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Abstract We apply a novel method based upon Bbefore^ and
Bafter^ relationships to investigate and quantify interconnec-
tions between global temperature anomaly (GTA), as response
variable, and greenhouse gases (CO2) and total solar irradi-
ance (TSI) as candidate causal variables for the period 1880 to
2010. The most likely interpretations of our results for the 6 to
8 years cyclic components of the variables are that during the
period 1929 to 1936, CO2 significantly leads GTA. However,
during the period 1960–2003, GTA apparently leads CO2, that
is, the peaks (and troughs) in GTA are in front of, and close to,
the peaks (and troughs) in CO2. For time windows outside
these periods, we did not find significant before or after-rela-
tions. An alternative interpretation is that there is a shift be-
tween short (≈1.5 year) and long (≈5 years) durations between
cause and effect. Relationships between GTA and TSI suggest
that Binertia^ of the global sea, land, and atmosphere system
leads to delays longer than half their common cycle length of
about 10 years. Based on the interaction patterns between the
variables GTA, CO2, and TSI, we suggest the possibility that a
new regime for how the variables interact started around 1960.
From trend forms, and not considering physical mechanisms,
we found that the trend in CO2 contributes ≈ 90 %, and the
trend in TSI ≈ 10 %, to the trend in GTA during the last
130 years.

1 Introduction

The global averaged combined land and ocean surface tem-
perature has increased by about 0.65 °C to 1.06 °C over the
past 133 years, the period ending in 2012 (Stocker 2014, p. 5).
The warming occurred largely during two periods, between
1910 and 1940 and since the mid-1970s to about 1998. In the
years 1943–1975 and 1998–2013, there are periods with non-
increasing global temperature anomaly (GTA) (the hiatus pe-
riods, Meehl et al. (2014), but see Karl et al. (2015) for a
possible exception of the last period). Several factors have
been suggested as causal agents for the observed changes in
global temperature, and a survey that separates the strength of
causes into time slots are given in Ring et al. (2012). However,
explaining cycle lengths and lag times have been difficult,
e.g., Ray (2007), in particular for CO2, since stores and flux
from land are not well known, Stocker (2014), p. 792.

Here, we study carbon dioxide (CO2) and total solar inso-
lation (TSI) as candidate causal agents for changes in GTA.
TSI is an exogenous variable and is a measure of the solar
radiative power per unit area normal to the rays, incident on
the Earth’s upper atmosphere. We examine possible causal
relations in long term (1880–2014) and shorter term,
multidecadal and decadal, perspectives. In the decadal and
multidecadal perspective, we examine Bbefore^ and Bafter^
relationships for (quasi-) oscillatory movements. A necessary,
but not sufficient, requirement for a causal agent is that it has
to come before the effect. For cyclic phenomena, this state-
ment can be interpreted in terms of succession between peaks
and troughs in the series. If the peak (or trough) of the candi-
date causal agent comes shortly (<½ cycle length) before the
peak (or trough) of the effect, then this finding, together with a
mechanistic model of the system, may strengthen a possible
causal relationship. If the peak (or trough) in the candidate
causal agent comes a long time (>½ cycle length) before the
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effect, then we would require, if possible, reasonable interme-
diate mechanisms that are lagging the candidate cause, but
leading the effect. Since mechanistic models may indicate that
a decrease in an agent may have a causal effect, we change the
sign of the causal agent so that the peaking statement can be
true.

If two variables are hypothesized to show reciprocal dy-
namic interactions, then we believe the most probable inter-
pretation will be that the variable that peaks (or has a trough)
in front of, and close to the peak (or trough) of the other
variable contributes a causative effect to the latter. However,
system knowledge is required to determine the most probable
interpretation. For pairs where one variable is exogenous to
the system studied, like GTA and TSI (TSI exogenous), a
lagging signature for the exogenous agent means that it is
leading, but with a long time delay (>½ cycle length).

Leading–lagging (LL) analyses, as well as regression anal-
yses, are also exposed to several mechanism that can cause
spurious relations and interpretations. We will examine these
in the discussion section.

We try to accumulate evidence to strengthen the causal
links between TSI, the concentration of CO2, and GTA.
There are also other variables that contribute to changes in
GTA, but they appear to be particularly strong for local or
regional temperature regimes, e.g., the North Atlantic
Oscillation (NAO), the Southern Oscillation Index (SOI),
and the Pacific Decadal Oscillation (PDO) (Luterbacher
et al. (2002), Bacastow (1976), Power and Kociuba (2011),
Chylek et al. (2014 b), Finlay et al. (2015), and Meehl et al.
(2011). Carbon dioxide, CO2may also impact NAO and PDO,
e.g., Chylek et al. (2014a), pp. 125–7 by yet unknown mech-
anisms. The treatment of these variables is therefore outside
the scope of the present study, but is included in the study
program.

1.1 Trends and cycles in global changes of variables

The main objective of this study is to examine before and after
relationships between candidate causal agents and global tem-
perature change. Since there is more information available
between the cyclic components of variables than between their
trends, we first examine the cyclic component and thereafter
the trends. We suggest that a candidate causal agent
strengthens its candidature if it is (i) consistently before the
effect, (ii) it does so across many cycles, and (iii) the cycles
have varying cycle lengths.

We show in this study that there are variables that appear as
leading factors, but that cannot have any causal effect, and
thus force us to consider response times longer than half the
characteristic cycle time, T. However, we only cursory try to
identify possible delaying mechanisms in the present study,
but believe that leading or lagging relationships between
ocean water movements may offer partial explanations.

We use multiple regression methods to investigate the re-
lationships between trends for the time series, GTA, CO2, and
TSI as they are expressed by a locally weighted polynomial
regression technique, the LOESS–smoothing algorithm,
SigmaPlot©.

1.2 Hypotheses

Firstly, we hypothesize that once trends are subtracted from
GTA, CO2, and TSI, CO2 and TSI will be leading variables to
GTA. Secondly, even if there are not significant LL-
relationships that persist over the full data series, there may
be time windows where pairs of variables have common cy-
cles. We assume that each pair will have different time win-
dows where the coupling is strong. Thirdly, we hypothesize
that the trends of both CO2 and TSI contribute to the trend in
GTA and CO2 more than TSI.

The paper is organized as follows. In Section 2, we present
the materials, in Section 3, we present three major methods
used in the analysis: (i) pretreatment of the data, (ii) the meth-
od for quantifying leading-lagging relationships, and (iii) un-
certainty estimates. Section 4 presents the results and in
Section 5, we discuss the results. Section 6 concludes.

