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Abstract Water shortage and climate change are the most
important issues of sustainable agricultural and water re-
sources development. Given the importance of water avail-
ability in crop production, the present study focused on risk
assessment of climate change impact on agricultural water
requirement in southwest of Iran, under two emission scenar-
ios (A2 and B1) for the future period (2025–2054). A multi-
model ensemble framework based on mean observed
temperature-precipitation (MOTP) method and a combined
probabilistic approach Long Ashton Research Station-
Weather Generator (LARS-WG) and change factor (CF) have
been used for downscaling to manage the uncertainty of out-
puts of 14 general circulation models (GCMs). The results
showed an increasing temperature in all months and irregular
changes of precipitation (either increasing or decreasing) in
the future period. In addition, the results of the calculated
annual net water requirement for all crops affected by climate
change indicated an increase between 4 and 10 %.
Furthermore, an increasing process is also expected regarding
to the required water demand volume. The most and the least
expected increase in the water demand volume is about 13 and
5 % for A2 and B1 scenarios, respectively. Considering the
results and the limited water resources in the study area, it is

crucial to provide water resources planning in order to reduce
the negative effects of climate change. Therefore, the adapta-
tion scenarios with the climate change related to crop pattern
and water consumption should be taken into account.

1 Introduction

In recent years, changes in precipitation, temperature, and
evaporation, which are key climatic variables, have had sig-
nificant negative effects on agriculture due to climate change
and global warming. Among the various water consumers,
agriculture is very vulnerable to effects of climate change.
Growing population, increasing demand, and diet change in-
crease freshwater consumption in the future through irrigation
agriculture to produce more food (Foley et al. 2011; UNESCO
2012; Wada and Bierkens 2014). Although, developing irri-
gation to increase food production has serious effects on the
environment because of the limited freshwater availability
(Reilly and Schimmelpfennig 1999). According to the Food
and Agriculture Organization of the United Nations (FAO)
(1999) and Postel (1999), the irrigated areas have increased
as much as six times over the word. Similarly, 40 % of the
world’s food is produced from irrigated farms. On the other
hand, the irrigated area has expanded 1 % per year, and based
on Cai and Rosegrant (2002), the demand for irrigation will be
increased almost 14 % by 2025. In dealing with areas with
limited water resources area, decline in food productions has a
direct effect on human life and increases poverty in the local
scale (Olesen and Bindi 2002). Accordingly, increasing water
security is very crucial in such areas, which is one of the
sufficient ways of water management and sustainable devel-
opment. In order to develop water management policies and
sustainability of agriculture, it is essential to assess the impacts
of climate change on agricultural water requirement.
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Recently, many investigations have been carried out in this
sector (Garrote et al. 2015; Multsch et al. 2015 and Riediger
et al. 2016). A study by Elgaali et al. (2007) showed climate
change effects on irrigation water demand in southeastern
Colorado. They found an increase in irrigation water demands
under climate change. Rodríguez Díaz et al. (2007) studied the
climate change impact on water requirement in Guadalquivir
river basin in Spain. According to their report, there was a 15–
20 % increase in irrigation water requirement in 2050. Using
the decision support system for agro-technology transfer
(DSSAT)-Canegro model, Knox et al. (2010) reported that
climate change in the 2050s could increase sugarcane irriga-
tion water requirements in Swaziland more than 9 %, and
sucrose yields about 15 %. A study by Trnka et al. (2011)
showed that there will be increased irrigation requirement
due to climate change in the Central Mediterranean and the
Iberian Peninsula for both winter and spring crops. Shahid
(2011) analyzed the impacts of climate change on irrigation
water demand of dry-season Boro rice in northwest
Bangladesh. The results indicated that there will be no signif-
icant changes in total irrigation water requirement under cli-
mate change, while there will be an increased daily use of
water for irrigation. Savé et al. (2012) studied irrigation water
demand under climate change in a Spanish basin. They report-
ed an increased irrigation water requirement related to the crop
pattern in the study area between 40 and 250 % at the end of
the twenty-first century. Also, Gondim et al. (2012) reported
future increase in irrigation water requirement under climate
change in the Jaguaribe River basin, Brazil. In addition,
Rehana and Mujumdar (2013) reported an increased irrigation
requirement by investigating the regional impacts of climate
change on irrigation water demands for paddy, sugarcane,
permanent gardens, and semidry crops over the command
area of Bhadra reservoir, India. Elliott et al. (2014) found that
the CO2 effects on crop growth and transpiration are a
significant source of uncertainty for the assessment of
climate change impacts on crop yields. In another study, Lee
and Huang (2014) studied changes in irrigation demand under
climate change for the future period (2046–2065) and com-
pared the results to the base period (2004–2011) in north of
Taiwan. They reported some increases in temperature and pre-
cipitation, which consequently led to changes in effective rain-
fall and crop requirement. Their study suggested an insignif-
icant difference (<2.5 %) between current and future irrigation
water requirements. Ashofteh et al. (2014) investigated the
effects of climate change on agricultural water demand by
considering risk analysis in East Azerbaijan, Iran. The results
of this study indicated that risk of changes in crop water re-
quirement increased approximately 3, 17, and 33% for 25, 50,
and 75 % risk levels, respectively. Valverde et al. (2015) ex-
amined the effects of climate change on irrigated agriculture in
Guadiana river basin, in the south of Portugal. The results
showed that there was an increase in crop irrigation

