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and high accuracy surface modeling method
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Abstract Downscaling precipitation is required in local scale
climate impact studies. In this paper, a statistical downscaling
scheme was presented with a combination of geographically
weighted regression (GWR) model and a recently developed
method, high accuracy surface modeling method (HASM).
This proposed method was compared with another downscaling
method using the CoupledModel Intercomparison Project Phase
5 (CMIP5) database and ground-based data from 732 stations
across China for the period 1976–2005. The residual which was
produced by GWR was modified by comparing different inter-
polators including HASM, Kriging, inverse distance weighted
method (IDW), and Spline. The spatial downscaling from 1° to
1-km grids for period 1976–2005 and future scenarios was
achieved by using the proposed downscaling method. The pre-
diction accuracy was assessed at two separate validation sites
throughout China and Jiangxi Province on both annual and sea-
sonal scales, with the root mean square error (RMSE), mean
relative error (MRE), and mean absolute error (MAE). The re-
sults indicate that the developed model in this study outperforms
the method that builds transfer function using the gauge values.
There is a large improvement in the results when using a residual

correction with meteorological station observations. In compari-
son with other three classical interpolators, HASM shows better
performance in modifying the residual produced by local regres-
sion method. The success of the developed technique lies in the
effective use of the datasets and the modification process of the
residual by using HASM. The results from the future climate
scenarios show that precipitation exhibits overall increasing trend
from T1 (2011–2040) to T2 (2041–2070) and T2 to T3 (2071–
2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The
most significant increase occurs in RCP8.5 from T2 to T3, while
the lowest increase is found in RCP2.6 from T2 to T3, increased
by 47.11 and 2.12 mm, respectively.

1 Introduction

There exists a mismatch between the spatial resolution of
general circulation model (GCM) outputs and the scales
of interest in climate impact studies. As a solution to
bridge this gap, many downscaling methods have been
proposed. It is assumed that large-scale climate character-
i s t ics have great in f luences on the local sca le
hydroclimatology. By contrast, the effects from catchment
scale on continental scale are negligible (Maraun et al.
2010). In order to be used in local scale climate impact
assessment, several methods for downscaling coarse scale
general circulation model (GCM) outputs are presented.
Downscaling models can be divided into two classes: dy-
namic downscaling and statistical downscaling (Wilby
and Wigley 1997; Xu 1999; Fowler et al. 2007;
Sachindra et al. 2014). Dynamical downscaling is associ-
ated with high computational costs, whereas statistical
downscaling is used widely to produce climate informa-
tion at point or local scales due to the simplicity and
effectiveness (Hu et al. 2013).
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Various methods have been developed to obtain the
relationship between predictors and predictand of interest
in statistical downscaling. These techniques include the
weather classification technique (Shao and Li 2013), clas-
sical regression models (Meenu et al. 2013), and more
sophisticated methods such as support vector machine
(Ghosh and Katkar 2012), artificial neural networks
(Tolika et al. 2008), and generalized additive models
(Tisseuil et al. 2010). Classical regression methods are
the most widely used in statistical downscaling processes,
such as in Generalized Linear Model for daily CLImate
(GLIMCLIM; Chand l e r 2002 ) and S t a t i s t i c a l
DownScaling Model (SDSM; Wilby et al. 2002).
However, some drawbacks exist in these methods.
Ordinary linear regression model (OLS) allows the rela-
tionship between the simulated values, and influencing
factors remain the same in all places, which does not
handle the problem of spatial non-stationarity. Unlike
OLS, geographically weighted regression (GWR) method
enables the regression parameters to vary as continuous
functions over space and is suitable for modeling precip-
itation with large gradients (Brunsdon et al. 1996). GWR
can provide more detailed information between variables
that may be lost in conventional linear regression model
(Kamarianakis et al. 2008). Moreover, traditional

statistical downscaling method is just based on various
regression methods, which is restricted by the choices of
the predictors and the number of gauges.

