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Abstract The Huai River basin is one of the major supplier of
agricultural products in China, and droughts have critical im-
pacts on agricultural development. Good knowledge of drought
behaviors is of great importance in the planning and manage-
ment of agricultural activities in the Huai River basin. With the
copula functions to model the persistence property of drought,
the probabilistic seasonal drought forecasting models have
been built in the Huai River basin. In this study, droughts were
monitored by the Standardized Precipitation Evapotranspira-
tion Index (SPEI) with the time scales of 3, 6, and 9 months,
and their composite occurrence probability has been used to
forecast the seasonal drought. Results indicated that the uncer-
tainty related to the predicted seasonal drought is larger when
more severe droughts occurred in the previous seasons, and the
severe drought which occurs in summer and autumn will be
more likely to be persistent in the next season while the severe
drought in winter and spring will be more likely to be recovered
in the subsequent season. Furthermore, given the different
drought statuses in the previous season, spatial patterns of the
predicted drought events with the largest occurrence probability

have also been investigated, and results indicate that the Huai
River basin is vulnerable to the extreme drought in most parts
of the basin, e.g., the severe drought in winter will be more
likely to be persistent in spring in the central part of the southern
Huai River basin. Such persistent drought events pose serious
challenges for planning and management of agricultural irriga-
tion, then results of the study will be valuable for the planning
of crop cultivation or mitigation of the losses caused by drought
in the Huai River basin, China.

1 Introduction

As a prolonged water deficit event, drought has a devastating
effect on agriculture, water supply, ecosystem, public health,
energy, and the economy, being challenging topics in water
resource management. It is estimated that the damages incurred
from the drought are far more than other meteorological disas-
ters such as floods and hurricanes, and the US economic losses
caused by droughts are as high as 6 to 8 billion dollars each year
(Wilhite, 2000). In recent decades, with the population growth
and expansion of agricultural, energy, and industrial sectors, it
has been found that the demand for water resources has in-
creasedmany fold and water scarcity has been occurring almost
every year in many parts of the world (e.g., Mishra and Singh,
2010). Therefore, there is an urgent need to develop an algo-
rithm for characterizing and predicting droughts; however, this
cannot be achieved easily either through physical or statistical
analyses (Kao and Govindaraju, 2010).

Unlike other extreme hydrological events such as floods,
the evolution of drought is slow, and then an effective mitiga-
tion of the most adverse drought impacts is possible based on
a timely monitoring of an incoming drought. There are several
studies that have focused on drought forecasting, correspond-
ing to the drought indicators computed using dynamic or
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statistical model, and the drought forecasting is generally cat-
egorized as dynamic drought forecasting (e.g., Yuan et al.
2013; Niu et al. 2015) and statistical drought forecasting
(e.g., AghaKouchak, 2014; Salvadori and De Michele,
2015); this study focuses on the statistical drought forecasting.
Based on the persistence property of accumulated soil mois-
ture, AghaKouchak (2014) found that the 2012 US summer
drought was predictable several months in advance with the
ensemble streamflow prediction (ESP) method. Recently, the
copula functions have been widely used to model the depen-
dence structure between random variables (Nelsen, 2006;
Zhang et al. 2012). With the copula function to model the
persistence property of the Standardized Streamflow Index
(SSI), a probabilistic seasonal drought forecasting method
has been proposed by Madadgar and Moradkhani (2013) that
a future drought status can be estimated given the earlier
drought conditions. It has been found that the results of the
new method were generally in agreement with the ESP meth-
od; however, the forecast uncertainty of the new method is
more reliable than that of the ESP method (e.g., Madadgar
and Moradkhani, 2013). Therefore, this method has also been
used in this current study.