2 Materials

We examine three time series, the global temperature anomaly
(GTA), the greenhouse gas (CO2), and total solar irradiance
(TSI). The raw data for the three series are shown in Fig. 1a.
For each of the series, we report (i) the sources we have used
for the data, (ii) possible errors reported for the data, (iii)
characteristic cycles that have been found in the data and that
are reported in the literature, and (iv) simplistic observations
of cycle times by estimating period and cycle lengths for the
detrended GTA, CO2, and TSI using crossing points with the
zero line. A similar crossing point method was used by Gao
et al. (2015).

Parts of the three series are more uncertain than other parts.
In particular, reconstructions of old parts may be uncertain
with respect to the exact dating of the values. Chylek et al.
(2014 a) limit their analysis to the period 1910–2012 to avoid
observational uncertainty in the early data, whereas we
include data from 1880. However, the results related to the
period 1880–1920 do not alter our main results.

The global temperature series We use the GISS Global
land—ocean temperature Index in 0.01 degrees Celsius from
NASA’s Goddard institute for space studies, NASA
(GISTEMP) (2014). The data are from the website http://
data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt.
The series are updated every month and may change within
their margin of error (R. Ruedy personal communication).
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There were certain changes in the sampling procedure for
GTA in 1945, shifting the temperatures systematically down,
Wu et al. (2011a). For the GTA series Zhen-Shan and Xian
(2007) and Mazzarella and Scafetta (2012) both found
that during the period 1880 to 2009, GTA has dominating
cycle lengths of 6–8, 20, and 60 years. Keeling and Whorf
(1997), p. 8327 found cycle lengths of 6 years in global air
temperature andWhite and Cayan (1998) found 20 to 23 years
periods in sea surface temperatures. Zhen-Shan and Xian
(2007) and Kjeldseth-Moe and Wedenmeyer-Böhm (2009)
all found cycle times of 8, 20, and 60 years in the GTA
series. We found for the period 1880–2009 17 cycles for
GTA, with an average length of 6.8 ± 4.0 years (range 3–17)
superimposed on a low-frequency 60-year cycle.). In addition,
we cursory examine a new GTA series reported in Karl et al.
(2015). The data can be found on the web site: http://www.
sciencemag.org/content/348/6242/1469.abstract?keytype=
ref&siteid=sci&ijkey=.l.kxQb89CJjY

The greenhouse gas variable, CO2 We use the global–mean
carbon dioxide (CO2) values as ppm supplied by (NASA
(GHG) 2014) and NOAA retrieving data from the web sites:
http://data.giss.nasa.gov/modelforce/ghgases/GHGs.1850-
2000.txt and ftp://aftp.cmdl.noaa.gov/products/trends/co2/
co2_annmean_gl.txt. The NASA list of greenhouse gases
also include other gases, N2O, CH4, CFC-11, CFC-12, and
others, but neither contribute more than ≈1 % of CO2 on the
average, and combining contributions are complex. The year-
to-year data for CO2 are uncertain before 1958 since they were
based on indirect measurements.

Total solar irradiance TSI has the unit Wm−2 as defined by
SORCE (2015). The data were taken from the website http://
data.giss.nasa.gov/modelforce/RadF.txt. The TSI data were
uncertain until the use of satellites in 1979 when direct
measurements above the earth’s atmosphere became feasible

(Zhou and Tung 2010, p. 3234). According to Frohlich (2009)
, there is a declining trend in the TSI during the last decade,
and in our TSI data we find that there is a quadratic trend
spanning our study period of 131 years. We found 10 cycles
for TSI with an average length of 11.1 ± 1.2 years (range 10–
13 years). However, the power spectral density algorithm
identified the 22 years Gnevyshev–Ohl cycles, probably
based on alternating blunt and short and sharp and tall
peaks. In addition, we cursory examine a new revised series
for total sunspot numbers reported in Clette et al. (2014). The
data can be found on the web site: http://www.sidc.be/silso/

3 Methods

In this section, we first describe pretreatment of our data.
Thereafter, we describe a novel method for quantifying lead-
ing and lagging relationships. Thirdly, we describe our attri-
bution method and lastly the method used to estimate uncer-
tainty levels. Principal component analysis (PCA) was made
in Unscrambler © and LOESS smoothing in and Power spec-
tral analysis in SigmaPlot©.

3.1 Data pretreatment

We use the data in their native units except for TSI that are
given in W m−2. Time series will often represent a superposi-
tion of several variables where each has its own characteris-
tics. A major task is therefore to distinguish the different
trends and cycles that express the effect of each variable on
GTA. The choice of method depends both upon the underly-
ing mechanisms that generate the pattern in the series and
upon the purpose of the study. The Hodric-Prescott filter has
for example parameters that allow the user to focus on cycle
lengths of interest (Cooley and Prescott 1995).Merging cycles
that are imposed on a system, e.g., seasonal driving forces, and
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Fig. 1 Time series used in the present study. a Raw data for CO2,
concentrations, combined land-surface air, and sea-surface water
temperature anomalies (GTA) (deviations from 1951 to 1980 mean, in
0.01 °C), and total solar irradiance (TSI) as reported by NOAA. b

Quadratic and LOESS trends for GTA, CO2, and TSI. Quadratic trends
are smooth, LOESS trends are wiggling. Equations for quadratic trends
are shown in the text
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cycles that are generated by interaction dynamics, may result
in complex patterns that are functions of the relative contribu-
tions of the two driving forces (Seip and Pleym 2000). Foster
and Rahmstorf (2011): period 1979–2011, Zhou and Tung
(2010): period 1854–2007, and Karl et al. (2015): different
periods 1950–2014 evaluate linear trends. Wu et al. (2011a,
b) and Ring et al. (2012) discuss non-linear trends and Munk
et al. (2002) and Ray (2007) suggest that high and low beat
frequencies between cycles with close frequencies may play a
role.

Identifying long-term trends and residuals We identify
the long-term trend from the three time series GTA,
CO2, and TSI and by dividing the series into a skeleton
described by a second-order polynomial equation and its
residuals. All variables were centered and normalized to
unit standard deviation except that we regressed the
original data with GTA as dependent variable and CO2

and TSI as independent variables also in their original
units. Centering and normalizing to unit standard devi-
ation is also called a Z-transform (Finlay et al. 2015).
The term Btrend^ is thus not limited to a significant
non-zero linear slope, but we require it to cover the
whole study period, i.e., secular trends as in, e.g. Wu
et al. (2011a, b).

