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Abstract The applicability of artificial neural networks
(ANN), adaptive neuro-fuzzy inference system (ANFIS), and
genetic programming (GP) techniques in estimating soil tem-
peratures (ST) at different depths is investigated in this study.
Weather data from two stations, Mersin and Adana, Turkey,
were used as inputs to the applied models in order to model
monthly STs. The first part of the study focused on comparison
of ANN, ANFIS, and GP models in modeling ST of two sta-
tions at the depths of 10, 50, and 100 cm. GP was found to
perform better than the ANN and ANFIS-SC in estimating
monthly ST. The effect of periodicity (month of the year) on
models’ accuracy was also investigated. Including periodicity
component in models’ inputs considerably increased their ac-
curacies. The root mean square error (RMSE) of ANN models
was respectively decreased by 34 and 27 % for the depths of 10
and 100 cm adding the periodicity input. In the second part of
the study, the accuracies of the ANN, ANFIS, and GP models
were compared in estimating ST of Mersin Station using the
climatic data of Adana Station. The ANN models generally
performed better than the ANFIS-SC and GP in modeling ST
of Mersin Station without local climatic inputs.

1 Introduction

Soil temperature is the most important factor influencing the
growth, development, and yield of a crop to a particular climatic
condition. It depends on climatic and environmental factors
such as solar radiation, air temperature, rainfall, albedo, topo-
graphical variables, and other surface characteristics. Plant
growth progresses are deeply bound up with soil temperature
through various phenological stages such as germination stage
towards maturity level (Rosenzweig and Liverman 1992a, b).
Plants can grow only within certain limit of temperatures. Seed
germination is highly dependent on soil temperature (ST) and
other climatic variables. However, the range of ST in which
seeds perform better growth depends largely on crop types
(Hasanuzzaman et al. 2013). Accordingly, the ST defines which
species can live in a particular region. In literature, there are
many studies about the importance of soil temperature for the
plant life. Soil temperatures affect the rates of photosynthesis,
respiration, and transpiration of plants. In most temperate zone
specifies, the rate of photosynthesis is reported to increase from
near freezing until it attains a maximum between 15 and 25 °C.
For tropical species, the minimum temperature for photosynthe-
sis is several degrees above freezing and the maximum well
above 25 °C (Creamer and Fox 1980). Respiration often con-
tinues to increase above a critical high temperature at which
photosynthesis begins to decrease. Anderson and
McNaughton (1973), investigating 17 populations of 12 vascu-
lar plant species, reported that decreasing soil temperature from
20 to 3 °C had no adverse effect on transpiration or photosyn-
thesis. However, it was observed that plant growth was signif-
icantly reduced. Growth reduction at low soil temperature was
therefore concluded to result from impaired turgor, decreased
root growth and metabolism, or impaired cytokinin synthesis
and translocation and not from direct limitation of carbon as-
similation. Temperatures where active plant cells die is reported
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to vary from 120 to 140 °F (49 to 60 °C) and depend on species,
age of tissues, and length of exposure to high temperature
(Swank and Vose, 1988). Temperatures in excess of 140 °F
(60 °C) have been found to produce injury due to breakdown
of proteins. Labanauskas et al. (1975) found that Yecora wheat
grown at soil temperature of 25 °C yielded less grain than those
plants grown in 15 and 5 °C temperatures. Changes in soil tem-
perature cause some alterations on the soil properties. Creamer
and Fox (1980) reported that lowering soil temperature appeared
to inhibit nitrification and helped maintain high pH. Moragham
(1980) concluded that nutrient stresses in flax (Linum
usitatissimum) due to P and Zn deficiencies were likely to devel-
op at soil temperature of 25 °C. Munevar and Wollum (1981)
reported that increasing root temperature from 28 to 40 °C had
detrimental effect on the number of nodules, the specific nitro-
genase activity, theN content, and dryweight of tops and roots of
inoculated plants. Mackay and Barber (1984), investigating com
yield, reported that phosphorus uptake was two- to fourfold
greater at soil surface temperature of 25 °C than at 18 °C.

