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Abstract This study focuses on the spatial distribution
of mean annual and monthly precipitation in a small
island (1128 km?) named Martinique, located in the Lesser
Antilles. Only 35 meteorological stations are available on
the territory, which has a complex topography. With a dig-
ital elevation model (DEM), 17 covariates that are likely
to explain precipitation were built. Several interpolation
methods, such as regression-kriging (MLRK, PCRK, and
PLSK) and external drift kriging (EDK) were tested using
a cross-validation procedure. For the regression methods,
predictors were chosen by established techniques whereas a
new approach is proposed to select external drifts in a krig-
ing which is based on a stepwise model selection by the
Akaike Information Criterion (AIC). The prediction accu-
racy was assessed at validation sites with three different skill
scores. Results show that using methods with no predictors
such as inverse distance weighting (IDW) or universal krig-
ing (UK) is inappropriate in such a territory. EDK appears to
outperform regression methods for any criteria, and select-
ing predictors by our approach improves the prediction of
mean annual precipitation compared to kriging with only
elevation as drift. Finally, the predicting performance was
also studied by varying the size of the training set leading
to less conclusive results for EDK and its performance. Nev-
ertheless, the proposed method seems to be a good way to
improve the mapping of climatic variables in a small island.
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1 Introduction

Spatial climatic information is essential for many scientific
studies of hydrology, agriculture, ecology, and environ-
mental sciences. However, the weather network is often
sparse and not deployed on a regular grid and so cannot
provide good spatial information to capture environmen-
tal variability. Spatial interpolation techniques are therefore
an essential tool in order to estimate precipitation over a
domain, as they make it possible to predict the values at
unmeasured locations from observed points.

Various methods (geometric, statistical, and geostatisti-
cal) can be used to map precipitation at high resolution.
For example, Xu et al. (2014) used inverse distance weight-
ing (IDW) or ordinary kriging (OK) to estimate the spa-
tial distribution of daily rainfall. Like universal kriging
(Bostan et al. 2012) or the Thiessen polygon (Goovaerts
2000), these methods use only the observation locations,
not covariates. It is well known however that precipitation
is correlated with environmental information, such as lon-
gitude, latitude, elevation, or other geographical variables.
Some spatial methods can take this relation into account to
achieve more accurate estimates (Castro et al. 2014; Borges
et al. 2015). Multiple linear regression (MLR) is usually
performed to relate precipitation to physical predictor vari-
ables (Goovaerts 2000; Hwang et al. 2012; Kurtzman et al.
2009). Bessafi et al. (2013) showed that principal com-
ponent regression (PCR) or partial least squares (PLS) is
also a good way to map climatic variables with predictors.
In most cases, kriging residuals derived from regressions
significantly improves the results of the method (Nalder
and Wein 1998; Branislav et al. 2013) and is usually
called regression-kriging (RK). Kriging with external drift
is also a promising approach for predicting precipitation
(Haberlandt 2007). According to these studies, the best
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method to predict precipitation depends both on the vari-
ables to be mapped (daily or monthly precipitation) and on
the complexity of the land (mountainous, flat land, etc).
Thus, in order to determine the most accurate prediction, a
comparison between these methods is needed and is usually
performed by cross-validation.

The present study focuses on the performance of spatial
techniques to map the annual and monthly mean precip-
itation in a small island (1128 km?) named Martinique,
located in the Lesser Antilles (see Fig. la). It is well
known that, in this region, precipitation is strongly influ-
enced by orography and the proximity of land (Smith et al.
2012) leading to great spatial variation. Using predictors
for mapping precipitation therefore seems to be appropri-
ate. With a digital elevation model (DEM), 17 covariates
which are likely to explain precipitation were built. Most
of the above-mentioned methods were tested via a cross-
validation procedure on 35 meteorological stations. For
the regression methods, predictors were chosen by estab-
lished techniques whereas a new approach is proposed here
to select external drifts in kriging based on a stepwise
model selection by the Akaike Information Criterion (AIC).