The residuals will often have a cyclic character and thus
show serial correlation. By removing the trends, we may also
remove very long cycles, and we distort cycle lengths. In
particular, if two cyclic series are to be compared, we may
distort cycle lengths differently, and also distort the phase shift
between the two cycles. Often, series that are to be detrended
do not comply with the statistical assumptions required to
calculate true probability values, but we use the probability
values conservatively when we report regressions not to be
significant. We approximate the secular trend with both qua-
dratic functions and the LOESS locally weighted algorithm
for the whole period 1880 to 2014.

3.2 Quantifying running average phase shifts relations
for pairs of variables

Our main contribution is to extract running average
phase shifts and leading and lagging properties (i.e.,
the sign of the phase shift relative to a fixed Bfirst-last^
sequence) of the paired time series by a novel method.
The method gives quantitative expressions for leading
and lagging relations between paired (quasi-) cyclic time
series. The method also quantifies cycle lengths and
time lags. An application to a synthetic set of data is
given in Supplementary information 1.

We here present the new method (henceforth called
the LL-method) for quantifying possible causal relation-
ships between a pair of observed variables, x(t) and y(t).

In order to facilitate description of the method, we first
think of the peak-trough sequence of the observations as
a pair of Bobserved^ sine functions that both have peri-
od 2π, but have a difference in phase, τ, relative to
each other,

x ¼ sin ωtð Þ ; y ¼ sin ωt þ τð Þ ð1Þ

Let x be plotted on the x-axis of a phase plot and y on the y-
axis. Hence Eq. (1) may be interpreted as a parametric descrip-
tion of Lissajous figures (Fig. 2). We shall illustrate the LL-
method by referring to the Lissajous curve where τ∈[−2π,0].

We can then describe the relationship between the two sine
functions by two parameters. The first (i) is a rotational direc-
tion expressed by the sign of the rotation angle V i-1,i,i+1 for the
trajectories in the phase plot. The second (ii) is the regression
slope or the β-coefficient of the linear regression for the scat-
ter plots of Bsampled^ sine functions.

We shall now explain how the direction of rotation of the
trajectories in the phase portrait expresses whether an alterna-
tive series, y, is before (leading) or after (lagging) a target
series x. Four examples are shown in Fig. 3.

Let us first show that Eq. (1) is a parametric description of
the ellipses in Fig. 3. Using the formulae for sinus to the sum

of two angles and the identitycos ωtð Þ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin ωtð Þp

, we
have

y ¼ x cos τ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x2sin τ

p
ð2Þ

which may be written

y2−2xy cos τ þ x2 ¼ 1 ð3Þ

Rotating the coordinate system by an angle π/4 so that

x→ x′−y′ð Þ= ffiffiffi
2

p
; y→ x′ þ y′ð Þ= ffiffiffi

2
p

we obtain,

1−cos τð Þx02 þ 1þ cos τð Þy02 ¼ 1 ð4Þ

This is the equations of the Lissajous ellipses in Figs. 2 and
3.

Rotational directionsWe shall now consider the relation be-
tween the parameter τ and whether x is leading relatively to y.
In order to obtain a simple illustration, we chose τ = −π/4.
Then, we have the situation shown in Fig. 3 right upper and
lower panels.

In this study, we need to obtain values for the angle θ
between two consecutive vectors v1 and v2 in the range –π
to π to distinguish clockwise and counterclockwise rotations.
Because the cosine function is monotonously, increasing only
in the domain 0 to π, the function arc cos is only defined on
the domain −1 to +1 and obtains values in the range 0 toπ. Let
v1 and v2 be consecutive vectors in the phase space formed by
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three consecutive observations. By introducing the sign of the
cross product between v1 and v2, we extend the range for the
angle, θ, between the vectors to θ∈[−π,π] as required. The
formula thus gets the form,1

θ ¼ sign v1 � v2ð Þ⋅Arccos v1⋅v2
v1j j v2j j

� �
ð5Þ

In order to find the relation between the phase shift τ
and the rotational direction marked with arrows on the
ellipses in Fig. 3, we may think of the ellipse as the
path of a planet with a position given geometrically in
Eq. 1. The velocity vector is

υ ¼ ω cos ωtex þ ω cos ωtþ τð Þex ð6Þ

The direction of rotation is given by the vorticity of the
Bvelocity field,^

∇� v ¼ ∂vy

∂x
−
∂vx

∂y

� �
ez: ð7Þ

1 It can be implemented in Excel format: with v1 = (A1,A2,A3) and
v2 = (B1,B2,B3) in an Excel spread sheet, the angle is calculated by
pasting the following Excel expression into C2: = SIGN((A2-A1)*(B3-
B2)-(B2-B1)*(A3-A2))*ACOS(((A2-A1)*(A3-A2) + (B2-B1)*(B3-
B2))/(SQRT((A2-A1)2 + (B2-B1)2)*SQRT((A3-A2)2 + (B3-B2)2))).

Fig. 2 Lissajous curves. From Wikipedia, http://en.wikipedia.org/wiki/Lissajous_curve
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Using again the equation for the sine of the sum of two
angles, we have

cos ωt¼ y−xcos τ
sin τ

ð8Þ

Hence, we can write

vx ¼ y−xcos τ
sin

ω; vy ¼ y−xcos τ
sin

ω cos τ−xω sin τ ð9Þ

This gives

∇� v ¼ −
1−cos τ
sin τ

ω ez; ð10Þ

which is the relationship between the rotational direction
and the phase shift τ. With the chosen range of τ the formula
says that the rotational direction changes at τ=−π.

Look now at the Lissajous ellipses in Figs. 2 and 3. The
pattern in quadrant I emerges if the second sine is shifted by τ
∈<−2π to −3π/2> relative to the first; the pattern in quadrant II
emerges if the shift is τ∈<−3π/2, −π>; the pattern in quadrant
III emerges if the shift is τ∈<−π, −π/2>, and the pattern in
quadrant IVemerges if the shift is τ∈<−π/2, 0>. Furthermore,
the patterns in quadrants I and II have clockwise rotations, and
the patterns in quadrants III and IV have counterclockwise
rotations. Thus, there is clockwise rotations for τ ∈<−2π to
−π> and counterclockwise rotations for τ∈<−π, 0>.

Consider now the curves of x tð Þ and y tð Þ as given in
Eq. (1). Plotting these curves, we see that the variable on the

y-axis peaks before the variable on the x-axis, i.e., y leads x, if
τ∈[−2π,−π], i.e., if there is clockwise rotation. On the other
hand, the variable on the y-axis peaks after the variable on the
x-axis, i.e., y lags x, if τ∈[−2π,−π], i.e., if there is counter-
clockwise rotation. Hence, clockwise rotationmeans that y is a
leading variable relative to x, and counterclockwise rotation
means that y is a lagging variable relative to x. The leading-
lagging relationship is then consistent with the normal use of
LL-relationships in economics, and with an intuitive under-
standing of LL-relations.