requirement, particularly for maize, pasture, and orchards.
Woznicki et al. (2015) studied irrigation demand under cli-
mate change by considering uncertainty and developing adap-
tation scenario in Kalamazoo River basin, southwest
Michigan, USA. The results indicated an uncertainty in irri-
gation water requirement; also, a decrease in demand has been
reported as a result of the delayed planting.

In addition to the importance of the climate change impacts
on water resources and agriculture, it is essential to consider
the uncertainty existing in this field. In the studies of the cli-
mate change, the general circulation model (GCM) output is a
major source of uncertainty (Hawkins and Sutton 2009).
Among the reasons behind this uncertainty, one can mention
the lack of adequate knowledge in climate systems and com-
putational limits in simulation of physical processes on small
scales (Williams and Tselioudis 2007; Knutti and Hegerl 2008;
Greasby and Sain 2011). In using the GCM output in the re-
lated studies, there are two general approaches including single
GCMs (Jones and Thornton 2003; Guo et al. 2010; Teixeira
et al. 2013; Ahmadi et al. 2015) and multi-model projection
(Özdoğan 2011; Gohari et al. 2014). According to Lee et al.
(2011) and Gohari et al. (2013), the first approach may cause
an error in the estimation of climatic parameters. On the other
hand, combined use of several climatic models helps to esti-
mate a more reliable range of climate changes (Kloster et al.
2010). Accordingly, a multi-model ensemble of GCM outputs
has been used in a large number of studies related to the effects
of climate change on water resources and agriculture (e.g.,
Raje and Mujumdar 2010; Joyce et al. 2011; Zareian et al.
2014). Weighting method is one of the multi-model ap-
proaches that used to manage the uncertainty of GCM output
(Tebaldi and Knutti 2007; Daccache et al. 2011). One type of
weighting methods is the one based on the performance of the
models in simulation of observed climatic parameters (Greene
et al. 2006; Cai et al. 2009; Lee andWang 2014), which is also
based on a risk approach in this study.

In the present study, the effects of climate change on agri-
cultural water requirement of network irrigation have been
analyzed in Ramhormoz plain. A risk framework is used
based on a multi-model ensemble of GCM output for a more
sufficient management and better structuring of uncertainties.
In this study, the full applied methodology covers two main
stages: (a) risk assessment of climate change and (b) agricul-
tural water demand calculation. The first stage includes (i)
production of climate scenarios using 14 GCMs under two
emission scenarios of A2 and B1; (ii) use of mean observed
temperature-precipitation (MOTP) method for weighting
GCMs, generation of discrete probability distribution func-
tions (PDFs), developing cumulative distribution functions
(CDFs), and then extracting probability percentiles (25, 50,
and 75 %); and (iii) stochastic downscaling by using com-
bined Long Ashton Research Station-Weather Generator
(LARS-WG) and change factor (CF).
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2 Material and methods

2.1 Case study

The study area is the irrigation network of Ramhormoz plain,
which is about 22,470 ha located in southwest of Iran. In this
plain, the average annual precipitation is about 310 mm, and
the average annual temperature is about 26 °C. Recently, the
Jarreh reservoir, with 261-MCM volume, has been construct-
ed in outlet of Zard river basin to provide the agricultural
water requirement in this plain. Zard river basin has an eleva-
tion of 324 to 3295 m above sea level, the length of main
channel is about 70 km, and average slope is about 3 %.
Agriculture is considered as a major and important job in the
study area. The main crop pattern of this plain is wheat, corn,
barley, and alfalfa. The crop pattern of plants and their area
under cultivation are shown in Table 1, and Fig. 1 shows the
location of the study area in Iran.

