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Abstract Monthly rainfall in the Heihe River Basin (HRB)
was simulated by the dynamical downscaling model (DDM)
and statistical downscaling model (SDM). The rainy-season
rainfall in the HRB obtained by SDM and DDM was com-
pared with the observed datasets (OBS) over the period of
2003–2012. The results showed the following: (1) Both
methods reasonably reproduced the spatial pattern of rainy-
season rainfall in the HRB with a high-level skill. Rainfall
simulated by DDM was better than that by SDM in the up-
stream, with biases of −12.09 and −13.59 %, respectively;
rainfall simulated by SDM was better than that by DDM in
the midstream, with biases of 3.91 and −23.22 %, respective-
ly; there was little difference between the rainfall simulated by
SDM and DDM in the downstream, with biases of −10.89 and
−9.50 %, respectively. (2) Both methods reasonably
reproduced monthly rainfall in rainy season in different sub-
regions. Rainfall simulated by DDM was better than that by
SDM in May and July in the upstream, whereas rainfall sim-
ulated by SDM was closer to OBS except August in the mid-
stream and except August and September in the downstream.
(3) For multi-year mean rainy-season rainfall in different sta-
tions, there was a little difference between the rainfall simu-
lated byDDM and SDM in Tuole station in the upstream, with

biases of −13.16 and −12.40 %, respectively; rainfall in
Zhangye station simulated by SDM was overestimated with
bias of 14.02 %, and rainfall simulated by DDM was
underestimated with bias of −14.60 %; rainfall in Dingxin
station simulated by DDM was reproduced better than that
by SDM, with biases of −19.34 and −32.75 %, respectively.

1 Introduction

Northwest China accounts for one third of the territory, but
only 5 % of the water resources of China. Water shortage is
one of the most important factors that restrict the economic
development and ecological deterioration for the Northwest
region. In the background of global climate continuing to
warm, the tendency of water resources in the Northwest arid
area of China must be carefully considered by the strategy
formulation for regional economy development and the man-
agement of water resources and also attracts high attention of
research community (Lan et al. 2005). The Heihe River Basin
(HRB) is the second largest inland river basin in Northwest
China, which is located in 98–101.5° E, 38–42° N, with the
drainage area of about 130 km2 and a total length of about
810 km. The land type of HRB can be divided into three
categories: mountain, oasis, and desert (Cheng et al. 2006).
Water resources are the core of the Heihe River research and
the link of ecological and economic system. Rainfall is one of
the most important parameters of the hydrological system and
the main sources of water resources in the HRB. Therefore,
the rainfall data with high spatial resolution has important
guiding significance on the sustainable development of soci-
ety, economy and environment, and the hydrological research
in Northwest China. Global climate models (GCMs) or reanal-
ysis data could be used to simulate rainfall scenarios.
However, GCMs are not able to provide reliable information
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on a regional scale. At the same time, the spatial distribution of
ground observations is uneven and sparse, with only 19 me-
teorological stations in the HRB region. Hence, downscaling
methods could be applied to compensate for these deficiencies
(Gao et al. 2008).

Downscaling techniques are often used to derive high spa-
tial resolution rainfall datasets from GCMs or reanalysis data,
which can be broadly divided into two approaches: dynamical
downscaling (e.g., Druyan et al. 2002; Lenderink et al. 2007;
Denis et al. 2002) and statistical downscaling (e.g., Wilby
et al. 1997, 2000; von Storch et al. 1993; Maraun et al.
2011). Dynamical downscaling uses GCMs or reanalysis data
as boundary and initial conditions to drive a regional climate
model (RCM), which includes numerous physical processes
and does not depend on observations. Numerous dynamical
downscaling models have been used to simulate rainfall in the
USA (e.g., Harding et al. 2014), West Africa (e.g., Siegmund
et al. 2014), Southwest Asia (e.g., Xu et al. 2012), and Europe
(e.g., Murphy, 1999; Schmidli et al. 2007). In the HRB, some
RCMs were applied to predict regional climate change (e.g.,
Pan et al. 2012; Gao et al. 2006, 2007; Liu et al. 2008).
However, these RCMs adopted international standard param-
eters without considering the effects of the complex terrain
and surface features (Xiong et al. 2013).