Our argumentation has been restricted to the 2π domain.
However, a lagging relationship can also be interpreted as a
leading relationship with long leading time (>½ cycle time).

The strength, LL, of the mechanisms that cause two noisy
variables to either rotate clockwise or counterclockwise in a
phase portrait is measured by the number of positive rotations
(counterclockwise rotations by convention) minus the number
of negative rotations, relative to the total number of rotations
over a certain period, in this study, 9 years.

LL ¼ Npos‐Nneg

� �
= Npos þ Nneg

� � ð11Þ

The LL-strength obtains a high/low value when one vari-
able is consistently leading or lagging another. However, with
varying cycle lengths, the two series have to change cycle
lengths in concert for the measure to obtain a consistent
high/low value. We consider common cycle lengths as
supporting factors for a causal relationship between two
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Fig. 3 The leading-lagging method. Two sine time series plotted as time
series plot (upper panels, 20 observations) and as phase plot (lower
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angles in the phase plot range from 0.28 to 1.3 rad and the sum for each
period is 6.28 rad
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variables. We use the nomenclature: LL (x, y) = [−1, 1] for
leading-lagging strength: LL (x, y) < 0 implies that y leads x,
y → x; LL (x, y) > 0 implies that x leads y, x → y.

The cycle length, CL, of two paired series that have been
shown to interact can be approximated as:

CL ¼ n� 2π= ∑n−1
2 Vi−1;i;iþ1

� � ð12Þ

For sampled perfect sine functions, Eq. (12) gives very
closely the design length, 2 π, of the sine functions, and the
error is only affected by the sampling frequency, (see
supplementary information 1). The cycle times we identify
are based on full rotations in the phase plots for the paired
time series. If the period that gives consistent cycles in one
direction does not allow a full cycle to be completed, the
estimate of cycle time may be biased towards short or long
cycle times and is only shown as a guiding estimate for a
probable cycle time.

Time lags, TL, the regression slopes, s, or the β-
coefficients will for cyclic series give information on the shift,
or time lag, between the series. For a linear regression applied
to paired time series that are normalized to unit standard de-
viation, the regression coefficient, r, and the β-coefficient will
be identical. If the two series co-vary exactly, their regression
coefficient will be 1, and the time lag 0. If they are displaced
half a cycle length, the series are counter-cyclic, and the cor-
relation coefficient is r = −1. Lead or lag times, TL, are esti-
mated from the correlation coefficient, r, for sequences of five
observations, TL (5).With λ as cycle length, an expression for
the phase shift between two cyclic series can be approximated
by:

TL≈λ=2� π=2−Arcsine⋅ rð Þð Þ ð13Þ

3.3 Smoothing

We smooth the curves employing the LOESS standard
smoothing algorithms. The smoothing algorithm has two
variables. The first one, f, shows how large fraction of the
series is used for calculating the running average. The
second one, p, is the order of the polynomial function
used to make interpolations. We always use p = 2. For
calculation of LL-relationships, we use the detrended data
without smoothing. To emphasize patterns in the figures
showing rotational angles, we smooth the raw data,
f = 0.3, p = 2, and use the smoothed data to summarize
results with principal component analysis, PCA. If there
are two or more cyclic series superimposed, we smooth
the original series and apply the LL-strength method to
the smoothed series. Since both series contain information
about their common cyclic properties, we used the LL-
strength values as a Bstop^ criterion for an algorithm
that increasingly smooths the series. Alternatives for

distinguishing superimposed cycles for single series are
shown in, e.g., Wu et al. (2011a, b). We did not smooth
the series to remove noise, but this is an option.

3.4 Uncertainty estimates

To find an expression for the uncertainty in our estimates, we
ran Monte Carlo simulations on two paired uniformly random
series of n = 10, 20, 30, Bobservations,^ collected j = 10, 20,
40, 80, and 160 replicates from each, and found the 95 %
confidence interval for LL-strength as the asymptotic value
for an increasing number of replicates (we used j = 1000). It
became ±0.19 for n = 10 and then decreased to ±0.10 for
n ≥ 20. Autocorrelated noise gives an enhanced estimate of
LL-strength. In the present study, we calculate running aver-
ages of the LL-strength over periods of 9 years. We treat the
periods as showing significant LL-strength if LL<−0.32 or
LL>+0.32. To our knowledge, there is no established signifi-
cance test for this method. When we calculate cycle lengths,
very small angles may contribute very long cycle lengths (the
formulae for cycle lengths has the form λ ≈ 1/V), therefore we
exempted angles <0.12 rad. Very large angles ≈1.50 rad may
correspond to spikes rather than cycles and were therefore
exempted. All calculations were made in Excel and with
SigmaPlot 11©.

4 Results

We first present the results of our detrending procedures; sec-
ondly, we present the phase shifts and the leading and lagging
relationships between the cyclic components of the variables;
and lastly, we present the attribution results for secular trends.
The phase shifts as well as the leading-lagging relations for the
cyclic properties of the paired series are here quantified, but it
will often be possible to see corresponding patterns in the
series themselves by comparing peaks or troughs in the paired
series. In the following, we present results for each of the three
pairs separately. The results are presented in three figures with
4 or 6 panels. Panels (a) show the detrended series 1880 to
about 2014, (the TSI series only extend to 2010) and a moving
average β-coefficient (or slope) for the paired series. Panels
(b) show the angles, V, for the trajectories in the phase plots of
the pairs. The angles can be negative, showing clockwise ro-
tations, or positive, showing counterclockwise rotations.
Panels (c) show cycle times and phase shifts during periods
where there are persistent and significant, p < 0.05, rotations
of the trajectories in one direction. Regression lines suggest
how cycle times and phase shifts may change with time.
Panels (d) show an example of rotational trajectories during
periods with persistent rotations. In Fig. 4, we have added two
additional panels, (e) and (f), showing results for strongly
smoothed detrended series for GTA and CO2. With the strong

Possible causal relation between CO2, TSI and GTA 929
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Fig. 4 Global temperature anomaly (GTA) versus carbon dioxide
(CO2). a Time series for CO2 (dotted line), and global temperature
anomaly, GTA (full line), lower line shows β-coefficient. Period 1880
to 2014. b Leading-lagging relationships between GTA and CO2. Positive
bars shows that GTA is leading CO2 and negative bars show that GTA is
lagging CO2. The full line show smoothed trends in the LL-relationship
(LOESS, f = 0.3, p = 2). c Running average cycle times (filled circles,
n = 9) and phase shifts (open circles, n = 5) when both are significant,
p < 0.05. CT cycle time in years, # C number of cycles during significant

period. d Phase diagramwith GTA, (x-axis) and CO2 (y-axis) for the years
1990 to 2003. eGTA and CO2 strongly smoothed (LOESS f = 0.7, p = 2)
to identify multidecadal cycles and their relationships. Open circles
visually identify cycle length for GTA. Filed circles visually identify
cycle length for CO2. Lower line running average β-coefficient. f
Leading-lagging relationships between GTA and CO2 as multidecadal
cycles, (as bars). Cycle times and phase shifts as filled and open dots
respectively
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smoothing, we try to capture common multidecadal trends for
GTA and CO2.