2.2 Assessment of climate change

2.2.1 Production of climate scenarios

As prominent models for simulating the effects of increasing
greenhouse gas concentration on global climate system,
GCMs are mathematical models that attempt to describe the
full three-dimensional geometry of Earth’s climate system.
Table 2 describes 14 GCMs in detail, which are employed in
this study under two emission scenarios (A2 and B1), extract-
ed from the Fourth Assessment Report (AR4) of
Intergovernmental Panel on Climate Change (IPCC).
Describing a very heterogeneous world, A2 storyline and sce-
nario assume a world with a continuously increasing global
population and a regionally oriented economic growth that is
more fragmented and slower than the other emission

scenarios. The B1 storyline and scenario assume a convergent
world with a global population that reaches to a peak in mid-
century and thereafter declines. It assumes rapid changes in
structures of economic toward a service and information
economy with reductions in intensity of material and the
introduction of clean and resource-efficient technologies
(IPCC 2007).

2.2.2 MOTP method and probabilistic assessment

In this step, after extracting monthly climatic variables from
GCMs under A2 and B1 scenarios, difference and relativity of
long-term monthly average values of temperature and precip-
itation for the base period (1971–2000) were compared with
the future period (2025–2054) using the following structure:

ΔTi ¼ �TGCM ; f uti −�TGCM ;basei

� � ð1Þ

ΔPi ¼ P−GCM ; futi

P−GCM ;basei
Þ

�
ð2Þ

where ΔTi and ΔPi are average long-term monthly tempera-
ture and precipitation change for ith month, respectively.
T−GCM ; futi and P−GCM ;futi are average long-term monthly tem-
perature and precipitation for ith month, simulated by GCM
under related scenario in future period, respectively.
T−GCM ;basei and P

−
GCM ;basei represent average long-term month-

ly temperature and precipitation for ith month, simulated by
GCM in baseline period, respectively. This approach has been
applied by Wilby and Harris (2006), Morid and Bavani
(2010), and Zareian et al. (2014).

In the next step, to weigh each of the 14 GCMs, mean
observed temperature–precipitation (MOTP) method is used
based on Eq. (3). The most important feature of this method is
considering the ability of the models to simulate the observed
climate variables, i.e., the difference between the simulated
long-term variables in each month in the baseline period and
the corresponding observed values.

Wij ¼
1

Δdij

� �

X14
j¼1

1

Δdij

� � ð3Þ

whereWij is the weight of j
th GCM in ith month andΔdij is the

difference between average temperature or precipitation sim-
ulated by jth GCM in ith month of base period and the corre-
sponding observed value (Gohari et al. 2013).

In the following, monthly temperatures and relative chang-
es of precipitation with the weights of corresponding GCMs
were used to construction of PDFs for each month. Based on
the prototype of discrete PDFs and similar studies (Pindyck
2012; Teutschbein and Seibert 2012; Gohari et al. 2013),

Table 1 Crop pattern and area under cultivation of each crop in the
Ramhormoz network irrigation

Crop Area under
cultivation (%)

Area under
cultivation (ha)

Wheat 26.88 5752.32

Barley 15.53 3323.42

Corn 15.44 3304.16

Alfalfa 8.74 1870.36

Clover 9.37 2005.18

Bean 8 1712

Other cropsa 21.04 4502.56

Total 105 22,470

aOther crops according to the percent of total cultivation area include rice,
soybean, watermelon, vegetable, cotton, sesame, citrus, and date,
respectively
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Gamma distribution with two parameters has been chosen to
construct continuous distributions as follows:

f xð Þ ¼ 1

Γ kð Þbk x
k−1e −x=b; x≥0 ð4Þ

Γ kð Þ ¼
Z∞

0

xk−1e−xdx ð5Þ

where x is the variable, k and b are shape and scale parameters,
and Γ(k) equals the incomplete Gamma function. It should be
mentioned that the values of k and b are changed to get the
best fit based on the maximum likelihood estimation method
using sum of squared error (SSE), which functions as follows:

SSE ¼
Xn
i¼1

yi−y
*
i

� �2 ð6Þ
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Fig. 1 Location of the study area in Iran

Table 2 Description of the
GCMs from IPCC’s Fourth
Assessment Report (AR4)

Model Center acronym Resolution (degree) Reference

BCM2 BCCR (Norway) 1.9 × 1.9 Déqué et al. (1994)

CGCM3 (T63) CCCma (Canada) 1.9 × 1.9 McFarlane et al. (1992); Flato (2005)

CNRM-CM3 CNRM (France) 1.9 × 1.9 Déqué et al. (1994)

CSIRO-MK3 CSIRO (Australia) 1.9 × 1.9 Gordon et al. (2002)

ECHAM5-OM MPI-M (Germany) 1.9 × 1.9 Roeckner et al. (2003)

ECHO-G MIUB (Germany) 3.9 × 3.9 Roeckner et al. (1996)

GFDL-CM2 GFDL (USA) 2 × 2.5 Delworth et al. (2006)

GISS-E-R GISS (USA) 4 × 5 Schmidt et al. (2006)