Statistical downscaling establishes statistical relationships
between large-scale GCMs or reanalysis data (predictors) and
local-scale meteorological variables (predictands) and extends
these relationships to obtain the time series of predictands
from the predictors. Numerous statistical downscaling
methods have been applied to simulate rainfall in many re-
gions. Storch et al. (1993) used canonical correlation analysis
(CCA) to construct a simple statistical regression model to
simulate wintertime rainfall of the Iberian Peninsula in
Europe. The analog method was used to simulate rainfall in
the USA (Zorita et al., 1994). Principal component regression
models were used to simulate winter rainfall in Southern
Australia (Li et al. 2008). However, the statistical downscaling
technique has not been applied to the study of hydrological
cycle in the HRB with scarcely and unevenly meteorological
observations.

There have been numerous studies to compare the skill of
simulating rainfall in many regions by statistical and dynam-
ical downscaling methods (e.g., Murphy 1999; Mearns et al.
1999; Mehrotra et al., 2014). Furthermore, the period of rain-
fall in the HRB is mainly concentrated in the rainy season
(from May to September) (Zhang et al., 2008). Therefore, in
the paper, a dynamical downscalingmodel (DDM)with a high
resolution of 3 km was build up based on the Regional
Integrated Environmental Model System (RIEMS 2.0). The
observed monthly rainfall in the HRB (predictands) and 14
reanalysis variables (predictors) were used to establish a sta-
tistical downscaling model (SDM) by the stepwise regression
method. Monthly rainfall in rainy season in the HRB over the

period of 2003–2012 was simulated by SDM and DDM to
compare with the observed datasets (OBS). The main goals
are to systematically compare the capability of simulating
monthly rainfall and explore the advantages and disadvan-
tages of the two downscaling models in the HRB.

2 Data and methods

2.1 Data

2.1.1 Observation stations datasets

Monthly rainfall of 10 meteorological observation stations
selected from 19 stations, which include with missing values,
are used as predictands to fit the statistical model (Fig 1,
Table 1). The data from 1971 to 2012 is obtained from the
Chinese Meteorological Data Sharing Service System (http://
cdc.cma.gov.cn).

2.1.2 Predictors selection

In the study, sea level pressure (SLP), wind speed, and direc-
tion at 850, 700, and 500 hPa (U/V850, U/V700, U/V500),
geopotential height at 1000, 850, 700, and 500 hPa (H1000,
H850, H700, H500), and specific humidity at 850, 700, and
500 hPa (S850, S700, S500) are selected as predictors accord-
ing to Wetterhall et al. (2006). These 14 predictors with res-
olution of 2.5° × 2.5° are obtained from the National Center
for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) reanalysis project
(Kalnay et al. 1996).

2.2 Statistical downscaling model

Firstly, monthly rainfall over the period of 1971–2002 as train-
ing sample is used to establish the statistical model. The pre-
dictors and predictands are standardized as follows:

Y= (X -b)/c, (1)
where Y is the standard value; X is a predictor (SLP, U/V850,
U/V700, U/V500, H1000, H850, H700, H500, S850, S700, or
S500) or a predictand (monthly rainfall); b is the mean month-
ly value of X; and c is the standard deviation of X.

Then, principal component analysis (PCA) to these 14
predictors is applied. The general aim of PCA is to sim-
plify a spatial–temporal dataset by transforming it to spa-
tial patterns of variability and temporal projections of
these patterns. The associated temporal projections are
the principal components (PCs) and are the temporal co-
efficients of the empirical orthogonal function (EOF) pat-
terns. PCA helps to reduce the numbers of variables in a
dataset without losing much of the information. This ob-
jective method can be achieved by including only the first
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few PCs (Ruping et al., 2002). Therefore, the first four
PCs of every predictor were selected to establish statisti-
cal models.

Last, stepwise regression method is used to develop the
model as follows:

Y tð Þ ¼ ∑
N

n¼1
αnX n tð Þ þεt , (2).

where Y is the predictand (monthly rainfall), X is the predict
variable (N=56), α is the regression coefficient, and εt is the
residual not described by the statistical model.