In this study, we give a new statistical downscaling method
based on GWR and high accuracy surface modeling method
(HASM). We first use GWR to give the transfer function,
which exhibits spatial non-stationarity for fitting data between
precipitation and predictors to be addressed. Then, we apply
HASM to interpolate the residuals of the regression and build
the anomaly surface. The local regression is typically
established by GCM outputs rather than historical ground ob-
servations. The residual will be modified by using station
observations. Downscaled precipitation estimate is subse-
quently validated using two independent datasets from precip-
itation gauges in China and Jiangxi Province both on annual
and seasonal scales. Then, the scenarios of future changes
with a resolution of 1 km × 1 km are given by the proposed
statistical downscaling method.

2 Study area and data

The study area, China, is located between 3° 51′ to 53°
33′ N and 73° 33′ to 135° 05′ E in East Asia. It covers an
area of 9,600,000 km2 with an elevation ranging from

Fig. 1 Distribution map of
meteorological stations and DEM
in China
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−152 to 8682 m. The topographical appearance of China
is roughly high mountains and plateaus in the southwest,
inhospitable deserts in the northwest, and low, fertile
plains in the east (Fig. 1). It is a predominantly mountain-
ous country covering one third of her landmass. The cli-
mate in China shows great variation (Domroes and Peng
1998). In the north, the summers are hot and dry, and the
winters are freezing cold. The south regions have semi-
tropical summers and cool winters with plenty of precip-
itation. Seasonal change of precipitation is obvious and is
decisively determined by winter and summer monsoon
systems. The annual total precipitation has a remarkable
change from less than 20 mm in the northwest to more
than 2500 mm in the southeast because of the monsoon

circulation and the effects of topography (Wei et al.
2015). Figure 2 gives the scatter diagrams of the annual
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Fig. 2 Precipitation of the meteorological stations plotted against elevation for a annual mean precipitation, b mean precipitation in spring, c mean
precipitation in summer, d mean precipitation in autumn, and e mean precipitation in winter

Table 1 Performance of the two downscaling methods on the annual
scale

Validate datasets Methods RMSE (mm) MAE (mm) MRE (%)

China Predownscale1 119.78 75.24 10

Predownscale2 424.96 343.71 95

PreCMIP5 436.23 347.39 105

Jiangxi Predownscale1 97.27 74.43 4

Predownscale2 257.91 227.82 13

PreCMIP5 245.40 208.67 12
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and seasonal mean precipitation against elevation for the
period 1976–2005. The precipitation decreases with ele-
vation as a whole. The difference in seasonal mean pre-
cipitation among the stations ranges from 276 mm (dry

season, winter) to 1680 mm (wet season, summer).
Summer precipitation accounts for about 50 % of annual
precipitation. However, only about 10 % of annual pre-
cipitation occurs in the winter months.

Fig. 3 Downscaling results on the annual scale. a CMIP5 output. b Predownscale1. c Predownscale2

Table 2 Comparison of two
downscaling methods on the
seasonal scale

Validate
datasets

Methods Summer Winter

MAE
(mm)

MRE
(%)

RMSE
(mm)

MAE
(mm)

MRE
(%)

RMSE
(mm)

China Predownscale1 33.58 10 52.06 6.07 29 11.35

Predownscale2 120.61 48 166.32 44.22 586 52.22

PreCMIP5 112.10 50 158.66 43.58 625 50.43

Jiangxi Predownscale1 40.76 8 51.03 25.01 9 52.10

Predownscale2 45.19 8 54.56 63.81 25 82.37

PreCMIP5 42.58 8 51.91 61.21 23 81.37
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Historical precipitation data for the period from 1976 to
2005 were collected from 732 national meteorological sta-
tions, from the China Meteorological Data Sharing Service
System, which were further subjected to strict quality control
procedures. We chose about 10 % of the meteorological sta-
tions to validate results, while we set aside the remaining 90%
for downscaling calculations. Precipitation gauge measure-
ments in Jiangxi area were also used to test the results
(Fig. 1). Datasets from the fifth phase of the Coupled Model
Intercomparison Project (CMIP5) were used with a resolution
of 1° × 1° (Moss et al. 2008). The outputs from a 21-member
ensemble of CMIP5 GCMs include both climate simulations
in the twentieth century and twenty-first century climate pro-
jections for the IPCC low mitigation (RCP2.6), medium mit-
igation (RCP4.5), and high emission (RCP8.5) scenarios
(Vuuren et al. 2011).