Because of the limited number of stations, local techniques
presented in Sun et al. (2015) and Xie et al. (2011) were not
tested.

The paper is sectioned as follows. A description of
the data used (observation and predictors) is provided in
Section 2. This is followed in Sections 3.1 and 3.2 by the
interpolation techniques used in the study. The procedures
to evaluate the performance of these methods are mentioned
in Section 3.3. Then, selection the predictors is described
in Section 3.4. Section 4 presents the performance of the
different spatial methods in which two cross validation pro-
cedures were performed. Finally, results are discussed in
Section 5, followed by a summary in Section 6.

2 Data

Generally, a mapping method requires two types of data.
The first one, which is essential, corresponds to observa-
tion of the phenomenon we want to map. The second, which
may or may not essential depending on the method used,
is some variables, such as elevation, that are known over
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the whole territory and which can explain the phenomenon;
these variables are called predictors in the following.

2.1 Observation

The precipitation data used in this study were provided by
the French meteorological Institute (Météo-France). This
dataset contains monthly precipitation amounts from 1991
to 2010. The rain gauge network consists of 37 rain gauges
that are distributed across the whole island (see Fig. 1b) for
a surface of 1128 km?. Note that for January and Decem-
ber, two stations recorded no data during several days and
were therefore removed from the database of mean monthly
precipitation. Only weather stations with complete records
were included.

The main statistical values of precipitation are shown in
Table 1 to summarize the spatial and temporal variability
of mean precipitation. The annual cycle comprises two sea-
sons: the dry period between February and April and the wet
season between June and November in which monthly pre-
cipitations are at least twice as high as in the dry season. The
monthly precipitation can also vary considerably spatially
(e.g., ratio > 6 in January). This variability can be explained
by the complex topography of the island of Martinique (see
Fig. 1c). It should be mentioned that the locations of the sta-
tions are not ideal: they are lacking in the mountainous area
and are unevenly distributed on some coasts.

2.2 Building candidate predictors: physiographic
variables

Building candidate predictors depends on the phenomenon
to be mapped and is a fundamental step.

It is well known that the amount of rain that falls in the
West Indies varies immensely from beach to mountain top,
so the distance to the coast seems to be a good predictor for
precipitation. Three distances were taken into account and
are illustrated in Fig. 2g:

dist_coast: Minimum Distance to a coast,
dist_carib: Minimum Distance to the Caribbean Sea,
— dist_atlan: Minimum Distance to the Atlantic Ocean.

Besides, Martinique, like most of the islands of the Lesser
Antilles, is characterized by a complex topography which
tends to enhance the rainfall due to synoptic disturbances
by orographic effects (Smith et al. 2012). This means that
variables representing the topography should be a good way
to predict precipitation.

A high resolution Digital Elevation Model (DEM) is
needed to capture the complex topography of the island,
since with a too coarse DEM (for example, a 1 x 1 km? reso-
lution), mountains named locally pitons are smoothed, and,
hence the elevation of stations provided by the DEM and
by metadata can differ significantly. That is why the SRTM
data (resolution ~ 90 m) which is available at http://www2.
jpl.nasa.gov/srtm/ was used.

In Daly et al. (2002), smoothed altitude was also tested in
the precipitation model selection process. Three predictors
are introduced and illustrated in Fig. 2a:

— z90m: elevation at 90 m resolution (SRTM data),
— zsmooth1: Average elevation in a 1 km neighborhood,
— zsmooth5: Average elevation in a 5 km neighborhood.