When a drought event occurs, moisture deficits are ob-
served in many hydrologic variables, such as precipitation,
streamflow, and soil moisture. Focusing on the deficits in pre-
cipitation, the meteorological droughts have been analyzed in
this study. Due to the stochastic nature of water demands in
different regions, many drought indices have been developed
and applied to quantify and monitor the development of
drought. As it is simple to calculate and be able to describe
both short-term and long-term drought impacts through vari-
ous time scales of precipitation anomalies, the Standardized
Precipitation Index (SPI) has been widely used (Shiau, 2006;
Cancelliere et al. 2007; Kao and Govindaraju, 2010; Zhang
et al. 2012; Zhang et al. 2013a; Sanusi et al. 2015). However,
the SPI cannot capture the main impact of increased temper-
atures on water demand, as the evapotranspiration may in-
crease with global warming, then as an extension of the widely
used SPI, Vicente-Serrano et al. (2010) proposed the Stan-
dardized Precipitation Evapotranspiration Index (SPEI) which
is designed to take into account both precipitation and poten-
tial evapotranspiration (PET) in determining drought. The
SPEI has also been widely used in the analysis and evaluation
of drought (Vicente-Serrano et al. 2013; Yu et al. 2014; Zhang
et al. 2015). In this case, the SPEI was used in monitoring of
droughts in this study.

Furthermore, owing to the various time scales of SPEI,
there may be some confusions due to inconsistent results of
droughts at different time scales, and this is a major dilemma
so far that the drought status being assessed based on one
drought index often does not correspond well with that based
on different drought index because of complex mechanisms
behind occurrence of drought regimes (e.g., Kao and

Govindaraju, 2010). In addition, droughts usually result from
cumulative effects of water shortages over different periods of
time; it is necessary to clarify information from various
sources to successfully assess a drought. Therefore, SPEIs at
various time scales were analyzed to formulate a complete
picture of drought regimes in the study.

Located in eastern China between the Yangtze and the Yel-
low River basins, the Huai River basin is the main cropping
area in China, accounting for 12 % of the national total arable
land. However, due to frequent extreme droughts, the Huai
River basin is very vulnerable to drought hazards; it has been
found that the recurrent frequency of drought in the Huai River
basin is nearly once every 4 years from 1960 to 2009 and the
occurrence frequency has increased significantly since 2000
(Yan et al. 2013). In addition, the Huai River basin is densely
populated with a population of 16.2 % of the total national
population (FAO, 2015); the population density is approxi-
mately four times higher than the national average. Due to the
critical role of the Huai River basin in the socioeconomic de-
velopment of China, good understanding of drought behaviors,
particularly with the help of improved drought forecasting
model, will be of great importance in developing appropriate
human mitigation to drought hazards in the Huai River basin.
This is the major motivation of this study.

Therefore, the objectives of this study are as follows: (1) to
develop a probabilistic forecasting model of seasonal drought
based on copula functions and (2) to integrate information of
SPEIs with different time scales in both space and time, pic-
turing drought variations across the Huai River basin. This
paper is organized as follows: introduction of study region
and data is presented in Section 2, and methods of analysis
are depicted in Section 3. Results and discussion thereof are
described in Section 4, which is followed by Section 5 as the
conclusion of this study.

2 Study region and data

The Huai River basin (111° 55′ E–121° 25′ E; 30° 55′ N–36°
24′ N) is located in eastern China between the Yangtze River
basin and the Yellow River basin (Fig. 1), with the drainage
area of 270,000 km2. Located in the climate transition zone of
China, the annual mean temperature of the Huai River basin
ranges from 11 to 16 °C and the long-term annual average
precipitation is about 920 mm. Generally, the precipitation de-
creases from south to north, from the mountainous area to the
plains, and from coastal to inland (e.g., Gao et al. 2015). Be-
sides, spatial distribution of precipitation is extremely uneven
within a year; about 50–80 % of the annual total precipitation
occurs during June and September. The Huai River basin is one
of the most important grain-producing regions in China, and
there are 12.72million ha of arable land in 2005, approximately
12 % of China’s total arable land. The main crops in the Huai
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River basin are wheat, rice, corn, potato, soybean, cotton, and
canola. In addition, the population in the basin is around 170
million, and its population density is approximately four times
higher than the national average (Duan et al. 2014). In this
sense, thorough investigation of droughts in the Huai River
basin is theoretically and practically relevant in social stability
and also food security in China.

In this study, daily precipitation and temperature data (max-
imum and minimum temperature) covering the period of 1960
to 2013 at 41 meteorological stations were collected from the
National Meteorological Information Center of the China Me-
teorological Administration. Locations of meteorological sta-
tions can be found in Fig. 1. For daily precipitation dataset,
there are four meteorological stations containing missing days
with the largest missing rate of 0.47 %. However, for daily
temperatures, there are 19 and 24 meteorological stations con-
taining missing days, respectively, for the maximum and min-
imum temperature, with the largest missing rate of 0.48 %,
and most of them had less than 0.01 % of total missing values.
The missing data of specific days were filled in by the long-
term average value of the same days of other years. In this
paper, the probabilistic forecastingmodels of seasonal drought
are calibrated and validated over the periods of 1960–2010
and 2011–2013, respectively.

