ 42″ 17° 29′ 55″ 5 20,344 7.2
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2.3 Correlation structure

The sample data series z(ik) of the random variable Z,
obtained from the Johnson transformations applied to the
sample y(ik), usually shows a correlation structure charac-
terized by a marked persistence, with values of autocor-
relation coefficients slowly decreasing for growing lags.
Assuming that the zero mean process z(i) can be described
by a FARIMA (p,d,q) model, the following relationship
holds:

Φp Bð Þ 1−Bð Þdz ið Þ ¼ Ψq Bð Þε ið Þ ð17Þ

where B is the backward operator, Φp(B) is the p-order
polynomial of the autoregressive component, Ψq(B) is
the q-order polynomial of the mean average component,
ε(i) is a sequence of i.i.d. random variables with mean
zero, and d is the fractional order of differentiation. In
other terms, the FARIMA (p,d,q) model can be considered
as a composition between a fractional filter d and an
ARMA (p,q) process

1−Bð Þdz ið Þ ¼ u ið Þ ð18Þ

Φp Bð Þu ið Þ ¼ Ψq Bð Þε ið Þ ð19Þ

Equation (19) shows that the intermediate process u(i)
is an ARMA (p,q) process, which for Ψ0 = 1 is

u ið Þ ¼
Xp
kp¼1

φkpu i−kp
� �þXq

kq¼0

ψkqε i−kq
� � ð20Þ

By employing the series expansion of (1−B)d, Eq. (18) can
be described as

u ið Þ ¼ Γ d þ 1ð Þ
X∞
s¼0

−1ð Þs
Γ d−sþ 1ð Þs!z i−sð Þ ð21Þ

It is well known that the maximum likelihood estimation of
the variance-covariance matrix of a multivariate normal dis-
tribution is the sample variance-covariance matrix (Anderson
and Olkin 1985). By using a FARIMA model, the correlation
structure depends on the model parameters. Thus, through a
weighted least squares method, we find the best fitting of the
maximum likelihood estimation of the variance-covariance
matrix.

The estimation of the parameters d, φkp , and ψkq can be

obtained following a trial-and-error procedure. Through
Eq. (21), for each assigned value of the parameter d, it is
possible to transform the sample z(ik) in a sample u(ik), which
can be considered as a realization of the ARMA (p,q) process.
Thus, once the sample autocorrelation values rU , λ(d) of u(ik)
for λ=1 , . . . ,p+q are evaluated, the estimated values

φ̂1 dð Þ; :::; φ̂p dð Þ, ψ̂ 1 dð Þ;…; ψ̂ q dð Þ can be obtained, by con-

sidering

ρU ;λ φ̂1 dð Þ; :::; φ̂p dð Þ; ψ̂ 1 dð Þ; :::; ψ̂ q dð Þ
h i

¼ rU ;λ dð Þ λ ¼ 1; :::; pþ q

ð22Þ

where ρU , λ are the theoretical autocorrelation values of the
ARMA (p,q) process.

Table 2 Identification of the number of harmonics for the Cosenza gauge

nh , μ
S2V v20:95

H0 , μ nh;σ2 S2B χ2
0:95

H0;σ2

1 5.72 1.79 Rejected 1 20.6 19.7 Rejected
1 5.86 1.79 Rejected 2 8.1 19.7 Not rejected
2 0.73 1.79 Not rejected 1 21.3 19.7 Rejected
2 0.72 1.79 Not rejected 2 8.8 19.7 Not rejected

Table 3 Coefficients of the truncated Fourier expansions for the mean and the variance functions

Gauge
n̂h;μ âμ;0=2 âμ;1 b̂μ;1 âμ;2 b̂μ;2 n̂h;σ2 âσ2 ;0=2 âσ2 ;1 b̂σ2 ;1 âσ2;2 b̂σ2 ;2

Cosenza 2 21.61 −9.34 −4.29 0.11 1.07 2 16.10 −0.82 2.81 −1.79 −1.17
Catanzaro 2 19.67 −7.70 −4.37 0.18 0.81 1 8.97 −1.62 1.67 – –