HadCM3 UKMO (UK) 2.5 × 3.75 Gordon et al. (2000)

INM-CM3 INM (Russia) 4 × 5 Galin et al. (2003)

IPSL-CM4 IPSL (France) 2.5 × 3.75 Hourdin et al. (2006)

MRI-CGCM2.3.2 MRI (Japan) 2.8 × 2.8 Shibata et al. (1999)

CCSM3 NCAR (USA) 1.4 × 1.4 Collins et al. (2006)

PCM NCAR (USA) 2.8 × 2.8 Kiehl et al. (1998)
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where yi is the data point, yi
* is the estimation of gamma

function, and n is the number of data points.
Accordingly, the developed discrete PDFs are used to

construction of CDFs. More details about this method can
be found in Gohari et al. (2013). In the next step, three
different probabilistic scenarios are produced at three dif-
ferent percentiles (25, 50, and 75 %). The probability
percentile represents low changes in temperature called
Bideal scenario (IS)^ and high changes in temperature
called Bcritical scenario (CS),^ and the probability percen-
tile represents moderate changes in temperature called
Bmoderate scenario (MS).^

2.2.3 Stochastic downscaling

As a downscaling technique, stochastic weather generator
(WG) is used to produce daily site-specific climate sce-
narios (Barrow and Semenov 1995; Semenov 2007).

These models are able to simulate synthetic time series
of daily weather, which are statistically similar to ob-
served weather (Richardson and Wright 1984 and
Semenov 2007). In the present study, daily time series
has been generated by LARS-WG (Semenov and Barrow
2002) from monthly climate change scenarios and histor-
ical daily climate data. The best distribution function for
the observed daily time series for baseline period (1971–
2000) has been selected, and then, synthetic future (2025–
2054) daily time series are have been generated by LARS-
WG based on the extracted climate change scenarios for
25, 50, and 75 % probability percentiles under A2 and B1
emission scenarios. As well as, the model was run to
generate 300 years of future daily time series for each
climate change probability percentile so as to deal with
uncertainty in the outputs of LARS-WG. Accordingly,
through averaging, the 300-year time series was divided
into ten plausible daily time series for a 30-year period,
and then, the average daily values of these ten time series

GCMs and Emission

Scenarios (A2, B1)

Generation of Climate

Scenarios using 14

GCMs

- Weighting the GCMs

- Construction of Discreet PDFs

- Construction of Continuous CDFs

LARS-WG & Change Factor

Calculation:

- Crop Evapotranspiration

- Effective Precipitation

- Net Water Requirement

- Water Demand Volume

Results Analysis

Extraction of Probability 

Percentiles (25, 50 & 75%)

Fig. 2 Flowchart of the
methodology
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are calculated. This approach was used by Gohari et al.
(2013) to cut down the uncertainty of WG in generated
climatic variables.

2.3 Agricultural water demand calculation

2.3.1 Crop evapotranspiration and effective precipitation
calculation

Crop water requirement calculation is an important sector in
agricultural water management. The FAO-24 methodology
(Doorenboos and Pruitt 1977) is considered as the standard

method for crop water requirement calculation and has been
used in this study as follows:

ETC j; t ¼ KC j;t � ET 0t ð7Þ

whereKC j;%%kern1ptt is the coefficient of the j
th crop in the tth month,

ET0t is the reference crop evapotranspiration in the tth month,
and ETC j;t represents evapotranspiration for the jth crop in tth

month. The input parameters for Eq. (7) are the length of four
individual stages (initial season, growth season, mid-season, and
late season) during the growing season and related crop coeffi-
cients (Kc). These coefficients are defined as the ratio between
ETo and ETc for each part of the growing season (Multsch et al.