3 Methodology

3.1 Standardized Precipitation Evapotranspiration Index

The SPEI was proposed by Vicente-Serrano et al. (2010) to
represent the true drought conditions of the study region under
the influences of warming climate. The SPEI is designed to
take into account both precipitation and potential evapotrans-
piration (PET) in picturing drought, and PET is the amount of
evaporation and transpiration that would occur if a sufficient
water is available. In the calculation of SPEI, a modified form

of the Hargreaves equation (Hargreaves, 1994; Droogers and
Allen, 2002) was used to compute the monthly PET. Then the
difference between monthly precipitation (P) and monthly
PET for the month i is calculated as Di = Pi − PETi, which
provides a simple measure of the water deficit for the months
under consideration. Similar to SPI, the SPEI is also a multi-
scalar standard normal drought index, and the calculated Di

values are aggregated at different time scales as follows:

Dk
n ¼

X k−1

i¼0
Dn−i ð1Þ

where k is the time scale and n is the time. As suggested by
Vicente-Serrano et al. (2010), the three-parameter log-logistic
distribution has been selected to model the Dk series. With the
cumulative distribution function F(x) of the log-logistic distri-
bution, SPEI was obtained as the standardized value of F(x),
and details of the calculation can be referred to Vicente-Serrano
et al. (2010). In this study, the SPEI is calculated based on the R
package of BSPEI^ (Beguería and Vicente-Serrano, 2013).
Same as the drought classification for SPI (Madadgar and
Moradkhani, 2013; Madadgar and Moradkhani, 2014), the
drought classification determined by the U.S. Drought Monitor
(http://droughtmonitor.unl.edu/AboutUs/ClassificationScheme.
aspx) has also been used for SPEI (Table 1).

Fig. 1 Locations of the study region, the Huai River basin, and the meteorological stations

Table 1 Drought classification for the standardized indices (SI), and
there are minor modifications compared to the drought classification
defined by the U.S. Drought Monitor

Drought category Drought severity SI value

D0 Abnormally dry (−0.7, −0.5]
D1 Moderate (−1.2, −0.7]
D2 Severe (−1.5, −1.2]
D3 Extreme (−2.0, −1.5]
D4 Exceptional (−∝, −2.0]
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3.2 Copula functions

Copulas are multivariate distribution functions on the n-di
mensional unit cube with uniform marginal on the interval
[0, 1], that is, C: [0, 1]n → [0, 1]. Based on Sklar’s theorem
(Sklar, 1959), a multivariate distribution F(x1, x2, …, xn) can
be expressed by a copula as follows:

F x1; x2; :::; xnð Þ ¼ C FX 1 x1ð Þ; FX 2 x2ð Þ; :::; FXn xnð Þ½ �
¼ C u1; u2; :::; unð Þ

ð2Þ

where FXi (xi), denoted by ui in the copula definition, represents
the marginal distribution of the ith variable and C is the copula
cumulative distribution function. Owning to the fact that the
copula can model the dependence structure between random
variables irrespective of the types of marginal involved, the cop-
ula functions have been widely used in various areas (Nelsen,
2006; Zhang et al. 2012; Zhang et al. 2013b; Madadgar and
Moradkhani, 2013; Madadgar and Moradkhani, 2014). In this
study, six bivariate copula functions from the Archimedean
(Gumbel, Clayton and Frank), Elliptical (Gaussian and t), and
Plackett copulas have been used to represent the correlation of
the drought in two adjacent seasons. Details of these six bivar-
iate copula functions can be referred to Nelsen (2006), Zhang
et al. (2013a, b), and Chen et al. (2015).