For simplicity, only the selected predictors for the month of
July at 10 stations are shown in Table 2. It can be seen that
S700 and S850 are the most important predictors for rainfall in
the HRB.

2.3 Dynamical downscaling model

The high-resolution RCM for HRB was built up. The key
parameter datasets of land surface process provided by the
Environmental and Ecological Science Data Center for West
China, National Natural Science Foundation of China, which
included the soil water content, soil water potential, soil hy-
draulic conductivity, field capacity, and wilt point moisture
content, were recalibrated (Xiong et al. 2013). Initial and lat-
eral boundary conditions for wind, temperature, water vapor,
and surface pressure were extracted from ERA–interim re-
analysis data (Dee et al., 2011), which was downloaded from
the European Center for Medium Range Weather Forecasts
Data Server. The simulated domain encompassed the entire
HRB region, centered at 40.30° N, 99.50° E; the horizontal

Fig. 1 Spatial distribution of
meteorological stations in the
HRB

Table 1 Coordinates and altitudes of stations

Station NO. Longitude (°N) Latitude (°E) Altitude (m)

Ejinaqi 52,267 101.07 41.95 940.5

Guaizihu 52,378 102.37 41.37 960.0

Dingxin 52,446 99.52 40.30 1177.4

Jinta 52,447 98.90 40.00 1270.5

Jiuquan 52,533 98.48 39.77 1477.2

Gaotai 52,546 99.83 39.37 1332.2

Alashanyouqi 52,576 101.68 39.22 1510.1

Tuole 52,633 98.42 38.80 3367.0

Zhangye 52,652 100.43 38.93 1482.7

Yongchang 52,674 101.97 38.23 1976.9

Table 2 Variables were selected for the month of July at 10 stations

NO. July

1 V500(2), S850(1), H500(4)

2 S850(1), V500(2), V700(2)

3 V50(2), S700(1), U500(2), H700(3)

4 S700(1), U500(2), H500(2)

5 V850(2), S700(4), S700(1), H850(3)

6 S850(3), S850(1), V500(3), SLP(2)

7 H500(2), U850(2), S850(1)

8 H850(3), S700(1), H500(2), S700(4)

9 S700(1), U850(2), V500(2), U500(2), H500(1)

10 S850(1), U850(2)

The numbers (1)–(4) represent 1–4 PC of every predictor, respectively
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mesh consisted of 181 and 221 grid points in the longitudinal
and latitudinal directions, respectively, with a horizontal reso-
lution of 3 km. The high-resolution RCM have finished sim-
ulating the rainfall in the HRB for the period from January,
2003 to December, 2012 (Xiong et al. 2013).

3 Results

3.1 Spatial distribution of rainy-season rainfall

The annual rainfall in the HRB is 400–700 mm in the up-
stream at Qilian Mountain, 100–200 mm in the midstream at
the irrigated oases, and 15–50 mm in the downstream at the
desert. The HRB is divided into three subregions according to
the characteristics of rainfall: upstream (Yongchang and Tuole
stations), midstream (Gaotai, Alashanyouqi, Jiuquan, and
Zhangye stations), and downstream (Dingxin, Jinta, Ejinaqi,
and Guaizihu stations) (Cheng et al. 2006).

Rainy-season rainfall in three subregions over the period of
2003–2012 is simulated by SDM and DDM. From Table 3, it
can be seen that the observed rainfall in the upstream is
249.38 mm. Rainfall simulated by SDM is 219.25 mm with
bias of −12.09 %, and RMSE and mean absolute error (MAE)
between SDM and OBS are 41.30 and 33.26 mm, respective-
ly; whereas rainfall simulated by DDM is 225.92 mm with
bias of −9.42 %, and RMSE and MAE between DDM and
OBS are 42.09 and 35.52mm, respectively. Rainfall simulated
by DDM is better than that by SDM in the upstream.