Crotone 2 21.56 −8.20 −4.07 0.38 0.83 1 10.02 −0.78 −0.23 – –

Potenza 2 16.92 −9.58 −4.23 0.16 0.84 2 16.53 0.09 3.14 −2.37 −0.27
Villapiana S. 2 21.82 −8.12 −4.13 0.41 0.98 1 8.83 −0.22 0.67 – –
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The actual value d̂ of d can be estimated by minimizing the
weighted mean square deviation

S2ρ ¼
X
l¼1

Nr

ωl rZ;l−ρZ;l φ̂1 dð Þ; :::; φ̂p dð Þ; ψ̂ 1 dð Þ; :::; ψ̂ q dð Þ; d
h in o2 ð23Þ

where rZ , l are the sample correlogram values derived by the
sample z(ik); ρZ , l are the theoretical autocorrelation values of
the FARIMA (p,d,q) model; Nr is the maximum lag to which
the calculation for the deviation can be extended; and ωl, with

l=1 , . . . ,Nr and ∑Nr
l¼1ωl ¼ 1, are the weighting coefficients

which allow to distribute the quality of the data fit at varying
of the lag l.

The estimated values p̂ and q̂ must be fixed by respecting
the principle of parametric parsimony (Box and Jenkins
1976). Akaike (1974) suggests a mathematical formulation
of the parsimony criterion of model building, known as
Akaike information criterion (AIC), for the purpose of
selecting an optimal model fits to a given data. In this work,
the Akaike information criterion in the correct form (AICc)
has been used (Sugiura 1978; Burnham and Anderson 2002).
The model showing the minimum value of the AICc can be
considered as the one which better matches both the fitting to

the observed data and the principle of parametric parsimony.
Before applying the AIC criterion, it has been verified that the
residuals were white noise through the application of the
Anderson-Darling test (Anderson and Darling 1952).

3 Application

3.1 Database

The proposed stochastic model has been applied to the max-
imum daily temperatures, T(i) =Tmax(i), of the Cosenza gauge
and verified on other four southern Italian gauges, managed
by the Centro Funzionale Multirischi of the Calabria region
(Fig. 1). The gauges are located in an area characterized by
high climatic variability due to its geographic location and
mountainous nature (Coscarelli and Caloiero 2012).
Summers are typically dry, denoting a subtropical
Mediterranean climate. The coastal areas present mild winters
and hot summers with little precipitation. The Ionian side,
influenced by air masses coming from Africa, records high
temperatures and intense precipitation; on the Tyrrhenian side,

Fig. 2 Cosenza gauge: a
comparison between the observed
mT(i) and the estimated μT(i)
functions of the mean, averaged
for each day of the year, and b
comparison between the sampling
sT(i) and the estimated σT(i)
functions of the standard
deviation, averaged for each day
of the year
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influenced by western air currents, milder temperatures and
considerable orographic precipitation are observed. The inter-
nal areas are characterized by colder winters, sometimes
snowy, and fresher summers with some precipitation (Ferrari
et al. 2013; Buttafuoco et al. 2015; Caloiero et al. 2015a).

The main features of the selected gauges are presented in
Table 1. The gauges are located at different altitudes, namely,
from a few meters to about 800 m above sea level (a.s.l.).

Moreover, considering an observation period spanning from
1951 to 2010, the temperature gauges have less than 9 %
missing days. Previous regional studies on the temperature
data series of Calabria region (Caloiero et al. 2015b, c) did
not show significant trends in maximum temperature data for
the gauges used in this study. As a further analysis, in this
study, the Mann-Kendall test (Mann 1945; Kendall 1962)
has been applied to investigate the existence of monotonic

Fig. 3 Catanzaro gauge: a
comparison between the observed
mT(i) and the estimated μT(i)
functions of the mean, averaged
for each day of the year, and b
comparison between the sampling
sT(i) and the estimated σT(i)
functions of the standard
deviation, averaged for each day
of the year

Fig. 4 Comparison among the
autocorrelation values of the
observed and the deseasonalized
data (one and two harmonics) for
a lag range centered to 365 days
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trend in maximum daily temperature, as suggested also by
Prass et al. (2012). Results confirmed that no statistical signif-
icant trends exist for the selected gauges.