For agricultural engineering problems, it is necessary to
know the variation of the soil temperature values for increas-
ing the performance of the germination, growth, and yield of
the crops, which are commonly estimated local climatic con-
ditions and soil properties (Mihalakakou 2002). Furthermore,
several studies compared the artificial neural networks
(ANNs) with simple empirical equations in estimating mete-
orological and hydrological parameters such as air tempera-
ture, evapotranspiration, solar radiation, relative humidity, soil
temperature, water quality, and water discharge, (e.g.,
Trajkovic et al. 2000; Sudheer et al. 2003; Rahimikhoob
2010; Trajkovic 2010; Tabari et al. 2011; Cobaner 2011,
2013; Rezaeian-Zadeh et al. 2012; Kisi and Tombul 2013;
Kisi et al. 2013; Cobaner et al. 2014; Citakoğlu et al. 2014;
Kisi et al. 2015). George (2001) reported that the estimation of
climatic variables such as soil temperature, air temperature,
relative humidity, and wind speed are essential for agricultural
purpose and all these are strongly correlated as a result of
surface solar radiation.

The accurate prediction of soil temperature values plays a
significant role on plant growth processes. Therefore, soft
computing models such as especially ANNs and adaptive
neuro-fuzzy inference system (ANFIS) models have been
used for modeling ST values. Mihalakakou (2002) investigat-
ed the estimation capability of ANN and deterministic models
in annual and daily soil surface temperature values for bare
and short-grass-covered soil. It was reported that the soft com-
puting method was able to accurately predict the surface STs.
Bilgili (2010) compared the estimation performance of the
linear and nonlinear regression models versus three-layer
ANN models for monthly ST values at different depths. In
his study, best input combination between the meteorological
variables and soil temperature was determined with the
stepwise linear regression technique. These selected

metrological variables such as air temperature, relative
humidity, atmospheric pressure, solar radiation, rainfall, and
wind speed were used as input variables to the regression and
ANNmodels. It was concluded that the prediction performance
of the ANN model was significantly better than the regression
techniques. Tabari et al. (2011) also compared the ANN and
regression techniques for modeling ST values at different
depths in Iran. They have reported similar results with Bilgili
(2010). Tabari et al. (2011) compared multilayer ANN and
linear regression in estimating daily ST at different depths in
Iran, and they reported that the ANN estimates provided better
accuracy than the regression. Kim and Singh (2014) examined
the applicability of multilayer perceptron (MLP) and neuro-
fuzzy models in modeling STs at 10 and 20 cm depths. Bilgili
(2010) estimated monthly ST of Adana City, Turkey, using
linear/nonlinear regressions and MLP and they showed that
MLP provided better accuracy than the regression models.
Kisi et al. (2015) used different neural computing methods for
modeling monthly ST. Wu et al. (2013) employed the ANN for
modeling monthly mean ST at 10 cm depth over a large region
with complex terrain. They have used grid-based input vari-
ables obtained from digital elevation model and remote sensing
images such as including latitude, longitude, elevation, topo-
graphic wetness index, and normalized difference vegetation
index for soil temperature estimation. In this study and as well
as all other studies, the authors reported that the ANN models
are effective tool for modeling ST.

From the related literature, it is clear that the ANN was
previously used for modeling ST. In addition, limited ANFIS
studies were carried out with this area, but to the authors’
knowledge, the application of genetic programming (GP) mod-
el has not been studied and/or reported for estimating soil tem-
perature in the literature. In the current study, an attempt is made
to investigate the accuracy of GP model versus two data-driven
models such as three-layer ANN andANFISmodels for model-
ing monthly soil temperature values in Iran.

2 Used data

The monthly weather data of Mersin (36° 48′ N, 34° 38′ E)
and Adana (latitude 37° 00′ N, longitude 35° 19′ E) stations
operated by the Turkish State Meteorological Service were
used in the study. The location of the Mersin and Adana sta-
tions are shown in Fig. 1. The elevations for these stations are
3 and 27 m, respectively. The Mediterranean region has a
Mediterranean climate that has warm to hot, dry summers
and mild to cool, wet winters. The winter temperature reaches
its max. as 24 °C and it may be as high as 40 °C in summer.
The winter precipitation can be very heavy and hence inun-
dating is a problem in many areas. There is snow in the high
mountain areas while it never snows on the coastal area. The
data cover 25-year (1986–2010) monthly values of air
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temperature, solar radiation, relative humidity, wind speed,
and soil temperature at different depths (10, 50, and
100 cm). Data division rule used in the study is 60:20:20, that
is, the first 60 % of the whole data was used for training, the
second 20% of the whole data was used for validation, and the
last part of the data was used for testing.