Agnew and Palutikof (2000) emphasized that the maximum
elevation in a wedge is very useful in areas with domi-
nant wind directions, because the leeward slopes are drier

Table 1 Descriptive statistics of the monthly and annual precipitation (mm)

Mean monthly precipitation

Elevation (m)

Jan Feb Mar Apr May Jun Jul Aug  Sep Oct Nov  Dec An Stations SRTM
Min. 59.7 4250 4280 59.2  89.1 1059 113.5 1351 146.2 140.1 174.1 76.8 1185 2 0.35
1st quartile 103.3 6950 6270 87.3 1257 1439 172.6 2065 1962 223.4 2276 124.6 1784 19 49
Median 127.8 83.10 7630 121.7 146.6 1679 216.6 250.2 229.6 262.7 2747 150.9 2027 48 127
Mean 1548 96.55 93.54 131.0 164.8 193.7 238.0 259.8 251.6 283.0 3085 181.3 2365 139 190
3rd quartile 1772 112,50 11390 170.4 208.8 2243 2727 291.0 2924 322.8 369.7 231.1 2852 224 271
Max 397.6 244.60 23920 281.5 302.5 373.3 4885 4752 4500 465.4 561.7 423.1 4697 510 1374
Nb. of stations 36 37 37 37 37 37 37 37 37 37 37 35 35

The bottom line indicates, for each month, the number of stations for which the monthly precipitation is known. The last two columns give
descriptive statistics of elevation for the 37 stations and for the Shuttle Radar Topography Model (SRTM) data (134142 points).
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and warmer than windward slopes. In the present study, the
north and south directions were not used since the main per-
turbations occurring in Martinique come from the Atlantic
Ocean (East of the island). Six other predictors were
added:

— zxwi, zxw5, zxw10: Maximum elevation in the West
directionin a 1, 5, 10 km neighborhood (see Fig. 2e),
— zxel, zxe5, zxe10: Maximum elevation in the East
directionin a 1, 5, 10 km neighborhood (see Fig. 2c¢),

Daly et al. (2002) also suggested using some characteristics
of the terrain since the relationship between precipitation
and elevation can vary from one slope to another, depending
on the location and orientation:

— slope: slope evaluated with four neighbors (see Fig. 2b),

— curv: curvature evaluated with four neighbors (see
Fig. 2d),

— aspect: aspect evaluated with four neighbors (see
Fig. 2f),

This set of 15 physiographic variables was generated from
the DEM coming from the SRTM data and explains, a priori,
spatial variability in the climate data. These variables can
be easily generated with a geographical information system.
In our case, the R functions focal and terrain of the “’raster”
package (Hijmans 2014) were used.

Geographical positions (coordinates X and Y in the UTM
20N spatial reference) were also considered as predictors.

3 Interpolation techniques used in this study

First, the interpolation techniques used in this study are
briefly presented and are separated into two groups: tech-
niques for which predictors (see Section 2.2) were used
or not. In the following, the notations used are (here, the
variable is the mean monthly precipitation):

— n the number of sites where the variable is known
(observed),

— s;: a site with observation, i = 1..n,

—  z(s;): the amount of the variable at site s;,

— so: the location where we want to predict the amount of
the variable,

—  Z(sp): the value predicted by the tested interpolation
method at site sq,

— |s; — 5| the Euclidean distance between s; and s,

— X (s): the amount of the predictor j at location s.

3.1 Without predictors

To apply the following methods, only observation and loca-
tion of the variable are needed.

@ Springer

1. Inverse distance weighting of order d:

1/1si — sol?

n
2(5’0) = Z)\.[.Z(Si) with Ai = m
i=l1 L

i=1

ey

In our case, d = 2 and this method is noted IDW

2. Kriging (simple, ordinary, and universal):
Let Z*(.) be the linear regression estimator (Z*(sg) =
2(s0)) and Z(.) a random function where Z(s;) = z(s;).
Then, the value, Z(sg), can be written:

2(s0) = pa(s0) + Y wi(s0). (z(si) — p(si)) )

i=1

where 1 (so) and . (s;) are the expected values of Z*(sg)
and Z(s;), respectively. The kriging weights, w; (.) must
be determined to minimize the estimation variance,
Var[Z*(so) — Z(s¢)], while ensuring the unbiasedness
of the estimator, E[Z*(sg) — Z(sg)] = 0. Under some
assumptions, kriging is regarded as the best linear unbi-
ased estimator. To simplify, kriging can be based on a
linear model for which the residuals are assumed to be
spatially dependent.