3.2 Parameter estimation

The absence of trends in the data series considered in this
study allows the use of Eqs. (2) and (3). Since the series of
the maximum daily temperature, tmax(ik), show some missing
data, the estimation of the coefficients of the truncated Fourier
expansion referred to the mean, μT(i), and to the variance
functions, σ2

T ið Þ, has been performed by minimizing Eqs. (4)
and (5).

With reference to the Cosenza gauge, Table 2 shows the
results of the tests used for the identification of the minimum
number of harmonics of the Fourier expansion, for which both
the hypotheses H0;σ2 and H0 , μ cannot be rejected (significant
level = 0.05). The tests employed data sampled every 8 days
(δ = 8) and indicated that two harmonics are required for both
the mean and the variance functions in order to remove the
periodicity in the first- and second-order statistics of the ob-
served series. The results of the same tests applied also to the
other gauges confirm that two harmonics are needed for all the
stations to remove the periodicity in the mean function
(Table 3). Moreover, differently from the Cosenza gauge, for
three series, the periodicity of the variance function can be

Table 4 Parameter estimation of the Johnson transformation

Gauge g1 , Y g2 , Y Distribution type
α̂ β̂ η̂ θ̂

Cosenza 0.086 3.177 Unbounded −0.701 4.895 −0.706 5.042

Catanzaro 0.176 3.596 Unbounded −0.451 2.738 −0.455 2.941

Crotone −0.067 3.293 Unbounded 0.324 3.783 0.325 3.923

Potenza −0.128 2.864 Bounded −7.806 13.57 −1.006 3.244

Villapiana Scalo −0.060 3.470 Unbounded 0.182 3.007 0.183 3.168

Fig. 5 Comparison between
observed values and theoretical
cumulative distribution function
of the Z variable for two gauges
(Cosenza and Villapiana Scalo)
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removedwith only one harmonic. In Table 3, for each station, the
estimated values of the coefficients of the truncated Fourier ex-
pansion for themean and the variance functions are also reported.
Figure 2 shows, for theCosenza gauge, the comparisons between
sample and estimated values of the mean and the standard devi-
ation functions, respectively. In particular, the estimated values
have been obtained for zero, one, and two harmonics for each
day of the year. The same comparisons are shown for the
Catanzaro gauge in Fig. 3. In Fig. 4, the comparison among the
ACFs of the observed and the deseasonalized values (for a lag
range centered to 365 days) is shown.

The Gaussianization procedure applied to the deseasonalized
data series of Cosenza, y ikð Þ ¼ tmax ikð Þ−μ̂T ikð Þ½ � =σ̂T ikð Þ, was
performed through the unbounded version of the Johnson trans-
formations. Operatively, the parameters η and θ of the Johnson
transformation have been estimated by numerically solving
Eq. (14), thus allowing also the estimation of the derived param-
eters α and β (Table 4). The application to the other gauges
evidenced that only the data series of the Potenza gauge has been
transformed into a Gaussian process by means of the bounded
function, thus requiring the numerical solution of the non-linear
system (Eq. (16)). For all the gauges, Table 4 presents the sample
values of the skewness and the kurtosis coefficients of the y(ik)
series (g1 , Y,g2 , Y) and the set of the estimated values of the

Johnson transformation parameters α̂; β̂; η̂; θ̂
� �

.
The achievement of the Gaussian feature of the series z(ik)

is evidenced by the comparison of the sampling values with
the theoretical values of the standard normal variable on prob-
abilistic plot, as shown for the Cosenza and the Villapiana
gauges in Fig. 5.

The identification of the FARIMA (p,d,q) process
aimed at describing the correlation structure of the
Gaussian series. Specifically, the procedure, based on the
AICc index, identified the orders p̂ and q̂, which better
fitted the observed data and preserved the parametrical
parsimony criterion. The results of this procedure for the
Cosenza gauge are presented in Table 5. Namely, for in-
creasing values of the orders p and q, the differential
fractional order, d, was identified by minimizing the

weighted mean square function, S2ρ (Eq. (23)). In this equa-
tion, a maximum lag Nr = 50 has been fixed, and the

weighting coefficients, ω j ¼ ω*
j=∑ω

*
j , j=1 , 2 , . . . ,Nr with

ω*
j ¼ 1− j−1ð Þ½ =Nr� c and c = 1/2, have been adopted. The

final results for all the gauges are summarized in Table 6.