The observed rainfall in the midstream is 95.61 mm.
Rainfall simulated by SDM is 99.35 mm with bias of
3.91 %, and RMSE and MAE between SDM and OBS are
20.14 and 18.10 mm, respectively; whereas rainfall simulated
by DDM is 73.42 mm with bias of −23.22 %, and RMSE and
MAE between DDM and OBS are 37.74 and 32.78 mm, re-
spectively. Rainfall simulated by SDM is better than that by
DDM in the midstream.

The observed rainfall in the downstream is 43.49 mm.
Rainfall simulated by SDM is 38.75 mm with bias of
−10.89 %, and RMSE and MAE between SDM and OBS
are 14.44 and 12.60 mm, respectively; whereas rainfall simu-
lated by DDM is 39.36 mm with bias of −9.50 %, and RMSE
and MAE between DDM and OBS are 12.29 and 9.87 mm,

respectively. There was a little difference between the rainfall
simulated by SDM and DDM in the downstream.

In general, both methods reasonably reproduced the rainy-
season rainfall in the HRB with a high-level skill. Rainfall
simulated by DDM is better than that by SDM in the up-
stream, with biases of −12.09 and −13.59 %, respectively;
rainfall simulated by SDM is better than that by DDM in the
midstream, with biases of 3.91 and −23.22 %, respectively;
there is little difference between the rainfall simulated by
SDM and DDM in the downstream, with biases of −10.89
and −9.50 %, respectively. Both methods have their own
advantages.

Figure 2 is the time series of rainy-season rainfall. The
observed rainfall in the upstream is in the range of 1.40–
1.98 mm/day. Rainfall simulated by SDM is in the range of
1.19–1.63 mm/day with maximal bias of −28.64 % in 2011;
whereas rainfall simulated by DDM is in the range of 1.07–
1.92 mm/day with maximal bias of −32.20 % in 2003.

The observed rainfall in the midstream is in the range of
0.46–0.82 mm/day. Rainfall simulated by SDM is in the range
of 0.48–0.79 mm/day, all of biases are in the range of −50–
50 %; whereas rainfall simulated by DDM is in the range of
0.19–0.75 mm/day, which gives biases larger than 50 % in
2003–2005 and 2011.

The observed rainfall in the downstream is in the range of
0.18–0.41 mm/day. The rainfall simulated by SDM is in the
range of 0.13–0.38mm/day, which gives positive biases larger
than 50 % in 2006; whereas rainfall simulated by DDM is in
the range of 0.12–0.53 mm/day with bias of −38.95–36.04 %.

In general, most biases of two models are in the range of
−50–50 %, which are consistent with the IPCC TAR
(Houghton et al. 2001); thus, both SDM and DDM well sim-
ulate the time series of rainy-season rainfall in the HRB.

3.2 Monthly rainfall in rainy–season

Figure 3 shows monthly rainfall in the HRB. From Fig. 3, it
can be seen that the observed rainfall in the upstream is in the
range of 0.94 (May)–2.50 (July) mm/day. Rainfall simulated
by SDM is in the range of 0.81 (May)–2.06 (July) mm/day
with biases of −19.87–1.84 %; whereas rainfall simulated by
DDM is in the range of 1.00 (May)–2.17 (July) mm/day with

Table 3 OBS and rainy-season
rainfall simulated by SDM and
DDM, bias, and RMSE andMAE
between OBS and two models in
the subregions of HRB

Statistical downscaling model Dynamical downscaling model

OBS
(mm)

SDM
(mm)

Bias
(%)

RMSE
(mm)

MAE
(mm)

DDM
(mm)

Bias
(%)

RMSE
(mm)

MAE
(mm)

Upper 249.38 219.25 −12.09 41.30 33.26 225.92 −9.42 42.09 35.52

Middle 95.61 99.35 3.91 20.14 18.10 73.42 −23.22 37.74 32.78

Lower 43.49 38.75 −10.89 14.44 12.60 39.36 −9.50 12.29 9.87
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biases of −23.67–11.03 %. For different month, rainfall sim-
ulated by DDM is better than that by SDM in May and July.

The observed rainfall in the midstream is in the range of
0.35 (May)–0.91 (July) mm/day. Rainfall simulated by SDM
is in the range of 0.38 (May)–0.98 (July) mm/day with biases
of −24.78–15.65 %; whereas rainfall simulated by DDM is in
the range of 0.14 (May)–1.03 (September) mm/day and tends
to monthly increase with biases of −63.81–35.62 %, which
gives negative biases larger than 50 % in May and June. For a
different month, rainfall simulated by SDM is close to OBS
than that by DDM except August.