First, the trend, w(.), of the random function Z(.)
must be specified among three types:

— u(s) = m a known constant all over the studied
area; this is simple kriging denoted SK

— u(s) = u aunknown constant which is considered
to fluctuate locally maintaining stationarity within
the local neighborhood; this is the ordinary kriging
denoted OK

—  u(s) smoothly varies within each local neighbor-
hood and is modeled as a linear combination of
functions of the spatial coordinates; this is the
universal kriging denoted UK

Then, a theoretical variogram is fitted on the empirical
variogram determined by the sample values to deter-
mine the weights, w; (.). They are generated when the
corresponding system of linear equations, depending on
the type of kriging, is solved.

These two methods are exact interpolators, that is to say,
2(s;) = z(s;)) Vi = l..n.

3.2 Using predictors in interpolation

Contrary to the previous methods (IDW, SK, OK, UK), these
methods use auxiliary information to explain the variable
we want to map. For example, as temperature commonly
depends on the elevation, the goal is then to take into
account elevation, called a predictor, to estimate the tem-
perature. Ideally, predictors must be known all over the
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Fig. 3 Mean annual precipitation distribution according to three different interpolation methods

domain. In this way, four methods which can use auxiliary
information as predictors are proposed:
Let p be the number of predictors selected.

1. Multiple linear regression (MLR):

p
Z(s) =ao+2aj.Xj(s) 3)

j=1

where the coefficients, a; are determined by the sam-
ple values and the least square method. Note that this
method imposes n > p. It is recommended to have
n > p +40.
2. Principal component regression (PCR):

The first step is to perform a principal component
analysis (PCA) on the p predictors. The g chosen eigen-
vectors PC; are then used as predictors in a MLR:

q
(s) =bo+ Y _b;.PCj(s) (4)
j=1

where the coefficients, b; are determined by the sample
values and the least square method. This method is often
used instead of MLR when n < p.

3. Partial least square regression (PLSR):
This method bears some relation to principal compo-
nent regression, since the method consists in maximiz-
ing the variance of predictors (X;) and the correlation
between predictors and the variable of interest.

4. External drift kriging (EDK):
This method is another type of kriging for which the
trend 1 (.) is a linear combination of functions of predic-
tors or external drifts. Note that UK is a particular case
of EDK where the external drifts are only the spatial
coordinates.

@ Springer

The three types of regression (MLR, PCR, PLS) are inex-
act interpolators, since the values z(s;) predicted by these
models differ from observations z(s;). The errors Z(s;) —
z(s;), called residuals, follow a gaussian distribution cen-
tered at 0. A simple kriging (SK), with u = 0, can
be performed on residuals leading to an exact interpola-
tor. In most cases, kriging residuals significantly improves
the results of the method (Nalder and Wein 1998; Bessafi
et al. 2013) and is usually called regression-kriging (RK).
In our case, three types of regression were used and the
fact of kriging residuals will be noted MLRK, PCRK, and
PLSK.

Remark 1 Although normality is not a prerequisite for krig-
ing, it is a desirable property. Kriging will only generate the
best absolute estimate if the random function fits a normal
distribution. In this way, applying a mathematical function
such as the natural logarithm or power function can be
performed on data.

Remark 2 In theory, the predictors for MLR or EDK must
be independent. Nevertheless, in practice, this assumption
is not really verified. This is the case in the present study
where an exhaustive list of predictors was preferred.