3.3 Copula fitting

To appropriately join the marginal distributions of dependent
variables, a best copula has to be selected from these six
aforementioned copula functions. In this study, goodness-of-
fit (GOF) tests based on the Cramér-von Mises statistic (Sn)
have been used. As a measure of distance between the empir-
ical and parametric copulas (CEMP andCθ), the Sn is defined as
that (Genest et al. 2009; Madadgar and Moradkhani, 2014;
Hofert et al. 2015):

Sn ¼
Z
u
ΔC uð Þ2dC uð Þ ð3Þ

ΔC ¼ ffiffiffi
n

p
CEMP−Cθð Þ

where n is the sample size. The p value of the GOF test is
calculated by bootstrap sampling via the Monte Carlo ap-
proach (Genest et al. 2009), and 1000 replications have been
simulated in this study. For a group of copulas, it is possible
that there are several copulas significant at the 95 % confi-
dence intervals, and then the best alternative is the one with
the smallest Sn and the greatest p value as suggested by
Madadgar and Moradkhani (2014).

Before finding the best choice of copula function, several
marginal distributions are tested to fit the seasonal average
SPEI generated at each station, and the generalized normal
(GN), generalized Pareto (GP), Pearson Type III (P-III), and

generalized extreme value (GEV) distributions have been
used in this study with the parameters estimated by the L-
moments method. Also as suggested by Madadgar and
Moradkhani (2014), the best marginal distribution is selected
by the Kolmogorov-Smirnov (K-S) and the Akaike informa-
tion criterion (AIC) tests. When it passes the K-S test, the
distribution with the smallest AIC is selected as the best fit.

3.4 Conditional probability density function

Let X and Y be random variables with marginal distribution as
u = FX(x) and v = FY(y), and their dependence structure has been
represented by the copula function (Cθ), then the conditional
distribution function of X given Y ≤ y can be expressed as:

Cθ u vjð Þ ¼ Cθ u; vð Þ
v

ð4Þ

Similarly, an equivalent formula for the conditional distri-
bution function for X given y1 ≤ Y ≤ y2 can be obtained as that
(Chen et al. 2015):

Cθ u v
0��� �

¼ Cθ u; v2ð Þ‐Cθ u; v1ð Þ
v2−v1

ð5Þ

As the correlation of the drought in two adjacent seasons has
been represented by the copula function, the conditional distri-
bution of each seasonal drought given the drought status in the
previous season can be calculated in the study. Furthermore, as
u = FX(x), then based on the chain rule of differential, the
conditional probability density function can be written as that:

f x v
0��� �

¼ ∂Cθ u v
0��� �

∂u
f xð Þ ð6Þ

If there is no analytic formula, the conditional probability
density function can also be easily calculated by the numerical
methods. What is more, if y1 = y2, the conditional probability
density function of Eq. (6) can be simply written as that:

f x yjð Þ ¼ c u; vð Þ f xð Þ ð7Þ

where c(u, v) is the copula density, and this is the same as the
equation (9) derived by Madadgar and Moradkhani (2013).

4 Results and discussions

4.1 Selection of the marginal distributions and copula
functions

Trying to form an overall judgment of a drought, the SPEI
with the time scales of 3, 6, and 9 months (represented as
SPEI-3, SPEI-6 and SPEI-9), respectively, have been analyzed
in this study. As the seasonal average of monthly SPEI, the
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seasonal SPEIs have been calculated for all of the stations, and
the autocorrelation of seasonal SPEI with different time scales
have been shown in Fig. 2. It can be expected that the seasonal
drought be influenced by the drought status in the previous
season and even the previous two seasons for the drought
indicated by the SPEI-9. An inspection of Fig. 2 shows that
for the SPEI-3 and SPEI-6, only the lag-1 autocorrelation is
significant at the 95% confidence level at most of the stations;
this further indicates that the seasonal droughts defined by
SPEI-3 and SPEI-6 are influenced by the drought status in
the previous season in the Huai River basin. Besides, for the
SPEI-9, the autocorrelation of seasonal SPEI-9 (Fig. 2c(1))
generally decreases with the increasing lags while the auto-
correlation in the first two lags are significant at the 95 %
confidence level. However, the lag-2 autocorrelation may be

influenced by lag-1 autocorrelation. To remove the influence
of lag-1 autocorrelation on lag-2 autocorrelation, the partial
autocorrelation has been calculated for the seasonal SPEI-9
(Fig. 2c(2)). It can be observed from Fig. 2c(2) that the lag-1
partial autocorrelation is very strong, and the partial autocor-
relations gradually taper to 0 thereafter, oscillating between
the negative and positive values. So in the paper, only the
dependences between two consecutive seasonal droughts
have been analyzed, and the dependence structure can be
modeled by the copula functions. Based on the goodness-of-
fit test introduced in Section 3.3, the selected copula functions
have been shown in Table 2. Table 2 indicates that for the
SPEI-3, the Gumbel and Clayton copulas perform well in
modeling the dependence structures between two consecutive
seasonal droughts while the seasonal SPEI-6 and SPEI-9 are