3 Methods

3.1 Genetic programming

Genetic programming is an effective symbolic regression tech-
nique that solves a given problem using natural selection and
evolution (Koza, 1992). The essential difference between GP
and genetic algorithm (GA) is related to the representation of
the solution. GA creates a string of numbers that represent the
solution. In the traditional GP, chromosomes and expression
trees are the main components of model and the result of GP
model is represented by tree-based structures built from termi-
nals and functions. Tree-based structure of the GP model with a

simple example equation (example function: X 2
1 � X 2=3 ) is

expressed in Fig. 2. Solution of a given problem has a fixed
length and constant structure consisting of one or several genes.
Genes are composed of Bnodes^ representing functions (like +,
–, *, /, √, sin) or terminals containing independent variables and
numerical constants. A number of genes can be linked by func-
tions to form a chromosome. Genetic operations such as muta-
tion, transposition, insertion sequence, root insertion sequence,
and recombination take place on genes and chromosomes. GP
solutions of the problems are selected based on their fitness
function. The fitness function is specific to the problem but

generally root mean square or mean square error between the
actual and the predicted output is used as a fitness function. The
minimum the fitness value, the better the program (individual)
is. Selection for reproduction, mutation, and crossover for better
models is based on fitness criteria and continues until a termi-
nation condition is met. Termination condition can be the max-
imum number of generations or user-defined threshold error of
the model (Goldberg 1989).

3.2 Adaptive neuro-fuzzy inference system

Jang (1993) combined the advantages of two techniques,
namely, fuzzy inference systems and neural network, and pro-
posed a newmethod called the adaptive neuro-fuzzy inference
system. This method uses linguistic expressions of the fuzzy

Mersin

Turkey
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Mediterranean Sea

Black Sea

Fig. 1 The map of the region and locations of the stations

Functions 
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/ 

Fig. 2 The GP structure
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logic method and has the adaptive learning ability of neural
networks in order to improve the system performance.

Learning or training stage of network is a process to adjust
the membership functions parameters to determine the rela-
tionship between the input and output data. The well-known
basic learning rule is backpropagation method which attempts
to minimize the error statistics of the model result, generally
sum-of-squared differences between target and expected net-
work’s outputs (Drake, 2002). The two most commonly used
fuzzy inference types are Mamdani’s system (Mamdani and
Assilian, 1975) and Sugeno’s system (Takagi and Sugeno
1985). The difference between these two fuzzy inference sys-
tems is the specification of the consequent part. The conse-
quent part is presented as a fuzzy set in theMamdani’s method
(Mamdani and Assilian, 1975), and real numbers, which can
be either linear or constant in the Sugeno’s method (Sugeno,
1985). Sugeno’s system is more compact and numerically
effective; the output of the model is crisp without
defuzzification operation, and it uses the adaptive techniques
for training data based fuzzy modeling (Takagi and Sugeno,
1985). The main characteristic attribute of fuzzy modeling is
using linguistic variables instead of or in addition to numerical
variables. The developed system involves some if/then fuzzy
rules to determine the connections between fuzzy variables.
The fuzzy rule of the first-order Sugeno’s style has the follow-
ing form (Sayed et al. 2003; Cobaner 2011):

Rule 1 : If x isA1andy is B1;then f 1 ¼ p1xþ q1yþ r1 ð1Þ
Rule 2 : If x is A2andy is B2;then f 2 ¼ p2xþ q2yþ r2 ð2Þ

where A and B are the linguistic terms with fuzzy meaning,
and x and y are input and output variables, respectively. The if-
part of the rule Bx is A^ is known as the antecedent or prior,
while the then-part of the rule By is B^ is called the final or
consequent. The p, q, and r are the consequent parameters. A
detailed description of ANFIS can be found in Jang (1993).