3 Methodology

Statistical downscaling methods involve establishing transfer
functions relating coarse scale variables to fine scale variables.
In this method, relationship between the predictand and pre-
dictor can be given as,

D ¼ f x;βð Þ ð1Þ

where D stands for the predictand, x is the predictor, and β
represents the regression coefficient. f is a transfer function
and is usually developed by gauge measurements or re-
analysis datasets in the past (Khan et al. 2006; Yue 2011;
Fan et al. 2012). In this paper, we employ GWR method to
form the regression function by using the outputs Of CMIP5
in the period 1976–2005. Then, we used station data tomodify
the residuals by HASM.

Before giving the transfer function f, we should trans-
form the precipitation first to avoid extreme values in the
final simulations, because of the large gradients in precip-
itation.

Prei ¼ Prei
max Preiji ¼ 1;⋯; nf g ð2Þ

where Prei stands for CMIP5 outputs, Prei is the transformed
value, and n is the grid number.

Then, Box-Cox transformation is carried to Prei to adjust
the skew of the distribution and thus obtain modified simula-
tions (Bartczak et al. 2014):

Prei ¼
lnPrei; δ ¼ 0

Pre
δ

i −1
δ

; δ≠0

8><
>: ð3Þ

where Prei is the transformed data, δ is a suitable parameter
making Prei close to normal distribution and meet the require-
ment of GWR (Harris et al. 2010). Here, δ = 4. This process
can avoid negative values in precipitation simulation (Yue
et al. 2013).

We apply GWR to give the formulation of f:

f ¼ αY; ð4Þ
where f is the downscaling value at a resolution of
1 km × 1 km, Y is the covariate matrix which represents
several independent covariates, α is a vector of unknown
parameters and is a function of longitude and latitude. A
different predictor choice will result in a different perfor-
mance. The independent variables are selected from lon-
gitude, latitude, elevation, sky view factor, and impact
coefficient of aspect (Yue 2011) based on the determina-
tion coefficient in GWR. For the annual mean precipita-
tion, elevation, longitude, latitude, and impact coefficient
of aspect are selected as the most effect factors, with R2

being equal to 0.92. On the seasonal scale, we take sum-
mer (June, July, August) and winter (December, January,
February) as examples, since summer is the main rainy
season and winter is the driest season in China. For the
precipitation in summer, longitude, latitude, elevation, and
sky view factor are chosen with R2 being equal to 0.95.
The most significant explanatory variables are longitude,
latitude, elevation, and impact coefficient of aspect, and
correspondingly, R2 is 0.96 in winter.

It is worse to use only GCM-based predictors due to the
possibility of the missing local details. The residuals produced
by the GWR are then interpolated by HASM, which describe
fluctuations about the mean. The formula of HASM is (Zhao
and Yue 2014)

Wxnþ1 ¼ vn ð5Þ

whereW is a symmetric positive definite matrix and means the
first fundamental coefficient of a surface, which denotes the
local information of the surface and v stands for the second
fundamental coefficient and represents the macro information.
Diagonal preconditioned conjugate gradient method is applied
to solve Eq. (5) to obtain a modified residual x. Thus, the final
downscaling result is

Predownscale ¼ f þ x ð6Þ

For the future climate change scenarios, it is assumed that
the established predictor-predictand relationship remains valid
(Fowler et al. 2007). Based on this, we give the formula of
precipitation in future scenarios,

Predownscale furure x; y; tkð Þ ¼ Predownscale x; y; t0ð Þ

þ HASM PreCMIP5 x; y; tkð Þ − PreCMIP5 x; y; t0ð Þð Þ

ð7Þ
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where Predownscale_furure(x, y, tk) is the downscaling results of
the future scenarios, Predownscale(x, y, t0) is the downscaling
result for the period 1976–2005 (t0), PreCMIP5(x, y, t0)is
CMIP5 result in the period 1976–2005 (t0), and PreCMIP5(x,
y, tk) is the output of CMIP5 under different RCP scenarios.
k = 1,2,3 mean different periods: 2011–2040(t1), 2041–
2070(t2), and 2071–2100(t3).