Fig. 2 The boxplot for the
autocorrelation and partial
autocorrelation of seasonal
average SPEI with different time
scales. a SPEI-3, b SPEI-6, and c
SPEI-9. The thresholds at the
95 % confidence interval are
shown as red dotted lines

Table 2 Number of stations with
the same copula function selected
for the dependence between two
adjacent seasonal average
droughts defined by the SPEI
with different time scales

Copula Winter–Spring Spring–Summer Summer–Autumn Autumn–Winter

3M 6M 9M 3M 6M 9M 3M 6M 9M 3M 6M 9M

Gumbel 29 14 10 18 19 5 3 3 9 19 13 4

Clayton - 4 6 4 3 12 15 3 2 11 4 2

Frank 6 11 2 1 2 4 3 5 5 1 2 2

Gaussian 4 7 16 8 7 11 8 15 19 8 12 11

t 2 1 6 10 8 8 10 14 6 1 10 18

Plackett – 1 1 – 2 1 1 1 – 1 – 4
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well represented by the Gaussian and t copulas. Besides, the
marginal distributions for the seasonal SPEI-3, SPEI-6, and
SPEI-9 have also been selected (Table 3), results indicate that
for most of the stations, the seasonal drought can be well
pictured by GEV distribution, and the P-III distribution also
performs well in describing probability behaviors of SPEI-9.

4.2 The probabilistic forecasting of seasonal drought

For seasonal SPEI-3, SPEI-6, and SPEI-9, given different
drought statuses in the previous season, their conditional prob-
ability density functions have been calculated, and the region-
al average probability density distributions of seasonal
drought given the severe drought status (D2, referred to the
definition in Table 1) in the previous season have been illus-
trated in Fig. 3. Due to the fact that droughts usually occur as
results of cumulative effects of water shortages over different
periods, it is necessary to mine information from various
sources to successfully assess droughts. Without considering
the dependent relationships between SPEI-based droughts at
different time scales, the average of SPEI-3, SPEI-6, and
SPEI-9 has been calculated as a composite index to formulate
an overall judgment of a drought in the study, and the com-
posite probability density distribution was analyzed (Fig. 3). It
should be noted here that there are some stations without the

appropriate copula functions to model the dependence be-
tween the two adjacent seasonal SPEIs; to avoid bias, they
have been neglected in the calculation in the study. It can be
seen from Fig. 3 that the conditional probability density func-
tions are narrower with increase of time scale of SPEI, and
these can be attributed to the stronger dependence relations
between two consecutive seasonal SPEIs when its time scale
is larger. As the average of SPEI-3, SPEI-6, and SPEI-9, the
modes of the composite probability density distribution can be
expected to be strongly affected by the probability density
distribution of SPEI-9.

Besides, to validate the probabilistic seasonal drought fore-
casting models with the composite probability density distri-
butions, the seasonal data from 2011 to 2013 that started with
the winter from December 2010 to February 2011 have been
used. In this study, the value with the largest probability is
selected as the predicted drought with the largest occurrence
probability, and the predicted drought in the central 95 % in-
tervals of the probability distribution have also been calculat-
ed (Fig. 4). It can be seen from Fig. 4 that the predicted
droughts with the largest occurrence probability are in good
line with the observed droughts in each season, and almost all
of the observed droughts are inside the central 95 % intervals
of the predicted drought. Apart from visual examination of the
forecast, the Nash-Sutcliffe coefficients have been calculated

Table 3 Number of stations with
the same distribution function
selected for each seasonal average
drought defined by the SPEI with
different time scales