4.1 Global temperature anomaly versus carbon dioxide

We have examined the patterns of the rotational angles Vi-1, i.i+
1 for GTA versus CO2 as one moves from 1880 to 2014. The
gray bars in Fig. 4b show that LL-relationships are volatile. To
better see the general patterns in the bars, we have smoothed
the angle data (SigmaPlot 11, 2D LOESS smoothing with
f = 0.3 and p = 2). Figure 4b shows that during the period
1929 to 1936, CO2 leads GTA, but after about 1966, GTA is
leading CO2. Figure 4c shows that the cycle length is around
7 years and the lag time between GTA and CO2 is about
1.5 years. However, both the cycle time and the lag times
appear to decrease towards the last decades, (n.s.).
Alternatively, the patteren in Fig. 4c may be interpreted as
reflecting both a 6-year cycle and a 10-year cycle. Figure 4d
shows GTA plotted on the x-axis and CO2 plotted on the y-
axis during the period 1990 to 2003. The trajectories show a
counterclockwise rotation indicating that GTA is a leading
variable to CO2.

Multidecadal cycles From Fig. 4a is seen that GTA and CO2

have visually recognizable cycles on multidecadal scales in
addition to the (quasi-) cycles on shorter time scales, e.g.,
DelSole et al. (2011), Wu et al. (2011a), and Gao et al.
(2015). We identified relationships between the multidecadal
patterns by smoothing both series strongly (LOESS, f = 0.7;
p = 2, Fig. 4e) and thereafter applied the LL-strength method
to the smoothed data. Visually, there appears to be two distinct
periods for these multidecadal series, one from about 1880 to
1960, where the two series are shifted relative to each other
and the GTA-series show a cycle time of about 60 years. The
other extends from about 1960 to 2014; here, the two series
are much closer to each other, and the cycle times are difficult
to identify. We found two time windows where CO2 was a
significant leading variable to GTA: 1937–1945 and 1968–
1974. The cycle time shown on the figure only allowed cycle
lengths of ¼ cycle, thus making the estimates biased and un-
certain. The general trend was that the multidecadal compo-
nent of CO2 was a leading variable to the multidecadal trend in
GTA (all bars are negative).

4.2 Global temperature anomaly versus total solar
irradiance

Figure 5a shows that the two series for GTA and TSI are
strongly cyclic on decadal or shorter time scales. Figures 5c
show that there are four periods where we obtain significant
relations. In two additional periods, parts of the cycles include
spikes that do not contribute to a regular cycle. Segments of
leading relations can also be identified in other short periods,

n < 3. Since TSI is an exogenous variable, the interpretation is
that TSI appears to lead GTA with both short and long time
lags, that is with time lags of 3–4 years and time lags of 7–
8 years. The cycle times were 11 to 12 years for the two cycles
that were sampled for one cycle period, 1989–1904 and 1952–
1961. During the first period, the main cyclic rotation was
clockwise, but with a few counterclockwise turns.

4.3 Carbon dioxide versus total solar irradiance

Figure 6a shows detrended and normalized values for CO2

and TSI. There are significant long and short leading relation-
ships between TSI and CO2 only after about 1960, Fig. 6c.
During the 3 years 1964–1966, CO2 is lagging TSI with a
short delay, but during the two following periods, together
about 20 years, 1987–2003, TSI is leading CO2 with a long
delay. Figure 6c shows that the cycle times, CT, are 9 to
12 years with the short lag time lags, or phase shifts, PS, in
the range 1.6 to 3.3 years. The long time lags, CT–PS, is thus
in the range 7 to 9 years. The rotational properties of CO2 (x-
axis) and TSI (y-axis) for the period 1987 to 2003 are shown in
Fig. 6d. Since CO2 was increasing during this period, we
detrended and then normalized the data for 1960 to 2003.
The rotation 1987 to 2003 is largely counterclockwise, show-
ing positive rotations. This means that TSI is a leading vari-
able to CO2 with long time lag ≈7–9 years. Some details are
shown in Supplementary material 2.