Table 2 Pearson correlation coefficient between predictors and the
mean annual precipitation (estimated with 35 values)

aspect curv dist_atlan dist_caraib dist_coast slope zZ90m zsmoth1
0.11 0.07 0.21 0.23 0.79 0.29 0.83 0.87
zsmooth5 zxe10 zxe1 zxe5 zxw10 zxw1 zxw5

0.84 0.52 0.79 0.67 0.81 0.80 0.73
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Table 3 The number of point pairs and the average distance (in meters) of all point pairs considered to estimate variograms (in kriging)

Nb of pairs (Ng) 6 14 18 14 20 20
Average distance (d) 2031 3216 4579 5904 7302 8531

24 27 35 23 36 37 20 30
9985 11413

12536 13776 15267 16489 17847 19145

Remark 3 EDK and MLRK seem to be similar but they
lead to different results (Hengl et al. 2003). Contrary to
EDK, the parameters of a MLR are estimated by the least
square method in which spatial dependence is not taken into
account. With EDK, equations are solved at once whereas
MLRK explicitly separates trend estimation from spatial pre-
diction of residuals. Note that, for MLRK, there is no danger
of instability as is the case with the EDK system. Besides, in
theory, regression requires independent residuals but kriging
relies on dependent residuals. For this reason, generalized
linear models can be an alternative but this method was not
used here.

3.3 Choosing the spatial prediction method

Several interpolation methods were presented in Sections 3.1
and 3.2 with the pros and the cons related to each option.
From the same data, these methods can provide significantly
different maps of the variable of interest (see Fig. 3). Choos-
ing the best method is therefore a key point in order to
propose a map close to reality.

To achieve this, cross-validation is widely used. The goal
is to estimate the expected level of fit of a model to a data
set that is independent of the data that were used to train
the model. It consists in splitting the dataset into training
and validation data. For each split, the model is fitted to the
training data, and predictive accuracy is assessed using the

Table 4 Skill scores defined in Section 3.3 of the different inter-
polation methods estimated by the LOO-procedure for annual mean
precipitation

With log-transformation No transformation

RMSE D EF RMSE D EF

IDW 543.7 0.69 0.56
UK 4840 0.73 0.65

5320 069 058
495.5 073  0.63

MLRK 2844 0.84 0.88 269.3 0.84 0.89
PCRK  295.0 0.84 0.87 290.3 084 0.87
PLSK 295.2 0.84 0.87 275.0 085 0.88
z90mK  386.8 0.778  0.782 388.7 077  0.77

EDK 223.3 0.85 0.91 235.0 0.85 091

The cells in grey indicate the best predicting method according to the
score.

validation data. There are different types of cross validation.
In our case, only two were used:

1. The Leave-One-Out (LOO) procedure involves using
only one observation as the validation set and the n — 1
remaining observations as the training set. It requires
learning and validating only Njplie = n times. Then the
n z(s;) predicted values are compared to the n Z(s;)
observed values.

2. The repeated random sub-sampling validation involves
using randomly p > 1 observations among n as the
validation and the n — p remaining observations as the
training set. In this study, the number of random splits
was fixed at Ngpjic = 100. Then the (Ngplie X p) 2(si)
predicted values are compared to the (Ngpiic X p) z(s;)
observed values.

The best model is the one which minimizes the error
between predicted and observed values. To determine this,
three criteria were used and are defiped below:
Letbe z = 137 z(s;), and, Z/(s;) = Z(s;) — Z, and,
(i) =z(s) — 2
— The Root Mean Square Error (RM SE) is expected to
be close to 0.

1 n
. 5(s:) — ))2
RMSE = " E (z(si) — z(si)) 4)

i=1

— The Nash and Sutcliffe coefficient of efficiency (E F <
1) is expected to be close to 1 (Nash and Sutcliffe 1970).

Yo EGsi) — 2(s))?
Y@ = 2(s)?

— The Willmott index (0 < D < 1) is expected to be close
to 1 (Willmott et al. 2012).