Table 3 Weights (%) for 14 GCMs of precipitation simulation in the base period

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

BCM2 7.13 7.38 6.67 34.83 2.60 0.40 1.10 48.09 10.11 1.73 10.94 7.61

CGCM3 (T 63) 7.87 7.68 8.52 11.20 0.95 0.49 3.63 4.55 8.20 0.77 6.34 8.06

CNRM-CM3 7.24 7.66 8.11 4.12 1.01 0.07 0.74 0.68 1.48 72.84 4.78 6.86

CSIRO-MK3 7.57 6.89 6.82 6.78 15.05 1.63 10.48 3.50 5.05 1.86 5.58 7.24

ECHAM5-OM 7.31 6.74 7.48 2.01 4.06 30.76 13.59 3.67 5.81 1.08 5.30 7.09

ECHO-G 6.48 6.48 6.37 2.10 26.73 1.01 15.33 3.76 15.88 3.42 4.45 6.15

GFDL-CM2 6.66 7.50 7.45 7.92 13.22 29.09 8.96 3.53 11.08 1.89 4.80 6.39

GISS-E-R 6.44 6.20 5.96 1.53 4.81 7.35 10.98 3.56 5.05 0.93 3.94 6.03

HadCM3 9.28 10.09 9.23 18.17 2.68 1.16 10.14 3.50 5.27 1.53 31.79 11.23

INM-CM3 6.33 6.30 6.39 2.17 3.46 0.39 1.58 6.39 1.72 7.97 4.07 6.17

IPSL-CM4 6.85 6.67 6.77 2.03 11.23 1.68 9.12 3.48 5.15 0.92 4.01 6.26

MRI-CGCM2.3.2 7.12 7.34 7.75 3.37 0.95 0.56 1.81 9.88 5.88 2.25 5.09 7.07

CCSM3 7.43 6.89 6.59 1.91 8.08 2.23 2.82 1.87 14.03 2.05 5.02 7.40

PCM 6.30 6.18 5.89 1.84 5.17 23.20 9.72 3.53 5.28 0.74 3.89 6.44

Table 4 Weights (%) for 14 GCMs of temperature simulation in the base period

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

BCM2 0.22 2.62 2.69 3.22 2.85 0.69 1.92 1.61 1.02 2.82 1.64 3.29

CGCM3 (T 63) 0.22 2.79 2.32 2.59 2.63 0.71 1.94 1.62 0.98 2.66 1.54 3.08

CNRM-CM3 0.21 2.97 3.36 3.65 3.66 0.83 2.34 1.82 1.23 2.98 1.60 2.98

CSIRO-MK3 0.50 7.27 9.04 6.67 6.04 2.05 4.39 3.75 1.87 5.10 2.90 6.03

ECHAM5-OM 0.63 8.94 17.36 20.26 27.40 53.76 32.08 26.34 21.80 20.42 7.07 8.50

ECHO-G 0.48 6.55 8.05 8.42 7.08 2.00 4.83 4.60 3.05 9.12 4.65 7.18

GFDL-CM2 0.59 8.18 13.17 9.82 9.15 4.72 20.46 7.29 23.65 13.76 4.15 7.37

GISS-E-R 94.86 31.00 9.69 10.16 5.39 0.59 1.33 0.98 0.98 5.53 58.52 29.68

HadCM3 0.32 4.29 4.41 4.43 4.55 1.67 4.59 4.49 2.31 5.36 2.26 4.29

INM-CM3 0.34 4.11 3.62 3.38 2.85 0.51 1.16 1.01 0.78 2.66 1.88 4.20

IPSL-CM4 0.42 5.56 5.95 6.33 5.90 1.58 5.33 13.83 4.75 8.33 4.32 6.67

MRI-CGCM2.3.2 0.46 6.34 10.27 10.19 8.85 25.15 7.04 4.25 31.12 9.31 3.73 6.03

CCSM3 0.53 6.51 7.37 8.04 11.07 5.24 11.33 27.34 5.63 9.50 4.24 7.49

PCM 0.22 2.88 2.69 2.85 2.58 0.51 1.25 1.08 0.83 2.43 1.49 3.19
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2015). Similarly, reference crop evapotranspiration can be de-
rived based on the FAO Penman-Monteith method:

ET0 ¼
0:408Δ Rn−Gð Þ þ γ

900

T þ 273
u2 es−eað Þ

Δþ γ 1þ 0:34u2ð Þ ð8Þ

where ET0 = reference evaporation [mm day−1], Rn = net ra-
diation at the crop surface [MJ m−2 day−1], G = soil heat flux
density [MJ m−2 day−1], T =mean daily air temperature at 2-m
height [°C], u2 = wind speed at 2-m height [m s−1],

es = saturation vapor pressure [kPa], ea = actual vapor pressure
[kPa], es − ea = saturation vapor pressure deficit [kPa],
Δ = slope vapor pressure curve [kPa °C−1], and
γ = psychrometric constant [kPa °C−1].

In this study, the USDA Soil Conservation Service (SCS)
method has been employed to calculate effective rainfall using
the CROPWAT model (Smith 1992; Clarke et al. 2000) based
on the following:

PEe f f ¼ Ptot 125−0:2Ptotð Þ
125

f orPtot≤250mm ð9Þ
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PEe f f ¼ 125þ 0:1Ptot f orPtot≻250mm ð10Þ

where PEeff is the effective precipitation (mm) and Ptot repre-
sents total precipitation (mm).

2.3.2 Net water requirement and water demand volume
estimation

Following the previous steps, the net water requirement
and water demand volume are calculated based on
Eqs.(11) and (12), respectively (Ashofteh et al. 2013;
Multsch et al. 2015).