The observed rainfall in the downstream is in the range of
0.13 (May)–0.47 (July) mm/day. Rainfall simulated by SDM
is in the range of 0.08 (May)–0.50 (July) mm/day with biases
of −41.54–15.30 %; whereas rainfall simulated by DDM is in

the range of 0.07 (May)–0.43 (September) mm/day with
biases of −47.43–33.29 %. For a different month, rainfall sim-
ulated by SDM is closer to OBS than that by DDM except
August and September.

In general, most biases of monthly rainfall simulated by
SDM and DDM are in the range of −50–50 %, which are
consistent with the IPCC TAR. Therefore, both methods rea-
sonably reproduce the monthly rainfall in rainy–season in dif-
ferent subregions. Rainfall simulated by DDM is better than
that by SDM in May and July in the upstream; whereas rain-
fall simulated by SDM is closer to OBS except August in the
midstream and except August and September in the down-
stream. In addition, the maximal and minimal values of OBS
in three subregions are in July and May, respectively.
However, DDM cannot capture this pattern in the midstream
and downstream.

Fig. 2 The time series of rainy-season rainfall (mm/day) in the subre-
gions of HRB: a upstream, b midstream, and c downstream

Fig. 3 Monthly rainfall (mm/day) in rainy-season in the subregions of
HRB: a upstream, b midstream, and c downstream
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3.3 Comparison with stations

Tuole meteorological observation station, a typical station in
the upstream, is located in 98.42° N, 38.80° E. The average
annual rainfall is more than 300 mm over the period of 1971–
2012. Figure 4 shows the rainfall obtained by SDM and DDM
are comparedwith the OBS in July. The correlation coefficient
between DDM and OBS is 0.43 and reaches a significance
level of 1 %, and it is 0.23 between SDM and OBS.

Figure 5 shows the monthly rainfall in rainy season in
Tuole, Zhangye, and Dingxin station. The observed rainfall
in Tuole station in the upstream is in the range of 1.13 (May)–
3.33 (July) mm/day. Rainfall simulated by SDM is in the
range of 1.00 (May)–2.56 (July) mm/day with biases of
−32.56–13.96 %; whereas rainfall simulated by DDM is in
the range of 0.80 (September)–3.13 (July) mm/daywith biases
of −38.72–3.54 %. Biases of DDM are minor than that of
SDM in May, June, and July.

The observed rainfall in Zhangye station in the midstream
is in the range of 0.50 (May)–0.93 (September) mm/day.
Rainfall simulated by SDM is in the range of 0.36 (May)–
1.27 (September) mm/day with biases of −28.39–44.87 %;
whereas rainfall simulated by DDM is in the range of 0.18
(May)–1.19 (September) mm/day with biases of −64.18–
27.43 %, which gives significant underestimates in May and
June with biases larger than 50 %. Furthermore, similar to the
midstream, rainfall in Zhangye station simulated by DDM
tends to monthly increase. Biases of SDM are minor than that
of DDM in May, June, and September.

The observed rainfall in Dingxin station in the downstream
is in the range of 0.12 (May)–0.58 (July) mm/day. Rainfall
simulated by SDM in the range of 0.05 (May)–0.58 (July)
mm/day with biases of −63.79–0.04 %, which gives biases
larger than 50 % in May and August; whereas rainfall simu-
lated by DDM is in the range of 0.08 (June)–0.54 (September)
mm/day with biases of −68.59–40.23 %, which gives a under-
estimate with bias larger than 50 % in June. Biases of DDM
are minor than that of SDM in May, August, and September.

The multi-year average rainy-season rainfall in three sta-
tions is listed in Table 4. The observed rainfall in Tuole station

is 313.85 mm. Rainfall simulated by SDM is 272.55 mmwith
bias of −13.16 %, and RMSE and MAE between SDM and
OBS are 56.41 and 43.01 mm, respectively; whereas rainfall
simulated by DDM is 274.94 mm with bias of −12.40 %, and
RMSE and MAE between DDM and OBS are 59.42 mm and
44.01 mm, respectively. There was a little difference between
the rainfall simulated by DDM and SDM.