4.4 Comparing interaction patterns

We now have three sets of moving average interaction pat-
terns, the pairs GTA versus CO2, TSI versus GTA, and TSI
versus CO2. To investigate if the interaction patterns have
common features, we applied principal component analysis
to the smoothed LL-relations (the angles) as they are depicted
in panels (b) of Figs. 4, 5, and 6. However, since there seems
to be a turning point around 1955 for many of the variables,
e.g., in the zonal mean multidecadal variations of land surface
air temperature, Gao et al. (2015), p. 364, as well as in anthro-
pogenic greenhouse gases and aerosols, Chylek et al. (2014 a),
p. 121, we divided the time series into two subsets at 1955 for
ease of comparison. Figure 7a shows that during the first pe-
riod 1880 to 1955, the LL-relationships LL (GTA, CO2) and
LL (TSI, GTA) are correlated, but the LL-relationship LL
(TSI, CO2) is independent from these (the arrow from the
origin shows an approximately right angle to the arrow to
the first two). The score plot shows no clear pattern through
time. During the last period 1956 to present, it is the LL-
relationships LL (CO2, GTA) and LL (TSI, CO2) that are
correlated, whereas the relationship LL (TSI, GTA) is inde-
pendent from the two former. Furthermore, the scores
(Fig. 7d) suggest that the LL-relationships change systemati-
cally through time. The years 1965, 1987, and 1994 can be
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Fig. 5 Global temperature
anomaly (GTA) versus total solar
irradiance (TSI). a Time series for
GTA (dotted line), and TSI (full
line), and lower line shows β-
coefficient. Period 1880 to 2010.
H detrended, SD normalized to
unit standard deviation. b Short
and long leading times for TSI on
GTA. Positive bars shows that
TSI is leading GTAwith a long
time delay, PSlong (>½ cycle time,
CT; i.e., CT-PSshort) and negative
bars show that TSI is leading
GTAwith short time delay. The
full line show smoothed trends in
the LL-relationship (LOESS,
f = 0.3, p = 2). c Running average
cycle times (CT, filled circles,
n = 9) and phase shifts (PS, open
circles, n = 5) when both are
significant, p < 0.05. d Phase
diagram with GTA (x-axis) and
TSI (y-axis) for the years 1889 to
1904. Further details in text to
Fig. 4
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Fig. 6 Carbon dioxide (CO2)
versus total solar irradiance (TSI).
a Time series for CO2 (full line),
and TSI (dotted line), lower line
shows β-coefficient. Period 1880
to 2010. Dotted square indicates
section where CO2 apparently
leads TSI. b Short and long
leading times for TSI on CO2 and
TSI. Positive bars shows that TSI
is leading CO2 with a long time
delay, PSlong (>½ cycle time, CT;
i.e., CT-PSshort) and negative bars
show that TSI is leading CO2 with
short time delay. The full line
show smoothed trends in the LL-
relationship (LOESS, f = 3, p = 2).
c Running average cycle times
(filled circles, n = 9) and phase
shifts (open circles, n = 5) when
both are significant, p < 0.05. d
Phase diagram with CO2, (x-axis)
and TSI (y-axis) for the years
1987 to 2003 (the period 1960 to
2003 detrended separately).
Further details in text to Fig. 4
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2014) of leading-lagging (LL) relations between global temperature
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recognized in panels (b) of Figs. 4, 5, and 6. A PCA score plot
for the full data set showed a pattern that defines the same
years as in Fig. 7c as Bturning^ points (figure not shown).
Time windows where pairs of time series show persistent
LL-relationships are summarized in Table 1 and shown graph-
ically in Fig. 7e.

4.5 Secular trends

The quadratic approximations to GTA, CO2, and TSI are giv-
en below as Eqs. (14), (15), and (16). T is time in years starting
with 1 in 1880. The number of observations, n, will differ a
little among series depending upon the number of observa-
tions reported in the data sources.

GTA ¼ −24:608−0:283 T þ 0:00701 T2; r ¼ 0:770; p1

¼< 0:001; p2 < 0:001; n ¼ 135; ð14Þ
CO2 ¼ 2:99:429–0:326 T þ 0:00741 T2; r ¼ 0:86; p1

¼ 0:001; p2 < 0:001; n ¼ 135; ð15Þ
TSI ¼ −0:0773þ 0:00430 T−0:0000170 T2; r

¼ 0:67; p1 < 0:001; p2 < 0:001; n ¼ 131: ð16Þ

The CO2 and the GTA series decrease with time and in-
crease with time squared, whereas the TSI series increase with
time and decrease with time squared (Fig. 1b). This latter
result is consistent with results reported by Frohlich (2009).
Figure 1b also shows the LOESS trends as wiggling curves

fitting the observed curves more closely. The LOESS trend for
CO2 is monotonically increasing.

The explained variance between the independent variables
CO2 and TSI is r2 = 0.33, thus allowing multiple regressions
(Kleinbaum et al. 1988).MR is asymmetric in x and y. In terms
of the native original time series, multiple regression gives:

GTA ¼ −297:997þ 0:909� CO2 þ 35:816� TSI;R

¼ 0:929; pCO2 < 0:001; pTSI ¼ 0:006; n ¼ 131 ð17Þ

In terms of smoothed, centered, and normalized data, we
get:

GTA�N ¼ 0:00þ 0; 916� CO2–N þ 0:101 TSI�N;R

¼ 0:989; pCO2 < 0:001; pTSI ¼ 0:001; n ¼ 135ð18Þ

The results show that both trends in CO2 and TSI contrib-
uted significantly to the changes of trends in GTA. If we do the
calculation separately for the first and the last 30-year periods,
GTA, we get contributions from CO2 and TSI for the period
1910 to 1940 of 0.56 and 0.44 respectively and for the period
1970 to 2000 of 0.83 and 0.17 respectively. Using the revised
data for GTA (Karl et al. 2015) and total sunspot numbers
(Clette et al. 2014) from 2014, we get

GTAKarl 0:00þ 0; 971 CO2 þ 0; 0802 TSNClette;R

¼ 0:990; pCO2 < 0:001;PTSN < 0:001; n ¼ 135 ð19Þ

That is, no significant difference from the regression with
the original data.

Table 1 Time windows where pairs of time series show persistent leading or lagging relations

Pair Significant time
windows, n > 3;

Significant,
total, %

Cycle length,
years

LL-relation LL-times,
years

# cycles

GTA, CO2 1929–36 (*) 27 5.6 CO2 → GTA 1.6 −1.5
1966–73 (*) 6.4 GTA → CO2 1.5 +1.5

1989–03 (*) 5.3 GTA → CO2 1.2 + 3.5

GTA, CO2, multidecadal 1937–45 12 (42) CO2 → GTA 11.5 −0.24
1968–74 (33) CO2 → GTA 9,6 −0.27

TSI, GTA 1889–1901 56 11.4 TSI → GTA 3.1 −1.6
1907–13 13.4 TSI → → GTA 10.2 0.46

1943–48 (L.A.) L.A. L.A. L.A. L.A.

1952–61 11.9; TSI → GTA 3.1 −1.4
1966–70 (L.A.) L.A. L.A. L.A. L.A.

1998–04 (16.7) TSI → GTA 4.5 −0.2
TSI; CO2 1964–66 15 (12.2) TSI → CO2 3.2 −0.18

1986–92 (*) 9.1 TSI → →CO2 8 +0.8

1997–2005 (*) 12.0 TSI → →CO2 8.7 + 0.7

Years with asterisks shows windows that are intercepted with one non-significant year. L.A shows that there are very large angles, V, in the series that
makes calculations of average cycle lengths not meaningful. Parentheses around cycle lengths show that only a small fraction of the cycle were sampled.
Arrows suggest which variable leads and which follows. Double arrows indicate long (>1/2 cycle time) leading times

934 Seip K.L., Grøn Ø.



5 Discussion

Our aim with this study is to show the size of running average
phase shifts and their direction between the variables global
temperature anomaly (GTA), carbon dioxide concentration
(CO2), and total solar irradiance (TSI). The phase shifts we
identify are interpreted in two ways. For paired variables that
potentially may have reciprocal impact on each other, like
CO2 and GTA, we interpret the results in terms of leading
and lagging relationships. For paired variables where one var-
iable in the pair is exogenous to the system, we interpret re-
sults in terms of long (>½ cycle time) or short (<½ cycle time)
delay times between the candidate leading variable as possible
causal agent and the effect. However, there may be a variable
that affects both the leading and the lagging variable, but the
lagging variable later than the leading variable, e.g., tempera-
ture may affect the growth of two cohabiting species so that
one peaks consistently before the other (Seip and Reynolds
1995). Finally, although we provide evidence for possible
causal effects, credible mechanistic explanations are required
to validate, or negate, causal relations.