4 Results and discussion

4.1 Comparison with another statistical downscaling
method

For comparison, the proposed method as described above
is named Predownscale1, while the compared method in this
section is termed Predownscale2. The major difference be-
tween the methods is the way the data are used. In
Predownscale1, meteorological information are used for
modifying the residual while CMIP5 outputs are applied
to establish the transfer function f. In Predownscale2, mete-
orological information are used to produce the regression
function f, and CMIP5 outputs are employed to the correct
the residual. Predownscale2 has been used in climate impact
studies over the past years (Fan et al. 2012; Wang et al.
2012; Yue 2011).

The two methods are first compared on the annual
scale in Table 1. About 10 % of the total observations
are randomly chosen from the dataset and with the re-
maining data performing the interpolation calculation.
The process is repeated ten times. The accuracy of the
predictions are determined by comparing root mean
square error (RMSE), mean absolute error (MAE), and
mean relative error (MRE) between the observations and
downscaling values:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
k¼1;⋯;N

Presim−Preobsð Þ2
s

;MAE

¼ 1

N

X
k¼1;⋯;N

Presim−Preobsj j;MRE

¼ 1

N

X
k¼1;⋯;N

Presim−Preobs
Preobs

����
����;

The results show that Predownscale1 is much better than
Predownscale2 for both datasets based on the three error
indexes. Predownscale2 works worse than CMIP5 outputs
in Jiangxi area.

Downscaling results are displayed in Fig. 3, which
shows that large errors are obvious (as is shown in
Fig.3a) in CMIP5 outputs. The largest error can be

obtained from the southeast of Tibetan Plateau. A clear
similarity is shown in Fig. 3a, c, which indicates that
Predownscale2 does not modify the errors in CMIP5 outputs.
Predownscale2, which uses station data to establish the re-
gression function and the CMIP5 outputs to correct the
residual , might not have the best performance.
Predownscale1, which shows an increasing precipitation pat-
tern from northwest to southeast in China, is consistent
with the reality. This may be due to the limited station
information used in establishing regression relationship
and the relatively more information provided by CMIP5
outputs. It is clear that the data usage way is critically
important for model output. The station data is necessary
for modifying the local details by using HASM.
Moreover, it can be seen that CMIP5 outputs could not
be used directly due to the large uncertainty.

For the seasonal scale, Table 2 gives the errors of the
two downscaling methods, which shows that Predownscale1
is much better than Predownscale2 and CMIP5 outputs. The
advantage of Predownscale1 is obviously based on the vali-
date dataset in China. The reason is that we established
the predictand-predictor relationship based on the whole
area of China. The simulation accuracy in Jiangxi
Province may be higher if we consider the influence fac-
tors in this local region. For summer and winter, the re-
sults of Predownscale2 are worse than the original CMIP5
outputs.

Figure 4 displays the downscaling results. As is shown,
there are large errors in the southwest of China both for sum-
mer and winter, which occurred in CMIP5 outputs (Fig. 4a, d)
and the results of Predownscale2 (Fig. 4c, f). The distributions of
precipitation are similar for the results of CMIP5 and
Predownscale2(Fig. 4a, c, in summer and Fig. 4d, f, in winter),
indicating that Predownscale2 does not modify the errors oc-
curred in CMIP5 outputs. The results of the method
Predownscale1 are in accordance with the true situations
(Fig. 4b, e).

4.2 Comparison of different interpolators

We further compare different residual modification
methods: HASM, inverse distance weighted method
(IDW), Kriging, and Spline to give the best results.
These methods are implemented ten times in ArcGIS
10.1. For comparison, we also give the downscaling result
produced by GWR. GWR-HASM in Table 3 is the
Predownscale1. The average results of ten times show that
GWR-HASM performs the best for two verification
datasets. The worst result obviously comes from GWR,

�Fig. 4 Downscaling results on the seasonal scale. a CMIP5 output in
summer. b Predownscale1 in summer. c Predownscale2 in summer. d CMIP5
output in winter. e Predownscale1in winter. f Predownscale2 in winter
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suggesting the importance of the residual modification
process in precipitation simulation. GWR-Spline is better
than GWR but worse than others. In China, GWR-Kriging
outperforms GWR-IDW, while GWR-IDW outperforms
GWR-Kriging in Jiangxi Province according to MAE
and MRE. And from RMSE, GWR-Kriging is better than
GWR-IDW, indicating that IDW is sensitive to outliers.
The results presented here indicate that the inclusion of
residual modification leads to a significant reduction in
the error statistics and HASM is the optimal residual cor-
rection method.