3.2.1 Subtractive clustering

There are different ways to find a valid combination of input
dataset to design a collection of fuzzy rules and membership
functions such as fuzzy C-means, equalizer partitioning, and
subtractive clustering. One of the easiest ways to determine
the degree of membership functions also to automatically gen-
erate fuzzy rules of the input from a given dataset is subtrac-
tive clustering (Chiu, 1994). A major point of the subtractive
algorithm is to find regions with a high density of data points
in the feature space. The subtractive clusteringmethod of Chiu
(1994) is a modified form of the mountain clustering method
proposed by Yager and Filev (1994). The mountain clustering
method is an easy and efficient method for estimation of the
number of clusters and the cluster centers of the given data
points (Yager and Filev, 1994). After that, Chiu (1995)

recommendedmodifiedmountain clusteringmethod to reduce
the computational difficulty of the previous method. The
method grids the data space and calculate a potential value
for each grid point depending on distance between the real
and potential data points. Then the highest potential grid point
is treated as a potential first cluster center based on its possible
value. After that, the potential of data points close to the first
cluster center is invalid and the following cluster center is
defined by revising the potential of data points in order to
cancel the prior cluster center’s effect. Each data point is a
candidate for cluster centers, and a density measure for each
potential data point is defined as (Chiu, 1994)

Pi ¼
Xn
j¼1

e−α xi−x jk k2

ð3Þ

where α ¼ 4=r2a, xi is the ith data point, ra is a vector which is a
positive constants representing the hyper-sphere cluster radius
in data space. The constant ra is effectively the radius defining a
neighborhood. Data points outside this radius have insignificant
impact on the potential. A data point surrounding with many
neighboring data points will have a great potential value. Thus,
the mountain and subtractive clustering methods are less sensi-
tive to noise than other algorithms, such as the C-means and the
fuzzy C-means (Du and Swamy 2006; Cobaner 2011).

After the data point with the highest potential, x1, is select-
ed as the first cluster center, x*1, and P

*
1 is its maximum poten-

tial value. To generate the cluster centers, the potential value
for each data point is revised by the following formula:

Pi ¼ Pi−P*
i e

−β xi−x*1k k2

ð4Þ

where β ¼ 4=r2b is a vector which is a positive constant which
defines a neighborhood that has measurable reductions in den-
sity measure being close to each other; rbmust be greater than
1.5 times ra (Chiu, 1994).

The influential radius is significant parameter for specify-
ing the number of clusters. Determining smaller radius out-
comes with too many smaller clusters in the data space means
more rules and vice versa. Therefore, determination of the
proper influential radius is very important for clustering the
data space. After determination of the number of fuzzy rules
and membership function, the consequent parameters in the
output MF are adjusted based on the linear squares approxi-
mation for a valid fuzzy inference system. The structure of the
ANFIS model used to estimate the monthly soil temperature
data based on four input parameters is shown in Fig. 3. The
coupled ANFIS with subtractive clustering method has been
widely applied in water resources engineering such as reser-
voir inflow estimation (Bae et al. 2007), long-term precipita-
tion estimation (Kisi and Sanikhani 2015), and spatial estima-
tion of monthly air temperature (Kisi and Shiri 2014).
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3.3 Artificial neural networks

Neural networks are data processing techniques that
mimic the structure and functioning of the human brain.
They do so by simulating the brain’s basic components
which include cell body, dendrites, synaptic connections,
and axons; they apply the knowledge gained from past
experience to find solutions to new problems or situa-
tions. The reason behind the extraordinary success of
neural networks can be attributed to their capability to
model highly nonlinear complex problems. ANNs are
very arguably sophisticated nonlinear computational

tools. They can learn from examples and predict the
form of the function that governs the relationship be-
tween independent input variables and targeted output
values. In the real world, there are many problems in
which the relationship between input and output is com-
plex and cannot be easily identified using traditional
statistical methods. Alternatively, neural networks are
employed to deal with such problems.

The ANNs consist of a number of interconnected
neurons such as input, hidden, and output layers
(Fig. 4). These layers consist of parallel processing
elements, namely neurons, with each layer being fully
linked to the proceeding layer by interconnection
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Table 1 Test results of the ANN models

Depth Structure Iteration R2 RMSE (°C) MARE (%) NS

Mersin

10 4 6 1 1000 0.969 1.90 8.91 0.950

50 4 1 1 1000 0.991 1.63 5.06 0.947

100 4 7 1 1000 0.922 2.79 10.4 0.815

Adana

10 4 1 1 1000 0.993 0.76 3.24 0.993

50 4 3 1 1000 0.947 1.71 6.75 0.947

100 4 6 1 1000 0.926 1.69 6.56 0.918
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strengths or weights. These weights correspond to syn-
aptic efficiency in biological neurons. Commonly, ini-
tial the weights are set of random values or based on
some previous experience. After that, weights are me-
thodically adjusted by the learning algorithm based on
the set of training examples. The backpropagation al-
gorithm proposed by Rumelhart et al. (1986) was used
to train the ANN in this study. All neuron in the
network pass from a transfer function to change the
activation level of a neuron into an output signal.
The behavior of the ANN depends on both all