Globally, for three stations, a FARIMA (1, d̂ ,0) model was

identified, while for the other two stations, a FARIMA (1, d̂ ,1)
model was detected. The comparisons between sampling and
theoretical correlograms evidenced the ability of the proposed
FARIMA model to reproduce the long-term memory (Fig. 6).

3.3 Analysis of maximum daily temperatures

The proposed model, through the application of a Monte
Carlo simulation procedure (Appendix 2), can be useful
for assessing various features of the temperature database.
Specifically, the synthetic world simulation concerned
105 years, corresponding to a total generation of about
Ls = 4 × 107 values.

Table 5 Identification of the FARIMA model for the Cosenza gauge

FARIMA (p,d,q) ν
d̂ φ̂1 ψ̂ 1

φ̂2 ψ̂ 2 S2ρ
AICc

(0,d,0) 1 0.356 – – – – 0.00798 −239.4
(0,d,1) 2 0.295 – 0.488 – – 0.00141 −323.9
(1,d,0) 2 0.244 0.446 – – – 0.000344 −394.5
(0,d,2) 3 0.269 – 0.427 – 0.206 0.000465 −377.2
(2,d,0) 3 0.245 0.448 – –0.0076 – 0.000341 −392.6
(1,d,1) 3 0.244 0.432 0.042 – – 0.000338 −393.2

Table 6 Identification of the FARIMA models for the all gauges used in the application

Gauge FARIMA (p,d,q) ν
d̂ φ̂1 ψ̂ 1

AICc

Cosenza (1,d,0) 2 0.244 0.446 – −394.5
Catanzaro (1,d,0) 2 0.223 0.430 – −407.7
Crotone (1,d,1) 3 0.342 0.265 0.042 −332.4
Potenza (1,d,1) 3 0.113 0.586 0.124 −490.7
Villapiana Scalo (1,d,0) 2 0.236 0.417 – −424.8
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In this study, first, the proposed model has permitted the
estimation of the probability FW(τ)[w(τ)] =P[W(τ)≤w(τ)] of
the annual maximum of the sequences of days, W(τ), with
maximum daily temperature over a threshold, τ. Figure 7
shows, on a probabilistic Gumbel graph, the return periods
TW(τ) of the random variable W(τ), defined as TW(τ) = 1/{1
−FW(τ)[w(τ)]}, corresponding to different threshold values

for the Cosenza station (altitude 242 m a.s.l.). In particular,
for increasing threshold values, high return periods can be
reached also for short-day sequences. As an example,
considering the threshold τ = 40°, the values of W(τ) shift
from 2 to 5 days for return periods ranging from 10 to
100 years. Differently, for higher-elevation gauges, such
as Potenza (811 m a.s.l.), the same range of values is

Fig. 7 Return periods TW(τ) of the
variable W(τ) for different values
of the threshold τ for the Cosenza
and Potenza gauges (red linear
tendency lines)

Fig. 6 Comparison between
sampling and theoretical
autocorrelations values for
Cosenza gauge
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observed for a lower threshold value of temperature
(about 35°). This behavior can be clearly connected to
the influence of the gauge altitude on the variable W(τ).

As a further application, the probability values pIW τð Þ iW τð Þ
� �

¼ P IW τð Þ ¼ iW τð Þ
� 

that such exceedances start in a specified

day, iw, were also evaluated. The probability values pIW τð Þ

iW τð Þ
� �

of the yearly temporal occurrence IW(τ) of W(τ) are
shown in Fig. 8 for various threshold values always for the
Cosenza gauge. The maximum probability values have been
detected in summer around the 210th day of the year.

Fig. 9 Return periods TW(κ) of
the variable W(κ) for different
values of κ for the Cosenza and
Crotone gauges (red linear
tendency lines)

Fig. 8 Probability values pIW(τ)

of the temporal occurrence in the
year IW(τ) for different threshold
values of temperature for the
Cosenza gauge
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Finally, the probability valuesFW(κ)[w(κ)] =P[W(κ)≤w(κ)],
associated to the annual maximum of sequences of days
W(κ), with maximum daily temperature greater their ex-
pected value μT(i) plus κ-times the standard deviation,
have been estimated. The return periods TW(κ) of the var-
iable W(κ), for different values of parameter κ, are pre-
sented in Fig. 9 for the Cosenza and the Crotone gauges.
As a result, for fixed values of the return period and the
parameter κ, the annual maxima values W(κ) were greater
for the Crotone gauge than for the Cosenza gauge. In
particular, this behavior was more evident for the lower
threshold values. For example, the W(κ) values obtained
for κ = 0, which corresponds to a return period
TW(κ) = 100 years, were 53 days for Cosenza and 80 days
for Crotone, respectively.