We also employ the downscaling method Predownscale1
to downscale seasonal mean precipitation by using differ-
ent interpolators. Table 4 gives the simulation errors in
summer. We can see that GWR-HASM gives the best
results both in China and Jiangxi Province. For the vali-
date dataset in China, the worst method is GWR, which

indicates the importance of the residual modification in
summer precipitation simulation. Spline is worse than oth-
er interpolators in China, and GWR-Spline performs
worst in Jiangxi Province, indicating that Spline usually
produces extreme values. GWR-Kriging performs better
than GWR-IDW in China, while GWR-IDW is slightly
better than GWR-Kriging according to MAE. In winter,
the residual modification process is critically important as
is shown in Table 5. GWR provides the worst perfor-
mances in China and Jiangxi Province. GWR-HASM is
more accurate than the classical interpolation methods,
which is followed by GWR-Kriging.

Each interpolation method gives different results when
the temporal and spatial scales differ. Since the compli-
cated terrain and elevation in China, precipitation sys-
tems are non-stationary. The residual modification pro-
cess is necessary because of the various influence

Table 3 Comparison of different
interpolators in the residual
modification process on the
annual scale

Validate datasets Errors GWR GWR-
HASM

GWR-
IDW

GWR-
Kriging

GWR-
Spline

China MAE (mm) 314.56 79.08 86.30 81.12 139.16

MRE (%) 89 9 11 10 17

RMSE (mm) 377.81 121.77 124.31 124.90 161.93

Jiangxi MAE (mm) 252.55 75.36 76.64 79.05 213.47

MRE (%) 15 5 5 5 13

RMSE (mm) 285.42 95.27 97.93 96.71 345.75

Table 4 Comparison of different
interpolators in the residual
modification process for summer

Validate datasets Errors GWR GWR-
HASM

GWR-
IDW

GWR-
Kriging

GWR-
Spline

China MAE (mm) 100.37 33.58 39.79 36.14 66.95

MRE (%) 44 10 11 10 16

RMSE (mm) 134.12 52.06 56.96 55.04 118.09

Jiangxi MAE (mm) 43.32 40.76 43.77 44.21 115.30

MRE (%) 8 8 8 8 23

RMSE (mm) 54.85 51.03 58.16 57.00 188.82

Table 5 Comparison of different
interpolators in the residual
modification process for winter

Validate datasets Errors GWR GWR-HASM GWR-IDW GWR-Kriging GWR-Spline

China MAE (mm) 44.46 6.07 7.45 6.78 12.70

MRE (%) 609 29 30 29 49

RMSE (mm) 51.01 11.35 12.43 11.93 23.81

Jiangxi MAE (mm) 67.51 25.01 26.84 25.16 26.06

MRE (%) 26 9 10 9 10

RMSE (mm) 85.24 52.10 53.50 52.30 52.57
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factors. For the annual mean precipitation, GWR-HASM
method performs better than others in the case of China.
However, for Jiangxi Region, GWR-HASM, GWR-IDW,
and GWR-Kriging present similar results (Table 3). In
summer, GWR-HASM, GWR-IDW, and GWR-Kriging
give obvious different results both in China and Jiangxi
Region (Table 4). And in winter, we find that GWR-
HASM and GWR-Kriging produce similar results
(Table 5). For all cases tested, GWR-HASM shows over-
all better performance than other commonly used inter-
polation methods. The reason for these possibly is that
HASM is activated by the driving field that is produced
using other interpolators and iterated by introducing sta-
tion data. In this case, HASM performs better than other
interpolators. However, the advantage of HASM is dif-
ferent when simulating precipitation on different times or
spatial scales. This is possibly because of the finite

difference method applied in the differential equations
of HASM. The difference scheme in HASM consists
more of the distribution pattern of annual mean precipi-
tation in China (Zhao and Yue 2014).