The running average phase shift relations give additional
information to relations found by ordinary regression analysis
and may be useful in the search for mechanistic explanations
of the cyclic components of global temperature changes. We
first discuss our results for the cyclic components of our three
variables, GTA, CO2, and TSI. Thereafter, we discuss the
results for the trends.

The leading lagging relations we found frequently contrast
with our hypotheses. However, the 6- to 8-year cycles and the
9- to 11-year cycles that we found correspondwith cycle times
reported in the literature, e.g., Zhen-Shan and Xian (2007), p.
117–8 and Humlum et al. (2011), p. 151. We did not find the
20-year and the 60-year cycles reported in the literature, but
the 60-year cycle is frequently associated with the North
Atlantic oscillation (NOA) that is not included in the present
study. We found that after about 1955, that is, in the middle of
the period where there is little or negative changes in GTA,
there is conspicuous changes in how the three variables
interact.

5.1 Global temperature anomaly versus carbon dioxide

During the period 1929 to 1936, GTAwas a lagging variable
to CO2, but after about 1955 (significant after 1966), GTA is a
leading variable to CO2, and the common cycle times are on
the average 6.8 ± 2.0 years, leading, and lagging times
1.7 ± 0.8 years. This last period contrasts with our first hy-
pothesis that CO2 would be a leading variable to GTA also in
their cyclic component. We do not believe that the results are
caused by errors in the data since the result are for the period
after 1945–1947 when data quality was improved. The two
periods correspondwith a reported low ocean CO2 uptake flux

1901 to 1930 (0.47 Pg C year−1) to high uptake fluxes 1960 to
2005 (1.53 Pg C year−1) found in the CMIP5Earth System
Model. During the same two periods, the mean land–atmo-
sphere CO2 fluxes changed from a small source for the atmo-
sphere to a CO2 sink during the last period (Anav et al. (2013),
pp. 6817 and 6826 and Stocker (2014), p. 792).

Cycle lengths of 6 to 8 years The cycle times we found
correspond well with the cycle times of 6 to 8 years reported
by Zhen-Shan and Xian (2007), p. 118, using an empirical
decomposition method (EMD) for global temperature anom-
aly. Cycle times and leading-lagging relations can also be seen
visually (but not easily) by comparing time series sequences
and phase plot trajectories for the periods where LL-relations
are significant, e.g., 1990 to 2003 in Fig. 4a–d. For the
smoothed GTA/CO2 series (Fig. 4e, f), CO2 is leading GTA.
We found only short significant periods for common cycles
lengths, but GTA has a visually distinct cycle of 60 years, and
the detrended CO2 a distinct third-order polynomial form
(100 years Bdome^) at the beginning of our study period.
There are several studies that try to explain the identified cycle
lengths in GTA time series, for example Keeling and Whorf
(1997) invoke oceanic tides, whereas Ray (2007) and Munk
et al. (2002) assess tides as the most likely among unlikely
mechanisms. However, there are demonstrations, sensu Crick
(1988), that could help explain cycle lengths. On a global
scale, it is shown that CO2 may escape from the oceans
(Martinez-Boti et al. 2015), although these authors refer to
intensified ocean upwelling during the deglaciation period
(18,000 to 10,000 years ago), whereas Ray (2007), p. 3553
suggests that only shallow thermohaline circulations will con-
tribute. Other studies suggest that there are regional oscilla-
tions in ocean waters, e.g., the Atlantic Multidecadal
Oscillation (AMO) (Chylek et al. 2014a) and the (deep
>750 m) interdecadal Pacific Oscillations (Meehl et al.
2013), that may give rise to regional and global temperature
changes. Meehl et al. (2011) use the expression BThe model
provides a plausible.^ p. 362, suggesting that the results have
some uncertainty. The 60-year cycle in GTA has again been
linked to a solar-astronomical origin by Mazzarella and
Scafetta (2012). Recently, Finlay et al. (2015) have shown that
there is a decrease in CO2 efflux on a regional scale from
northern hardwater lakes with increasing atmospheric
warming.

Leading and lagging times Our leading lagging times are of
the order 1 to 3 years. This contrasts with the fairly short time
lags (months) reported by, e.g., Foster and Rahmstorf (2011),
p. 6.We have identified three exceptions where lag correlation
up to 12 years have been reported. Chylek et al. (2014a), p.
126 and Wu et al. (2011a) show a 12-year lag for the AMO/
Pacific decadal oscillation system (there may be other expla-
nations for the apparent lag). McCarthy et al. (2015) reported
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that the integrated NAO lags their integrated sea-level index
(related to heath transport) with 1–2 years, see text to their
extended data (Fig. 7). We believe that the response times
between CO2 and GTAmost probably are shorter than½ cycle
length, that is <3–4 years. For example, Feldman et al. (2015),
p. 342 show that 1-year cycles of surface radiative forcings
(Wm−2) by CO2 may be due to seasonal changes in photosyn-
thesis and respiration.

The cycle lengths identified for multidecadal cycles in
Fig. 4f were based on less than ¼ cycle length and on aver-
aged data where noise and end-effects may have distorted the
results, and are therefore highly uncertain.

5.2 Global temperature anomaly and total solar
irradiance

TSI is leading GTA with a short delay (< ½ cycle length)
during three periods, but is a leading variable to GTA with a
long delay (> ½ cycle length) during the period 1907–1913.
Characteristic cycle times are 11 to 13 years corresponding to
the cycle lengths for TSI, (the last period in Table 1 only
allowed sampling of a very short cycle fraction). Short time
lags were around 3 years and long time lags around 10 years.
With long time lags, the peak in TSI is closer to the preceding
peak in GTA than to the peak following it. For TSI to contrib-
ute a causal element, there should be modifying factors that
delay the effect of TSI on GTA.