4 Conclusion

In this paper, a stochastic model developed to simulate daily
maximum temperature series, coherently with observed
time series, is proposed. The model was based on three
different steps. The first step was data deseasonalization,
obtained by means of a truncated Fourier series expansion.
Subsequently, a normalization technique was performed
through the Johnson transformation. Finally, a FARIMA
model was applied for the analysis of the correlation struc-
ture of the normalized data, characterized by a marked per-
sistence. The procedure has been first applied to the
Cosenza gauge and then tested to a set of maximum temper-
ature series registered in four gauges located in southern
Italy. The model satisfactorily reproduced the long-term
memory of the temperature series, also allowing the para-
metric parsimony criterion.

Moreover, through the application of a Monte Carlo
simulation procedure, the proposed model allowed the
evaluation of various features of the temperature data-
base. First, the empirical probability distribution of the
annual maximum of the sequences of days, with maxi-
mum daily temperature over fixed thresholds, has been
obtained. Results showed high return periods also for
short-day sequences at increasing threshold values.
Successively, the probability values that such sequences
can start in a specified day have been also evaluated,
showing that the highest occurrence probabilities fall in
summer periods. Finally, the return period values associ-
ated to annual maximum of sequences of days, charac-
terized by maximum daily temperature greater than their
expected value plus κ-times the standard deviation, have
been obtained.

An important criterion for stochastic modeling is the
reproducibility of the statistical characteristics of observed
data (Lee 2015). Effectively, the proposed model allowed

the prediction of the statistical properties of temperatures,
with few data required as input. Moreover, the stochastic
model, not depending on station altitude and climatic
zone, had the advantage of being applicable in a certain
area, aiming to estimate occurrence probabilities and re-
turn periods associated with high-temperature events at
any day of the year and/or at any gauge. This ability to
extrapolate findings is particularly important when seek-
ing to determine the risks of extremely rare events. For
these reasons, the model is an attractive tool for manage-
ment decision-making, and its basic structure can easily
be applied to larger areas with spatially differentiated
data.
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Appendix 1: Estimation of the number of harmonics

The hypothesis,H0 , μ : μY, 1 =μY, 2 = … =μY,M=μY, can be
verified by using the statistics

S2V ¼ s″
2
Y=s

02
Y ðA1Þ

with

s
02
Y ¼ 1

K*−M

XM
m¼1

Nm−1ð Þs2Y ;m ðA2Þ

s″
2
Y ¼ 1

M−1

XM
m¼1

Nm mY ;m−mY
� �2 ðA3Þ

where s2Y ;m is the sample variance of the data referred to the

mth class, mY,m is the sample mean of the data referred to the
mth class, and mY is the mean of the whole sample y ik*ð Þ. The
statistics S2V is approximately distributed according to a Fisher
variance-ratio law v2(f1, f2) with f1 =M−1 and f2=K*−M de-
grees of freedom. For a significance level αSL, the null hy-

pothesis cannot be refused if S2V < v21−αSL
f 1; f 2ð Þ, where

v21−αSL
f 1; f 2ð Þ is the 1−αSL percentile of the ν

2 distribution.

The hypothesis H0;σ2 : σ2
Y ;1 ¼ σ2

Y ;2 ¼ … ¼ σ2
Y ;M ¼ σ2

Y

can be verified through the Bartlett’s test (Snedecor and
Cochran 1989), based on the statistics

S2B ¼ 1

cB
K*−Mð Þlns02Y−

XM
m¼1

Nm−1ð Þlns2Y ;m
" #

ðA4Þ
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where

cB ¼ 1−
1

3 M−1ð Þ
1

K*−M
−
XM
m¼1

1

Nm−1

 !
ðA5Þ

The statistics S2B is approximately distributed accord-
ing to a χ2(f1) law, with f1 =M− 1 degree of freedom.
With a significance level equal to αSL, the hypothesis

cannot be rejected if S2B < χ2
1−αSL

f 1ð Þ, where χ2
1−αSL

f 1ð Þ is

the 1−αSL percentile of the χ
2distribution.