Table 2 Test results of the ANFIS-SC models

Depth (cm) Radii R2 RMSE (°C) MARE (%) NS

Mersin

10 0.47 0.983 1.64 6.17 0.962

50 0.80 0.955 1.98 6.89 0.930

100 0.55 0.630 4.61 15.9 0.468

Adana

10 0.85 0.991 0.88 3.36 0.991

50 0.64 0.946 1.75 6.72 0.945

100 0.75 0.938 1.55 6.48 0.935
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Fig. 5 The scatterplots of the
optimal ANN models in
estimating soil temperatures in a
Mersin and b Adana stations
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interconnection weights and the activation function
that is stated for the each layer of the network.
Commonly used activation functions are the step func-
tion, sign function, sigmoid function, and linear func-
tion (Andries, 2002). Determination of a suitable ANN
architecture for a required problem has basically three
steps (Carling, 1995): (1) determination of the struc-
ture of network, (2) training the network, and (3) test-
ing the network. All these procedure are described in
detail in literature (ASCE Task Committee, 2000a, b)
and Maier and Dandy (1998).

4 Application and Results

Root mean square errors (RMSE), mean absolute relative er-
rors (MARE), determination coefficient (R2), and Nash–
Sutcliffe (NS) efficiency were used for evaluating the accura-
cy of ANN, ANFIS-SC, and GP models. The RMSE, MARE,
R2, and NS can be expressed as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

STpi−SToið Þ2
vuut ð5Þ

 (a) (b) 

y = 0.8804x + 2.3566
R² = 0.9833

5

15

25

35

45

5 25 45

Es
�
m
at
ed

Observed

10 cm

y = 1.0113x - 0.0659
R² = 0.9912

5

15

25

35

45

5 25 45

Es
�
m
at
ed

Observed

y = 0.9125x + 1.0904
R² = 0.9546

5

15

25

35

45

5 25 45

Es
�
m
at
ed

Observed

y = 0.9842x + 0.1706
R² = 0.9463

5

15

25

35

45

5 25 45

Es
�
m
at
ed

Observed

y = 0.7188x + 4.2856
R² = 0.6301

5

15

25

35

45

5 25 45

Es
�
m
at
ed

Observed

y = 0.989x - 0.0989
R² = 0.938

5

15

25

35

45

5 15 25 35 45

Es
�
m
at
ed

Observed

10 cm 

50 cm 50 cm 

100 cm 100 cm 

Fig. 6 The scatterplots of the
optimal ANFIS-SC models in
estimating soil temperatures in a
Mersin and b Adana stations
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MARE ¼ 1

N

Xn
i¼1

STpi−SToij j:100
SToi

ð6Þ

R2 ¼

Xn
i¼1
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� �

SToi−STo
� � !2
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� �2Xn

i¼1
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� �2 ð7Þ

NS ¼ 1−
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� �2 ð8Þ
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Fig. 7 The scatterplots of the
optimal GP models in estimating
soil temperatures in a Mersin and
b Adana stations

Table 3 Test results of the GP models

Depth (cm) R2 RMSE (°C) MARE (%) NS

Mersin

10 0.992 1.71 5.69 0.961

50 0.990 1.39 4.31 0.963

100 0.899 4.97 22.0 0.682

Adana

10 0.991 0.87 3.28 0.991

50 0.953 1.64 5.19 0.949

100 0.936 1.58 6.78 0.926
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optimal PANN models in
estimating soil temperatures in a
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Table 4 Test results of the
periodic PANN models Depth (cm) Structure Iteration R2 RMSE (°C) MARE (%) NS

Mersin

10 5 6 1 1000 0.988 1.26 5.30 0.979

50 5 1 1 1000 0.989 1.33 4.33 0.967

100 5 5 1 1000 0.976 2.04 7.32 0.886

Adana

10 5 1 1 1000 0.993 0.75 3.14 0.993

50 5 2 1 1000 0.962 1.47 4.78 0.960

100 5 3 1 1000 0.989 1.16 4.66 0.961
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where N and bar respectively show the data number and mean
of the variable, STp and STo indicate the predicted and ob-
served monthly STs.