NWRt; j ¼ max ETct; j−PEe f f t ; 0
� � ð11Þ

WDVt; j ¼ NWRt; j � Aj

100; 000

� �
ð12Þ

where NWRt,j is the net water requirement (mm) for the jth

crop in tth month, WDVt,j is the water demand volume
(×106 m3) for the jth crop in tth month, and Aj equals the area
under cultivation (ha) for jth crop. The steps that are mentioned
above are shown in Fig. 2.

3 Results and discussion

The box plots of changes of average annual precipitation and
temperature in the study area, which are outputs from 14
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Fig. 6 Monthly expected temperature changes (°C) at different probability levels under emission scenarios (2025–2054)

Table 5 Seasonal and annual downscaled variable changes at different
probability levels under emission scenarios (2025–2054)

A2 B1

25 % 50 % 75 % 25 % 50 % 75 %

Temperature change (°C)

Winter 0.74 0.85 1.10 0.73 0.86 1.02

Spring 0.71 1.10 1.25 0.50 0.70 0.88

Summer 1.69 1.99 2.00 1.39 1.63 1.87

Autumn 1.96 2.13 2.33 1.80 1.97 2.15

Annual 1.28 1.50 1.67 1.10 1.29 1.48

Precipitation change (%)

Winter −12.34 −3.89 0.57 −12.33 −1.31 2.12

Spring −16.69 −7.89 −4.67 −16.00 −6.65 −3.24
Summer 6.76 10.93 16.39 14.79 13.18 15.99

Autumn 4.48 9.66 17.14 3.26 12.48 17.32

Annual −10.73 −2.70 1.94 −10.75 −0.38 3.27
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GCMs [extracted from the data distribution center of IPCC
(DDC: http://www.ipcc-data.org)], are shown in Fig. 3 for
the future period (2025–2054) under two emission scenarios
(A2 and B1). Based on the results, changes in average annual
precipitation under A2 scenario range from 35 % decrease to
15 % increase, which can be changeable, and results of B2
scenario depicted a range from 37% decrease to 18% increase
for the future period compared to the base period. Unlike this
expected irregular process in precipitation changes, there is an
expected regular increase of more than 1 °C in average annual
temperature in all GCMs. The increasing rate of temperature
between the two scenarios is different, and more increase is
expected under A2 scenario. The highest increase of average
annual simulated temperature by GCMs is 2.58 °C under
scenario A2, and the least increase is 1.18 °C. The values
under B1 scenario are 1.95 and 1.09 °C, respectively. In the
outputs of all models, an increasing trend is seen in simulated
temperature for future period compared to base period.
According to these results, an uncertainty in simulation and
outputs of different GCMs is clearly shown.

In the present study, the MOTP method of GCMs has been
used in order to decrease the effects of this uncertainty. The
results gained from GCM weight giving in simulated precip-
itation and temperatures in the base period are shown in
Tables 3 and 4. The models HadCM3 and ECHO-G have
the best performance (most weight) in simulated precipitation
in the base period. Similarly, the models GISS-ER and

ECHAM5-OM have the highest weight in simulating temper-
ature in the base period. After weighting GCMs, the discrete
PDFs and CDFs of monthly precipitation and temperature
have been developed, as shown in Fig. 4.

Figures 5 and 6 show monthly precipitation and tempera-
ture changes at different probability levels of 25, 50, and 75%
under emission scenarios (A2, B1). The change amount of
monthly temperature under both scenarios is increasing in all
months. This increasing amount of temperature differs in dif-
ferent months. Based on the results, the increases of expected
average annual temperature under A2 scenario for probability
levels of 75, 50, and 25 % were equal to 2.09, 1.89, and
1.59 °C, respectively, and 1.88, 1.61, and 1.36 °C for B1
scenario. It can be concluded that under A2 scenario, more
increase in temperature is expected. Also, precipitation under
climate change is expected to be very changeable and irregular
under both scenarios, and most of the changes are observed in
August and September. For example, at the probability level
of 75 % under A2 scenario, the changes are observed with the
ratios of 1.43 and 1.28 in August and September compared to
changes in June with a ratio of 0.79. For B1 scenario, the ratio
of changes has been from 1.45 in July to 0.84 in October at the
probability level of 75 %.