Yo Gsi) — 2(si)?
s (o] - 1)

EF=1-— (6)

=1

(N

3.4 Predictor selection

In Section 3.2, spatial prediction methods which use predic-
tors were presented. In our case, 17 predictors were selected
to explain precipitation (see Section 2.2). The fact of taking
a predictor into account or not has a significant impact on
the prediction. The Pearson correlation coefficient is widely
used to show how a predictor is linked with the variable
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Table 5 External drifts
(predictors) chosen to predict Pred. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
the mean monthly mean
precipitation with EDK dist.coast x [J xO xO xO xO x0O O x O
zsmooth1 X X
zsmooth5 xd x0O xO O x O O X
zxel xO x0O xO x0O xO x0O O x O O xO x0O
zxe5 x [
zxw10 x O
slope X
Y x

The symbol x (resp. [J) indicates that the predictor is selected when the Matern (resp. exponential)

variogram is imposed.

of interest (see Table 2). However, choosing a model with
predictors which have the greatest correlation is not suit-
able because two predictors can be strongly correlated (e.g.,
z90m and zsmooth1) leading to a redundancy of informa-
tion which can penalize the mapping. Adding one predictor
or another is a critical step in mapping.

The Akaike Information Criterion (noted AIC) can be
used to select a model.! Unlike the criteria presented in
Section 3.3, it handles the trade-off between the goodness
of fit of the model and the complexity of the model (number
of predictors) and is written as follows:

AIC =2p —2In(L) (8)

where p is the number of predictors and L the likelihood of
the model. Given a set of candidate models for the data, the
preferred model is the one with the minimum A7 C value. In
the case n/p < 40 (where n denotes the sample size), it is
strongly recommended to use the corrected AICc:
2p(p+ 1)

e )
n—p-—1

The AIC can be linked with the RM SE criterion (Aertsen
et al. 2009):

AIC = nIn(RMSE) +2p

AlICc=AIC +

(10)

Instead of testing all possible models, stepwise methods are
widely used to select the best model. In our case, forward
selection was used. This involves starting with no predic-
tor in the model, testing the addition of each predictor using
a chosen model comparison criterion, adding the predictor
(if any) that improves the model the most, and repeating
this process until none improves the model. The comparison
criterion differs from spatial prediction methods:

— for MLR (27 different models), the function ”stepAIC”
from the R package MASS was used (Venables and
Ripley 2002).

IHere, a model is defined by predictors

@ Springer

— for PLS and PCR (p different models), the exhaustive
method was used: the LOO procedure is applied for
each model to estimate the RMSE. Then the model
which minimized the AICc was considered as the best
model.

— for EDK (27 different models), forward selection was
applied with the AICc as selection criterion (evaluated
by the RMSE) in performing the LOO procedure for
each tested model. The initial model is equivalent to
OK.

Remark 4 For the MLR, PLS and PCR methods, procedures
to select predictors are widely used in the literature. For
the EDK, the proposed procedure is, as far as we know, a
novelty.

3.5 Implementing the methods

All the methods were implemented in the software R (R
Core Team 2012). For IDW and kriging, the package gsrat
(Pebesma 2004) was used.

The package pls (Mevik et al. 2013) provides functions
for regression methods such as PCR and PLS.

After predicting the mean annual and monthly precip-
itation with these methods, a set of map layers in raster
format was generated. These layers were based on grids,
where each point represents the center of a 90 m side square
(the resolution of the DEM, see Section 2.2 above). Finally,
the raster package (Hijmans 2014) was used to illustrate
predicted maps (rasters) and to build predictors.