In the current study, three different applications were
employed: (1) accuracy comparison of ANN, ANFIS-SC,
and GP models in estimating STs at different depths; (2) the
periodicity effect on accuracy of the applied models, and (3)
accuracy comparison of ANN, ANFIS-SC, and GP methods
in modeling STs of one station using input data of nearby
station.
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Fig. 9 The scatterplots of the
optimal PANFIS-SC models in
estimating soil temperatures in a
Mersin and b Adana stations

Table 5 Test results of the periodic PANFIS-SC models

Depth (cm) Radii R2 RMSE (°C) MARE (%) NS

Mersin

10 0.82 0.985 1.29 4.73 0.982

50 0.86 0.984 1.65 5.35 0.945

100 0.50 0.873 2.96 11.9 0.819

Adana

10 0.82 0.993 0.77 2.80 0.993

50 0.73 0.961 1.52 5.06 0.957

100 0.81 0.985 1.21 4.64 0.956
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4.1 The comparison of ANN, ANFIS-SC, and GP models
in modeling soil temperatures at different depths

Test results of the best ANN models for modeling ST at three
different depths are given in Table 1 for the Mersin and Adana
stations. The optimal structures are also provided in this table.
Here, 4 3 1 indicates an ANN model comprising 4 inputs
corresponding to air temperature, wind speed, solar radiation,
and relative humidity; 3 hidden node; and 1 output nodes
(Fig. 4). The hidden node number was determined by trial
and error method for each ANNmodel. The optimum number
of hidden nodes was found to vary between 1 and 7 in model-
ing ST. The estimates of the ANNmodels in the test period are

Table 6 Test results of the periodic PGP models

Depth (cm) R2 RMSE (°C) MARE (%) NS

Mersin

10 0.992 1.35 4.91 0.978

50 0.989 1.24 4.09 0.971

100 0.911 3.37 10.0 0.568

Adana

10 0.993 0.77 2.92 0.992

50 0.954 1.59 6.50 0.950

100 0.971 1.08 4.32 0.967
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Fig. 10 The scatterplots of the
optimal PGPmodels in estimating
soil temperatures in a Mersin and
b Adana stations
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illustrated in Fig. 3 in the form of scatterplot. It is clear from
Table 1 and scatterplots that the ANN model has the highest
accuracy for the 50 cm depth while the 100 cm depth provided
the worst accuracy in Mersin Station. In Adana Station, the
ANN model gave the best estimates for the 10 cm depth while
the 50 cm depth has the lowest accuracy. Test results of the
ANFIS-SC models are compared in Table 2 for the Mersin
and Adana stations. The optimal radii values of the ANFIS-
SC models are also given in this table for each depth. Figure 6
demonstrates the ST estimates of the ANFSI-SC models in the
test period. From Table 2 and scatterplot given in Fig. 6, it is
clear that the ANFIS-SC model has the highest accuracy for the
10 cm depth while the 100 cm depth gave the worst accuracy in
Mersin Station. In Adana Station, the ANFIS-SCmodel provid-
ed the best estimates for the 10 cm depth while the 50 cm depth
has the lowest accuracy. A comparison of Tables 1 and 2 and
Figs. 5 and 6 reveals that the ANN model performs better than
the ANFS-SC in estimating ST at 50 and 100 cm depths in
Mersin while the ANFIS-SC model has a better accuracy than
the ANN in estimating STat 100 cm depth in Adana. The ANN
generally performs better than the ANFIS-SC in estimating ST.
Test results of the GP models are provided in Table 3 for the
both stations. The ST estimates of the GP models in the test
period are shown in Fig. 7. It is apparent fromTable 3 and Fig. 5
that the GP model has the highest accuracy for the 50 cm depth
while the 100 cm depth provided the worst accuracy in Mersin
Station. In Adana Station, the GPmodel gave the best estimates
for the 10 cm depth while the 50 cm depth has the lowest
accuracy similar to the ANN models. A comparison of
Tables 1–3 and Figs. 5–7 indicates that the GP generally per-
forms better than the ANN and ANFIS-SC in estimating ST.