After evaluating and checking the performance of LARC-
WGmodel in the study area, the expected monthly changes of
temperature (minimum and maximum) and precipitation at
different probability levels are downscaled for 300-year time

Table 6 Annual ETc (mm) at
different probability levels under
emission scenarios (2025–2054)

Crops His A2 B1

CS MS IS CS MS IS

Wheat 501.66 606.28 578.18 564.12 574.12 556.25 541.81

Barley 280.30 370.80 343.99 331.16 342.73 325.81 312.44

Corn 527.80 563.55 554.57 553.93 552.20 545.42 542.99

Alfalfa 1754.84 1885.49 1855.01 1841.78 1847.45 1821.19 1814.74

Clover 665.23 835.93 785.01 749.67 786.80 756.47 718.31

Bean 116.87 196.34 172.07 162.55 172.29 159.52 149.24

Other crops 6805.69 7276.08 7160.88 7112.18 7156.25 7053.34 7015.83

Table 7 Annual NWR (mm) at
different probability levels under
emission scenarios (2025–2054)

Crops His A2 B1

CS MS IS CS MS IS

Wheat 766.86 830.48 826.08 822.42 809.42 806.45 803.61

Barley 540.41 592.80 589.39 586.86 576.13 573.81 571.74

Corn 589.10 616.35 613.67 610.43 605.50 603.32 600.69

Alfalfa 2018.71 2131.29 2125.31 2115.32 2104.15 2096.19 2087.92

Clover 1169.16 1274.46 1266.97 1260.58 1239.00 1233.94 1228.93

Bean 361.08 401.84 399.27 397.65 389.59 387.91 386.46

Other crops 7800.26 8214.79 8194.51 8156.24 8121.27 8090.12 8057.79
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series. In the next step, the series of 300 years are broken to
30-year time series, and finally, the daily average of these
series is calculated. The seasonal and annual climatic variable
changes are shown in Table 5, which were downscaled at
probability levels of 25, 50, and 75 %. Based on the results,
the increasing rates of seasonal and annual average tempera-
ture under A2 scenario are more than those under B1 scenario.

The highest increase in temperature is expected in autumn and
summer. In addition, the precipitation changes differ in sea-
sons and it can be, in some way, expected to observe a de-
crease in average precipitation in spring and summer under
both scenarios. Also, the most expected decrease of mean
annual and seasonal (spring) precipitation was predicted to
occur at the probability level of 25 %.

Accordingly, the monthly averages at probability scenarios
of CS, MS, and IS have been used to estimate the amount of
ET0 in the future period. In all months, the results show an
increase in ET0. The most significant increase of ET0 is ex-
pected under A2-CS belonging to March and August.
Considering the amount of different KC in each month, which
is related to each crop based on the FAO journal, local studies,
experiences, and growth periods for each crop (supposing the
area under cultivation for each crop is unchangeable), the
amount of ETc has been calculated in different months affect-
ed by climate change. The results of calculated annual ETc
under climate change using probability scenarios are shown
in Table 6. Results indicated an increase in ETc in future peri-
od compared to the base period. This increase under A2

Table 8 Annual WDV (×106 m3) at different probability levels under
emission scenarios (2025–2054)

Crops His A2 B1

CS MS IS CS MS IS

Wheat 28.86 34.88 33.26 32.45 33.03 32.00 31.17

Barley 9.32 12.32 11.43 11.01 11.39 10.83 10.38

Corn 17.44 18.62 18.32 18.30 18.25 18.02 17.94

Alfalfa 32.82 35.27 34.70 34.45 34.55 34.06 33.94

Clover 6.67 8.38 7.87 7.52 7.89 7.58 7.20

Bean 2.00 3.36 2.95 2.78 2.95 2.73 2.56

Other crops 36.98 39.08 38.60 38.45 38.59 38.11 38.00
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scenario is expected to be more than B1’s, which, compared to
the higher increase in simulated temperature, seems natural.
Also, the increase in ETc at probability scenarios of CS is more
than that of MS and IS. After calculating the effective precip-
itation based on the Eqs. (9) and (10), net water requirement
and water demand volume are calculated for the future period,
which are shown in Tables 7 and 8. Under both emission
scenarios in the amount of water required for all crops, an
increase is expected in all three probability scenarios. The
amount of annual net water requirement for crops in irrigation
network has increased approximately 10, 7, and 6 % for prob-
ability scenarios of CS,MS, and IS under emission scenario of
A2. The numbers for B1 scenario are equal to 7, 5, and 4 %.
The highest changes of net water requirement increase are
expected to be for the crops of bean, barley, clover, and wheat.
The ratio of changes in annual net water requirement in the
period of 2025–2054 compared to the base period for these
crops is 1.68, 1.32, 1.26, and 1.21, respectively.