Distribution Spring Summer Autumn Winter

3M 6M 9M 3M 6M 9M 3M 6M 9M 3M 6M 9M

GN 11 1 5 4 6 7 10 5 1 11 9 4

GP - - 1 2 1 - - - 1 - - 1

P-III 1 3 4 2 3 - 2 17 26 3 3 21

GEV 29 37 31 33 31 34 29 19 13 27 29 15

Fig. 3 The regional average
probability density distribution of
drought given the severe drought
status (D2) in the previous season.
a Spring, b summer, c autumn,
and d winter. The drought is
defined by the SPEI with different
time scales, and the composite
probability density distribution is
also shown as average
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in the study to further quantitatively assess the accuracy per-
formance for all of the stations during 2011–2013. Unlike the
deterministic forecast, the probabilistic forecast provides the
information about confidence in the forecast; to calculate the
Nash-Sutcliffe coefficients, the predicted droughts are indicat-
ed by the value with the largest occurrence probability. Cor-
responding to the observed mean and naïve prediction, it has
been found that the Nash-Sutcliffe coefficients are 0.35 and
0.28, respectively. An efficiency larger than 0 indicates a bet-
ter predictor than the reference model, and the closer the mod-
el efficiency is to 1, the more accurate the model is. So these
results indicate that the probabilistic seasonal drought fore-
casting models for each season work well in the Huai River
basin, and the predicted droughts can be used as a reference
for the regional water resource management and human mit-
igation to droughts. It should be noted here that naïve forecasts

are simply the lag-1 backward shifted observations. In
Austria, Van Loon and Laaha (2015) found that hydrological
drought severity is strongly influenced by climate and catch-
ment characteristics, and the impacts of climate indices such
as El Niño–Southern Oscillation (ENSO) and North Atlantic
Oscillation (NAO) on drought have also been found in many
regions (Bonaccorso et al. 2015; Ma et al. 2015; Wang and
Kumar, 2015). So the limitation of the drought forecasting
models in the study may be owning to these factors, and these
need to be further analyzed.

Based on drought classification as shown in Table 1, five
drought statuses have been defined as D0, D1, D2, D3, and
D4, representing the drought severity levels from abnormally
dry to exceptional, respectively. For each season, given the
drought status in the previous season, the composite condi-
tional probability density distributions can be calculated for all

Fig. 4 Validation of probabilistic
seasonal drought forecasting
model using the data during
2011–2013 at all stations in the
Huai River basin: a winter, b
spring, c summer, and d autumn.
The observed drought data are
represented by the points, the
predicted droughts with the
highest occurrence probability are
denoted by the lines, and the
predicted drought in the central
95 % intervals of the probability
distribution are also shown as
shading

Fig. 5 The composite probability
density distribution of seasonal
SPEI given the drought status in
the previous season. a Spring, b
summer, c autumn, and d winter.
Details of drought status can be
found in Table 1
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the stations. To overall illustrate the correlation of seasonal
drought in the Huai River basin, the regional average compos-
ite probability density distributions have been calculated for
each season (Fig. 5). It can be seen from Fig. 5 that distribu-
tions of the conditional probability density distribution are
wider when the drought status in the previous season are more
severe, which implies that the variability of the predicted sea-
sonal drought is larger when a more severe seasonal drought
occurs in the previous season, indicating higher difficulty in
drought forecasting. Besides, it can also be seen from Fig. 5
that when the same drought status in the previous season oc-
curs, the drought tends to be more severe in autumn (Septem-
ber, October, and November) and winter (December, January,

and February) while less severe in spring (March, April, and
May) and summer (Jun, July, and August), indicating that the
severe drought in summer and autumn will be more likely to
be persistent in the next season, while the severe drought in
winter and spring will be more likely to be recovered in the
next season. These changing properties of droughts mean
much for management and planning of agricultural irrigation
in the Huai River basin, China.

In addition, spatial distributions of droughts with the largest
occurrence probability have also been analyzed given the dif-
ferent drought statuses in the previous season. During spring
season, the spatial distributions of drought severity with the
largest occurrence probability given different drought statuses

Fig. 6 Spatial distribution of the
predicted droughts with the
largest occurrence probability in
the Huai River basin in spring
given the drought status in the
previous season (winter in the
previous year; aD4, b D3, cD2, d
D1, e D0). Details of drought
status can be referred to Table 1,
and the color bar represents the
value of SPEI

Fig. 7 Spatial distribution of the
predicted droughts with the
largest occurrence probability in
the Huai River basin during
summer given the drought status
in spring (aD4, b D3, cD2, dD1,
e D0). Details of drought status
can be referred to Table 1, and the
color bar represents the value of
SPEI
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in winter were illustrated in Fig. 6. It can be seen from Fig. 6
that the larger area of the Huai River basin is dominated by
persistently lasting droughts in springwhen droughts in winter
were less severe, and these results indicate that though the
drought was not so severe in winter, considerable attention
should be paid for mitigation of droughts in spring in that less
severe droughts will still be persistent in larger areas in the
Huai River basin. What is more, the severe drought in winter
will be more likely to be persistent in the central part of the
southern Huai River basin in spring, and as the wheat are
always planted during winter and harvested during the late
spring in the Huai River basin, then negative impacts can be
expected from persistently lasting droughts on wheat produc-
tion and it is particularly the case when there is a severe
drought which occurred in winter in those regions.