4.2 The periodicity effect on accuracy of the ANN,
ANFIS-SC, and GP models

Onemore input (p) indicating the month of the year was added
into the applied models in order to see the periodicity effect in
monthly ST estimation following the studies of Kisi (2008)
and Sanikhani and Kisi (2012). They investigated the effect of
periodicity on river flow forecasting and found that adding
periodicity as input to the ANN and ANFIS models signifi-
cantly increases their accuracy. The accuracies of the periodic
ANN (PANN) models are compared in Table 4. The estimates
of the PANN models in the test period are illustrated in Fig. 8.
From Table 4 and scatterplots, it is obvious that the PANN
model has the lowest accuracy for the 100 cm depth while the
10 cm depth performed the best in Mersin Station. In Adana
Station, the ANN model gave the worst estimates for the
50 cm depth while the 10 cm depth has the best accuracy.
Test results of the periodic ANFIS-SC (PANFIS-SC) models
are compared in Table 5. Figure 9 demonstrates the ST esti-
mates of the PANFIS-SC models in the test period. It is clear
from the table and scatterplots that the PANFIS-SC model has

the best accuracy for the 10 cm depth while the 100 cm depth
gave the worst accuracy in Mersin Station. In Adana Station,
the PANFIS-SC model provided the best estimates for the
10 cm depth while the 50 cm depth has the lowest accuracy.
A comparison of Tables 4–5 and Figs. 8 and 9 clearly indicates
that the PANN models have better accuracy than the PANFS-
SCmodels in estimating STat all depths inMersin and Adana.
Test results of the periodic GP (PGP) models are provided in
Table 6 for the both stations. ST estimates of the PGP models
are illustrated in Fig. 10 for three different depths. It is appar-
ent from Table 6 and scatterplots given in Fig. 10 that the PGP
model has the highest accuracy for the 50 cm depth while the
100 cm depth provided the worst accuracy in Mersin Station.
In Adana Station, the PGP model gave the best estimates for
the 10 cm depth while the 50 cm depth has the lowest accu-
racy. A comparison of Tables 4–6 and Figs. 8–10 indicates
that the PGP generally performs better than the ANN and
ANFIS-SC in estimating ST in Adana while the PANN has a
better accuracy than the PGP and ANFIS-SC in Mersin. A
comparison of the Tables 1–6 and Figs. 5–10 obviously indi-
cates that adding periodicity component (month of the year)
into the inputs considerably increase models’ accuracies. The
increment in RMSE and MARE accuracy of the applied
models by adding periodicity is given in Tables 7 and 8. It is
clear from the tables that the ANN is more sensitive to the
periodicity than the other models. The relative RMSE

Table 7 The RMSE accuracy increment of each model by adding
periodicity component

Model Accuracy increment by adding periodicity component (%)

10 cm 550 cm 100 cm Total

Mersin
ANN 34 18 27 79
ANFIS-SC 1.3 14 31 46
GP 21 11 32 64
Adana
ANN 21 17 36 74
ANFIS-SC 13 13 22 48
GP 12 3.0 32 47

Table 8 The MARE accuracy increment of each model by adding
periodicity component

Model Accuracy increment by adding periodicity component (%)

10 cm 550 cm 100 cm Total

Mersin
ANN 41 14 30 85
ANFIS-SC 23 22 25 70
GP 14 5 55 74
Adana
ANN 3 29 29 61
ANFIS-SC 17 25 28 70
GP 11 −25 28 14
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Table 9 Test results of the ANN
and PANN models—soil
temperature estimation of Mersin
by using input data of Adana
Station

Depth (cm) Structure Iteration R2 RMSE (°C) MARE (%) NS

ANN

10 4 1 1 1000 0.988 1.45 4.84 0.972

50 4 4 1 1000 0.970 2.02 6.92 0.924

100 4 3 1 1000 0.870 3.47 11.8 0.685

PANN

10 5 2 1 1000 0.992 1.44 4.65 0.973

50 5 3 1 1000 0.988 1.88 5.98 0.932

100 5 3 1 1000 0.985 2.06 7.14 0.880
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Fig. 11 The scatterplots of the
optimal a ANN and b PANN
models in estimating soil
temperatures of Mersin by using
input data of Adana Station
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Table 10 Test results of the ANFIS-SC and PANFIS-SC models—soil
temperature estimation of Mersin by using input data of Adana Station