Table 8 shows the results gained through calculating the
water demand volume in the future period compared to the
base period. Considering the area under cultivation, the most
increase in water demand volume in the future period is ex-
pected to be for wheat, barley, and alfalfa. The amounts of
annual changes in expected water demand volume for all
crops in future period compared to the base period under A2
scenario for probability scenarios of CS,MS, and IS are 17.82,
13.04, and 10.84 (×106 m3). These numbers are, respectively,
12.56, 9.25, and 7.11 (×106 m3) for that under B1 scenario.
The ratios of annual water demand volume for specified crops
under emission scenarios of A2 and B1 are shown in Fig. 7.
Based on the results, at CS and under both A2 and B1 scenar-
ios, the most significant changes are seen in ratio of water
demand volume for plants. The most meaningful changes in
CS are for bean, barley, and clover, with ratios of 1.67, 1.32,
and 1.26, respectively. In this regard, the values of B1 scenario
are 1.47, 1.22, and 1.18, respectively.

Generally, results showed an increase in water demand vol-
ume in future period compared to the base period, which could
cause problems in agriculture management and food provision
security of the study area considering the dry and semi-dry
climates of this region and limited water resources. In addi-
tion, on results of the changes in climatic variables that caused
an increase in irrigation water requirement, runoff from the
Zard basin and Jarreh reservoir inflow quantity will surely
be changed as well. Therefore, applying an adaptive manage-
ment in water resources systems can be used as alternative
solution for declining system vulnerability in the studied area.

4 Conclusion

Considering the impacts of agriculture on human life, an in-
vestigation of the effects of climate change on agriculture can

better help water management and sustainable development.
This issue seems to be more crucial in dry and semi-dry re-
gions like Iran. Accordingly, in the present study, the effects of
climate change on agricultural water requirement under differ-
ent probability levels in Ramhormoz plain in southwest of Iran
have been investigated. A risk framework has been used to
manage uncertainties of GCM output and emission scenarios.
In this framework, 14 GCMs are used under two emission
scenarios of B1 and A2 through the MPOT method and a
probabilistic approach. This methodology can be a proper
solution to manage the uncertainty caused by the usage of
GCMs in the assessment of climate change studies. The other
aspects of uncertainty in irrigation demand under climate
change are suggested to be addressed in future studies.

The results of examining the changes in monthly tempera-
ture indicated an increasing trend in all months and under both
emission scenarios. Unlike the increasing and regular changes
of temperature in the study area, an irregular change in pre-
cipitation (either decreasing or increasing) is expected in the
future period compared to the base period. In addition, results
of downscaled temperature under probability scenarios of CS,
MS, and IS using LARS-WG model indicated an increase
approximate to 1.67, 1.5, and 1.28 °C for A2 scenario and
1.48, 1.29, and 1.1 °C for B1 scenario, respectively, for the
average annual temperature of the future period (2025–2054).
It should be noted that the most expected decrease in precip-
itations under the studied emission scenarios is attributed to
the probability scenario of CS with a value of approximately
10 %.

Calculation results related to ETc showed a monthly in-
crease under both emission scenarios, as well as an increase
in the amount of net water requirement and water demand
volume. The increase in water demand volume and expected
net water requirement in CS under both emission scenarios
(A2, B1) is higher compared to the other probability scenarios
(MS and IS) and shows a more severe condition. The amounts
of expected increase of water requirement for probability sce-
narios of CS, MS, and IS are equal to 1082, 797, and 663 mm
under emission scenario of A2 and 780, 565, and 443 mm for
B1 scenario, respectively. Regarding to the area under culti-
vation for each crop, the increasing amounts of annual water
demand volume in the study area in probability scenarios of
CS, MS, and IS are 13, 10, and 8 % under A2 scenario and 9,
7, and 5 % under B1 scenario, respectively. This increasing
amount in A2 scenario, considering its critical assumptions, is
more than B1 scenario. Similarly, an increase in irrigation
demand under climate change has been reported by Fischer
et al. (2007), Gohari et al. (2013), Ashofteh et al. (2014), and
Riediger et al. (2016).

Technical studies of climate change impacts on local-
regional polices such as the construction of dams and hydrau-
lic structures are very important. These strategies can enhance
the performance of water resources systems and reduce the
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negative effects of climate change in the future. For example,
according to the reports of Khuzestan water and power con-
sulting, the construction studies of Abolabbas dam located
upstream of the Jarreh reservoir (as a source of water supply
to Ramhormoz plain) and Abolfares dam on A’alla river (as
the other source of water supply) are currently under study.
Therefore, an increase in net water requirement and water
demand volume for the studied area (Ramhormoz plain) as
was concluded in the present study can be useful for planning
of these projects, and the authors suggest to consider this issue
in the related studies.

Finally, given the limited water resources in dry and semi-
dry regions like Iran and the role of agriculture in Iran’s econ-
omy, the development of adaptation scenario polices such as
reduction of water loss, improving the efficiency of irrigation
system, optimal irrigation planning, enhancing water use effi-
ciency, applying the water price polices, changes in cropping
patterns, etc. can reduce vulnerability in this sector.
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