Besides, extreme droughts in spring will bemore likely to be
durative in northern parts of the Huai River basin in summer
(Fig. 7), except some regions in the central parts of the Huai
River basin. As a major crop in the Huai River basin, the corns
are always planted during summer. In this case, when there
occurs extreme droughts in spring, effective planning of corn
cultivation should be done to alleviate negative impacts of ex-
treme droughts on corn production, and it is particularly true in
that extreme droughts in summer will also be persistent with
largest probability in autumn (Fig. 8) and winter (Fig. 9) in the
northern parts of the Huai River basin. Furthermore, it can be
seen from Figs. 7, 8, and 9 that droughts will be durative in a
larger area in the Huai River basin in summer, autumn, and
winter when the drought was more severe in the previous sea-
sons, implying that the Huai River basin is vulnerable to the

Fig. 8 Spatial distribution of the
predicted droughts with the
largest occurrence probability in
the Huai River basin during
autumn given the drought status
in summer (a D4, b D3, c D2, d
D1, e D0). Details of drought
status can be referred to Table 1,
and the color bar represents the
value of SPEI

Fig. 9 Spatial distribution of the
predicted droughts with the
largest occurrence probability in
the Huai River basin during
winter given the drought status in
autumn (aD4, bD3, cD2, dD1, e
D0). Details of drought status can
be referred to Table 1, and the
color bar represents the value of
SPEI
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long-lasting extreme drought in most parts of the drainage ba-
sin. It should be noted here that the forecasting of drought in the
study is focused on the recovery stage; however, the statistical
method introduced in the paper may have limited performance
for the onset stage, and whether seasonal forecasting of global
drought onset at local scale is essentially a stochastic forecast-
ing problem has been questioned by Yuan and Wood (2013).

5 Conclusions

The Huai River basin is the major cropping area in China with
a heavy responsibility of supply of agricultural products.
However, frequent droughts inflict massive loss on agricultur-
al production, showing apparent negative implications for so-
cial stability and food security. Good knowledge of drought
behaviors means much for scientific management and plan-
ning of agricultural activities such as agricultural cultivation,
agricultural irrigation, and also development of water-saving
agriculture. In this case, the SPEI with the time scales of 3, 6,
and 9 months has been analyzed to picture probability behav-
iors of droughts in the Huai River basin. With the copula
functions to model the persistence property of drought, the
conditional probability density functions were calculated and
analyzed, and then the probabilistic seasonal drought forecast-
ing models have been developed in the Huai River basin for
each season based on the composite probability density distri-
bution of the SPEI with the time scales of 3, 6, and 9 months.
Using the seasonal data from 2011 to 2013, the probabilistic
seasonal drought forecasting models have been validated, and
results indicate that these models work well in the Huai River
basin for each season. Generally, the variability of predicted
seasonal drought is larger when more severe droughts oc-
curred in the previous seasons. In this sense, occurrence of
droughts with higher drought intensity can greatly enhance
difficulty and unreliability of drought forecasting in the sub-
sequent seasons.

Furthermore, spatial distributions of droughts with the
largest occurrence probability in the Huai River basin
for each season given the drought status in the previous
season have been analyzed in this study. The results
indicate that the Huai River basin is vulnerable to the
extreme drought in most parts of the basin, such as the
severe drought in winter will be highly probable to be
durative in spring in the central part of the southern
Huai River basin. The Huai River basin is densely pop-
ulated and is also the principle cropping area in China;
extreme droughts will have considerable impacts on the
availability of water resources and also agricultural pro-
duction. The results of the study provide theoretical ref-
erences for the planning of crop cultivation and also for
human mitigation to drought-induced losses in the Huai
River basin, China.
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