Indications for cycle times of 10–13 years and time lagsAn
attempt to explain the 11 years response of the climate system
to small solar cycle forcings was given in Meehl et al. (2009).
Time lags between TSI and target variables are found in sev-
eral studies. For the period 2004–2007, a delay between solar
activity and radiative forcings >3 years was found by Haigh
et al. (2010) and discussed further by Wen et al. (2013) and
Ineson et al. (2015). It was attributed to a shift in dominant
wavelengths of the emitted radiation. Furthermore, Andrews
et al. (2015), p. 3 found a time lag for the, DJF (December,
January, February) North Atlantic oscillation to the Upper
stratospheric zonal temperature of 3 to 4 years. Solheim
et al. (2012) found that there is a lag of about 10 years between
solar cycle length and the 11 years average temperature at
several stations in the North Atlantic. Thus, both short- and
long-term delays may not be unreasonable. An alternative
may be that the observed 9- to 10-year cycles are due to other
variables than TSI, and that these variables produce cycles in
the same range.

5.3 Carbon dioxide versus total solar irradiance

We found that TSI was leading CO2 with a short delay during
the period 1960 to 1980 (significant years in Table 1), but that
TSI was leading CO2 with a long delay during the period 1986

to 2005 (significant years in Table 1) (Fig. 6b). Common cycle
times were 9 to 12 years corresponding to the typical cycle
period reported for TSI (11.1 ± 1.2 years). The LL-
relationships can be seen in both the time series (Fig. 6a)
and in the phase plot (Fig. 6d). The figures also suggest that
smoothing the trajectories in the phase plots may give more
consistent rotation patters. (See Supplementary material 2 for
an example.) For the long delays, there must be modifying
factors and they may partly be the same as those modifying
the effect of TSI on GTA. We are presently examining phase
shifts between GTA, NAO, SOI, and PDO, to see if these
variables may contribute to an explanation.

5.4 Significant time windows

Our second hypothesis was that distinguishable common cy-
cle times for paired variables would occur during different
time windows. However, this does not seem to be the case,
or at least our material does not give sufficient information to
draw conclusions (Fig. 7e). Still, the years around 1955, that
is, in the middle of the period with no, or little, global
warming, seem to separate two warming regimes as suggested
in Fig. 7a–d. (The year 1994 also suggests a change, but the
period after 1994 is short and end-effects may play a role.) The
results are only tentative, and we have no mechanistic expla-
nation for why there would be two regimes, except that the
CO2 concentration has increased considerably after 1955. If
the increased CO2 concentration, or some other factor, trig-
gered a new regime, the suggestion that the 60-year cycle in
GTA will continue unchanged, which was implied by Zhen-
Shan and Xian (2007), p. 118 and Chylek et al. (2014 a), p.
127, may not be as certain as previously believed.

5.5 Secular periods

The period 1880 to 2009 The results for the long-term trend
suggest that both CO2 and annual sunspot composite, TSI,
have a significant impact on GTA, CO2 being responsible
for ≈90 % of changes in GTA, and TSI being responsible for
≈10 % using the coefficients in front of the regressors in
Eq. (18) the β-coefficients, as a measure of how much of the
signals, and probable causes, that are drawn from the two
agents. The results can be compared to regression results by
Chylek et al. (2014a), p. 122 who found that greenhouse gases
account for 48 %, the Atlantic multidecadal oscillation for
40 %, and TSI for 12 % of the past US South Western tem-
peratures (using again the normalized coefficients in front of
the regressors).

Thus, our third hypothesis was supported, the shape of the
trends for CO2 (≈90 %) and TSI (≈10 %,) contributes to
changes in the trend for GTA. However, the contribution from
the sun has decreased relative to the contribution from CO2

during the last 135 years. Our results are novel in the sense
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that they were obtained with methods applied to LOESS
detrended data normalized to unit standard deviation, and thus
show that we get results similar to current estimates without
recalculating data to a common unit for radiative forcings,
e.g., Wm−2. We obtained similar results using new GTA data
from Karl et al. (2015) and new proxies for TSI, that is, new
total sunspot numbers from Clette et al. (2014).

5.6 Method

The present paper supplies a method that allows calculation of
running average phase shifts, as well as running average cycle
times. Themethod gives results that are not affected by chang-
es in cycle lengths, and it detects single outliers in series that
else would show consistent phase shift relationships. We have
also used it to establish the length of periods that are charac-
terized by consistent phase shifts between pairs of variables.
Since the method is novel, it is important to establish that it
does not give spurious or misleading results. We give four
rationales for why its results are real. (i) The method has pre-
viously been shown to give significant LL-strength for rela-
tionships where leading relations belong to Bcommon
knowledge^, e.g., to leading indices in economy (Seip and
McNown 2007) and to light as a leading variable to sea
surface temperature in hydrobiology (Seip 2015). Light is a
proxy for heat transfer. (ii) It is in many instances possible to
inspect the paired series visually and to see from the cyclic
pattern of the series that the variable which is identified as
leading indeed is indeed a leading variable, e.g., as in
Fig 6a. (iii) We show that for time windows where LL-
relations are persistently leading or lagging, the corresponding
phase portraits also rotate persistently clockwise or counter-
clockwise. (iv) We have applied the method to synthetic series
and shown that it reproduces the design parameters well (see
Supplementarymaterial 1). Noise and interlocking cycles with
different LL-relations and different cycle lengths may distort
the results, in particular for cycle times. However, if persistent
cycles can be identified in the phase plot, like they do here, the
results are robust also with respect to cycle lengths and phase
shifts based on unsmoothed series. An additional support for
our results is that they changed a little, but not much, when
GTAwere replaced with an updated series (Karl et al. 2015),
and TSI were replaced with total sunspot numbers as a proxy
for TSI (Clette et al. 2014). However, a robust smoothing
algorithm that does not introduce end-effects, or some way
of subtracting high-frequency cycles from low-frequency
cycles, remains a challenge.

6 Conclusion

We have obtained two sets of results, firstly on the cyclic
components of the variables GTA, CO2, and TSI and secondly

on their trends. We show that there are time windows where
there are significant leading-lagging relationships between
pairs of variables, and that the common cycle lengths we iden-
tify for the paired variables correspond to cycle lengths found
in the literature, i.e., 6–7 and 10–11 years. We show that there
are time windows where the causal variable comes (i.e., peak)
more than half a cycle length before the effect variable
(peaks). This suggests that there are strong roles for interme-
diate mechanisms in the global sea, land, and atmospheric
system. These mechanisms may have changed during the pe-
riod 1940–1970 when GTA was non-increasing, resulting in
another interaction regime between the variables. Secondly,
the trends in CO2 and TSI seem to contribute approximately
90 and 10 % to the trend in GTA, respectively, during the last
130 years. However, TSI contributed relatively more (≈50 %)
during the first 30 years, than during the last 30 years (<20 %)
of our study period.
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