4.3 Simulation of future precipitation under different RCP
scenarios

Climate change is one of the hot issues getting more attention
than ever. In this section, based on the hypothesis that the
predictor-predictand relationship remains valid in the future,
we used the proposed downscaling technique GWR-HASM
to predict precipitation for the period 2011–2040 (T1), 2041–
2070 (T2), and 2071–2100 (T3) in China under RCP2.6,
RCP4.5, and RCP 8.5 scenarios using Eq.(7). Figures 5, 6,
and 7 give the distributions of precipitation under different

Fig. 5 Prediction of precipitation under RCP2.6 in a 2011–2040, b 2041–2070, and c 2071–2100
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scenarios. It can be seen that the distributions of precipitation
represent an increasing pattern from northwest to southeast
over China. The difference is obvious under RCP4.5 and
RCP8.5 especially in Tibetan Plateau. Detailed information
can be obtained from Table 6 and Table 7. Increased precipi-
tation can be seen in different RCP scenarios from T1 to T2
and T2 to T3. The most significant increase occurs in RCP 8.5
from T2 to T3. The least increase is found in RCP2.6 from T2
to T3, and the corresponding amount of increased precipita-
tion is 2.12 mm. On the whole, the most notable change oc-
curs in RCP8.5 scenario.

5 Conclusion

This paper proposes a new downscaling method based on
a local regression method, GWR, and a recently

developed interpolator, HASM, by effectively using the
CMIP5 outputs and the observed climate records.
Different usage ways of CMIP5 results and the station
data are compared by employing datasets distributed ran-
domly across China and Jiangxi area. Four widely used
interpolation methods are also compared to give the opti-
mal residual modification process which produced by the
local regression method. And the future climate change
scenarios are then simulated based on the proposed meth-
od. It is indicated that GCM outputs could not be directly
applied in local scale studies. The technique that builds
transfer function using the ground observations produces
large uncertainties in the final results. Best the result is
obtained when the method uses station observations and
model results effectively. The comparison of four interpo-
lators indicates that HASM performs the best compared to
Kriging, IDW, and Spline. We also find that precipitation

Fig. 6 Prediction of precipitation under RCP4.5 in a 2011–2040, b 2041–2070, and c 2071–2100
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simulation is strongly improved with residual correction
by using the meteorological observations. The success of
the proposed technique lies in the effective use of the
datasets and the modification process of the residual by
HASM, which can fuse the results of other interpolators

and point data effectively. Simulations of future precipita-
tion show that precipitation exhibits overall increasing
trend from T1 to T2 and T2 to T3 in different RCP sce-
narios. The most significant increase occurs in RCP8.5
from T2 to T3, while the smallest rise is found in

Fig. 7 Prediction of precipitation under RCP8.5 in a 2011–2040, b 2041–2070, and c2071–2100

Table 6 Simulation information of precipitation in each period under different RCP scenarios

RCP scenarios RCP2.6 RCP4.5 RCP8.5

Periods T1 T2 T3 T1 T2 T3 T1 T2 T3

Max. (mm) 2737.05 2779.87 2736.87 2749.17 2786.68 2800.45 2739.12 2768.16 2781.98

Min. (mm) 21.84 21.72 20.94 20.99 24.67 29.38 22.54 29.85 36.58

Mean (mm) 611.37 633.52 635.64 607.40 643.21 664.71 605.56 651.19 698.30

Std. (mm) 496.75 508.64 509.22 498.23 509.38 513.06 491.72 497.44 503.05
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RCP2.6 from T2 to T3. Choosing optimal predictors is
significantly important for predicting future scenarios in
the statistical downscaling methods. Further researches
will focus on the choice of different explanatory variables
for different temporal and spatial scales. Moreover, the
local linear relationship in GWR method should be mod-
ified to nonlinear since the precipitation heterogeneity es-
pecially in mountain areas.
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