The observed rainfall in Zhangye station is 113.19 mm.
Rainfall simulated by SDM is 129.06 mm with bias of
14.02 %, and RMSE and MAE between SDM and OBS are
37.31 and 30.54 mm, respectively; whereas rainfall simulated
by DDM is 96.70 mm with bias of −14.60 %, and RMSE and
MAE between DDM and OBS are 46.08 and 37.82 mm,
respectively.

The observed rainfall in Dingxin station is 52.97 mm.
Rainfall simulated by SDM is 35.62 mm with bias ofFig. 4 Rainfall (mm/day) in July in Tuole station

Fig. 5 Monthly rainfall (mm/day) in a Tuole station, b Zhangye station,
and c Dingxin station
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−32.75 %, RMSE and MAE between SDM and OBS are
26.08 and 22.21 mm, respectively; whereas rainfall simulated
by DDM is 41.92 mm with bias of −19.34 %. RMSE and
MAE between DDM and OBS are and 25.24 and
20.72 mm, respectively. Rainfall simulated by DDM is
reproduced better than that by SDM in Dingxin station.

In general, for multi-year mean rainy-season rainfall in dif-
ferent stations, there is a little difference between the rainfall
simulated by DDM and SDM in Tuole station in the upstream,
with biases of −13.16 and −12.40 %, respectively; rainfall in
Zhangye station simulated by SDM is overestimated with bias
of 14.02 %, and rainfall simulated by DDM is underestimated
with bias of −14.60 %; rainfall in Dingxin station simulated by
DDM is reproduced better than that by SDM, with biases of
−32.75 and −19.34 %, respectively. For a different month,
biases of DDM are minor than that of SDM in May, June,
and July in Tuole station, and in May, August, and September
in Dingxin station; whereas biases of SDM are minor than that
of DDM in May, June, and September in Zhangye station.

4 Discussion and conclusion

Statistical and dynamical downscaling methods simulated
monthly rainfall of rainy season in three subregions of the
HRB. The results showed the following: (1) Both methods
reasonably reproduced the spatial pattern of rainy-season rain-
fall in the HRB with a high-level skill. Rainfall simulated by
DDM was better than that by SDM in the upstream, with
biases of −12.09 and −13.59 %, respectively; rainfall simulat-
ed by SDM was better than that by DDM in the midstream,
with biases of 3.91 and −23.22 %, respectively; there was a
little difference between the rainfall simulated by SDM and
DDM in the downstream, with biases of −10.89 and −9.50 %,
respectively. For a different month, rainfall simulated by
DDM was better than that by SDM in May and July in the
upstream, whereas rainfall simulated by SDM was closer to
OBS except August in the midstream and except August and
September in the downstream. (2) For multi-year mean rainy-
season rainfall in different stations, there was little difference
between the rainfall simulated by DDM and SDM in Tuole
station in the upstream, with biases of −13.16 and −12.40 %,
respectively; rainfall in Zhangye station simulated by SDM

was overestimated with bias of 14.02 %, and rainfall simulat-
ed by DDM was underestimated with bias of −14.60 %; rain-
fall in Dingxin station simulated by DDM was reproduced
better than that by SDM, with biases of −32.75 and
−19.34 %, respectively. For a different month, biases of
DDM were minor than that of SDM in May, June, and July
in Tuole station, and in May, August, and September in
Dingxin station, whereas biases of SDMwere minor than that
of DDM inMay, June, and September in Zhangye station. The
correlation coefficient of the rainfall in Tuole station between
DDM and OBS was 0.43 in July and reached a significance
level of 1 %.

Statistical downscaling methods in present studies were
implemented in the regions possessing enoughmeteorological
observation stations and good records of rainfall. Thus, SDM
had its own shortcoming when applied to the regions lacking
of stations, such as the HRB. Therefore, we should think about
using satellite-sensing data to assess the capability of SDM
and DDM to simulate rainfall in the HRB.
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