The smallest values of nh , μ and nh;σ2 , for which both the
hypothesesH0 , μ andH0;σ2 cannot be rejected, detect the num-
ber of harmonics n̂h;μ and n̂h;σ2 to be used in the truncated

Fourier expansion for the functions μT(i) and σ2
T ið Þ.

Appendix 2: Monte Carlo procedure

The Monte Carlo simulation procedure, used in this work to
generate the daily maximum temperature tmax (i) series, can be
schematized as follows:

1. By using L’Ecuyer random generator, a sequence υ(i),
with i=1 , 2 , . . . ,Ls, of random number uniformly dis-
tributed on the interval (0,1) is created.

2. The sequence υ(i) is transformed into a sequence ε(i) of
random numbers, distributed according to a normal law,
with zero mean and variance σ2ε , through the Box and
Müller technique.

3. According to an ARMA p̂; q̂ð Þ model, initialized with
u(i) =0 and ε(i) = 0 for i ≤ 0, a sequence of numbers is
generated,

u ið Þ ¼
Xp̂
kp¼1

φ̂kp
u i−kp
� �þXq̂

kq¼0

ψ̂kqε i−kq
� �

i ¼ 1; 2; :::;Ls
ðB1Þ

4. By using the series development of the 1−Bð Þ−d̂ operator,
the sequence u(i) is transformed into a number sequence

z(i) corresponding to the FARIMA p̂; d̂ ; q̂Þ�
model with

zero mean and unit variance

z ið Þ ¼ 1

Γ d̂
	 
X

s¼0

smax Γ d̂ þ s
	 


s!
u i−sð Þ i ¼ smax þ 1; :::;Ls ðB2Þ

where

smax is fixed so that Γ d̂ þ smax þ 1
� �

= smax þ 1ð Þ !

< ξ∑smax
s¼0Γ d þ sð Þ=s!, with ξ=10−4.

The value of the variance σ2ε is fixed in order to obtain

σ2
Z ¼ 1. If a FARIMA 1; d̂ ; 0Þ�

model is employed, the

value for σ2ε is

σ2
ε ¼

Γ 2 1−d̂
	 


Γ 1−2d̂
	 
 ⋅ 1þ φ̂1

2F1 1; 1þ d̂ ; 1−d̂ ; φ̂1

	 
 ðB3Þ

where Γ (.) and 2F1(.) indicate the complete gamma
function and the hypergeometric function, respectively.

5. The sequence z(i) = smax+1 , . . . ,Ls is transformed into
the sequence y(i) = smax+1 , . . . ,Ls, by using the inverse
function of the unbounded Johnson transformation

y ið Þ ¼ α̂þ β̂ sinh
z ið Þ−η̂
θ̂

" #
i ¼ smax þ 1; :::;Ls ðB4Þ

or the inverse function of the bounded Johnson transformation

y ið Þ ¼
α̂þ α̂þ β̂

	 

exp

z ið Þ−η̂
θ̂

" #

1þ exp
z ið Þ−η̂
θ̂

" # i ¼ smax þ 1; :::; Ls ðB5Þ

6. The sequence of daily maximum temperature tmax(i) = s-
max +1 , . . . ,Ls is obtained as

tmax ið Þ ¼ μT ið Þ þ σT ið Þy ið Þ i ¼ smax þ 1; :::;Ls ðB6Þ
where

μT ið Þ ¼ 1

2
âμ;0 þ

X
j¼1

nh;μ

âμ; jcos
2π j
D

i
� �

þ b̂μ; jsin
2π j
D

i
� �� �

ðB7Þ

σT ið Þ ¼ 1

2
âσ2;0 þ

X
j¼1

nh;σ2

âσ2; jcos
2π j
D

i
� �

þ b̂σ2; jsin
2π j
D

i
� �� �( )1=2

ðB8Þ
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