Depth (cm) Radii R2 RMSE (°C) MARE (%) NS

ANFIS-SC

10 0.89 0.988 1.46 5.26 0.972

50 0.60 0.971 1.97 7.07 0.927

100 0.99 0.821 3.82 13.3 0.649

PANFIS-SC

10 0.99 0.991 1.44 4.89 0.973

50 0.78 0.990 1.91 5.98 0.929

100 0.85 0.984 2.12 7.27 0.866
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Fig. 12 The scatterplots of the
optimal a ANFIS-SC and b
PANFIS-SC models in estimating
soil temperatures of Mersin by
using input data of Adana Station

Table 11 Test results of the GP and PGP models—soil temperature
estimation of Mersin by using input data of Adana Station

Depth (cm) R2 RMSE (°C) MARE (%) NS

GP

10 0.989 1.48 4.94 0.972

50 0.976 2.01 7.02 0.919

100 0.815 3.87 12.0 0.521

PGP

10 0.987 1.34 4.97 0.978

50 0.986 1.87 5.77 0.931

100 0.936 2.97 8.96 0.673
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(MARE) differences of the ANN and PANN are as high as
34% (41 %) and 27% (30 %) for the 10 and 100 cm depths in
Mersin, respectively. Periodicity component seems to be more
effective for the 100 cm depth than the others.

4.3 The comparison of ANN, ANFIS-SC, and GP models
in modeling soil temperatures of Mersin Station using
input data of Adana

In this section, the ability of ANN, ANFIS-SC, and GP models
and their periodic versions were investigated in estimating STof
Mersin Station using input data of Adana. Test results of the
ANN and PANN models are provided in Table 9. The ST

estimates of the ANN and PANN models in the test period are
shown in Fig. 11. From Table 9 and scatterplots, it is clear that
the ANN and PANN models have the lowest accuracy for the
10 cm depthwhile the 100 cm depth performed the best. Adding
periodicity component significantly increased the ANN model
accuracy in estimating ST at 50 and 100 cm depths. Table 10
gives the test results of the ANFIS-SC and PANFIS-SCmodels.
Figure 12 shows the ST estimates of the Mersin Station without
local climatic data. It is clear from the Table 10 and Fig. 12 that
the ANFIS-SC and PANFIS-SC models provided the worst ac-
curacy for the 100 cm depth while the 10 cm depth performed
the best similar to the ANN models. The accuracy of the
ANFIS-SC model in estimating ST at 100 cm depth was
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Fig. 13 The scatterplots of the
optimal a GP and b PGP models
in estimating soil temperatures of
Mersin by using input data of
Adana Station
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significantly increased by considering periodicity input. Test
results of the GP and PGP models are given in Table 11 and
Fig. 13. From the Table 9 and scatterplots given in Fig. 13, it is
apparent that the GP and PGP models have the lowest accuracy
for the 10 cm depth while the 100 cm depth performed the best
similar to the ANN and ANFIS-SC models. Periodicity compo-
nent considerably increased the GP model accuracy in estimat-
ing STat 100 cm depth. A comparison of Tables 9–11 and Figs.
11–13 clearly indicates that theANNmodels generally performs
better than the ANFIS-SC and GP models in estimating ST of
Mersin Station without local climatic inputs.

5 Conclusion

The ability of ANN, ANFIS, and GP methods in modeling
monthly soil temperatures at three different depths was investi-
gated in the study. In the first part of the study, monthly ST data
of Mersin and Adana stations at depths of 10, 50, and 100 cm
were predicted by ANN, ANFIS, and GPmodels using climatic
data of air temperature, wind speed, solar radiation, and relative
humidity. The results revealed that the GP generally performed
better than the ANN and ANFIS in estimating monthly ST. The
effect of periodicity on accuracy of the applied models was also
investigated. Adding periodicity component into the inputs sig-
nificantly increased the models’ accuracies. The ANN models
were found to be more sensitive to the periodicity than the
ANFIS and GP models. Adding periodicity increased the
RMSE accuracy of ANNmodels by 34 and 27% for the depths
of 10 and 100 cm, respectively. Periodicity component was
found to be more effective on 100 cm depth than the others.
The second part of the study focused on comparison of ANN,
ANFIS, and GP models in estimating soil temperatures of
Mersin Station using input data of nearby Adana Station.
Comparison results indicated that the ANN models generally
performed better than the ANFIS and GP models in estimating
ST of Mersin Station without local climatic inputs.
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