3.6 Theoretical and empirical models in kriging

The Matern model with the Stein representation (Stein
1999) was imposed for the kriging for which the semivari-
ance is

. | 1 AN AN
y=cter (1= 50 (7 A=) ap
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where h is the separation distance, K, is the Basset func-
tion, I" is the gamma function, r is the range or distance
parameter (r > 0) which measures how quickly the cor-
relations decay with distance, and v is the smoothness
parameter (v > 0). co corresponds to the nugget variance
and co + c¢; to the sill variance. The Matern model was
chosen since it has great flexibility for modeling the spa-
tial covariance (Minasny and McBratney 2005). Note that
the exponential model y(h) = co + ciexp(—h/r) is a
particular case of the Matern model (v = 1/2).

The empirical variogram was calculated by the method
of moments:
N(h)
D lz(si) — zsi + W)

i=1

Py = ——

N (12)

where N (h) is the number of pairs of observations separated
by distance h.

Then, the theoretical model is automatically fitted to
the empirical variogram by the weighted least squares by
minimizing the objective function:

N,
00) =) [P~ w@]

d

13)

where N is the number of pairs for lag d (see Table 3),
y the empirical variogram, and, yy the Matern model with
parameter vector 9.

squares) for the mean annual precipitation. The empirical variogram
was estimated and fitted from the residual process, not from the raw
observations

Note that, when a non-stationary (i.e., non-constant)
mean is used as in UK and EDK, both for simulation and pre-
diction purposes, the variogram model defined is that of the
residual process, not that of the raw observations.

In this study, no nugget effect and no anisotropy® has
been considered. For the interpolation neighborhood, global
prediction was used, meaning that for each prediction all the
data values were used. In fact, kriging was performed with
the default options of the gstat R package.

4 Results

All the methods described in Sections 3.1 and 3.2 were per-
formed. Residual kriging improved the performance of the
methods MLR, PCR, and PLS (not shown here). Kriging
with only zZ90m as external drift was also performed, noted
z90mK. A log-transformation was also applied on obser-
vations in order to obtain more Gaussian data. In order to
simplify the tables and figures, the results of only seven
methods are mentioned further: IDW, UK, MLRK,PCRK,
PLSK, z90mK, and EDK.

Zbecause of the lack of points
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4.1 Predicting performance via the LOO procedure

Table 4 illustrates the performance of the different predict-
ing methods for the annual mean precipitation. First, the
gain of the log-transformation depends on the methods and
is not really significant. The methods with no predictors
(IDW and UK) show the worst results and using them on
such a territory seems to be inappropriate. Using predictors
significantly improves the prediction. Adding only the alti-
tude in kriging (z90mK) provides better results than UK but
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estimated by the LOO-procedure for the mean monthly

does not appear sufficient to fully explain the precipitation,
as adding other predictors greatly improves the predicting
values. For example, MLRK in which the model is com-
posed of seven predictors shows better results than kriging
with altitude. For PLSK, four eigenvectors suffice to min-
imize the AICc. The regression kriging methods (MLRK,
PCRK, and PLSK) have very similar good performances
(RMSE~280 and EF~0.87). EDK, which uses only two pre-
dictors (see Table 5), seems to be the best method to predict
mean annual precipitation (RMSE=223.3, EF=0.91). For
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Fig. 6 Values of RMSE (in blue, scale on the left axis) and AICc (in red, scale on the right axis) during the forward selection procedure for the
mean annual precipitation (in Fig. 6a) and the mean precipitation in November (in Fig. 6b). OK (ordinary kriging) indicates no predictors
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Fig. 7 Skill scores defined in Section 3.3 of the different interpolation methods according to different sizes of training set for the mean annual

precipitation

information, Fig. 4 illustrates the empirical and the theoreti-
cal variograms for UK, z90mK, and EDK.3 Residuals coming
from the trend of EDK seem to be more fittable than those
of UK or z90mK.

The LOO procedure was also carried out for the 12
monthly mean precipitations (with no log-transformation),
and the results are shown in Fig. 5 . As for the annual pre-
cipitation, EDK seems to be the best method to predict mean
monthly precipitation, since for any month, the RMSE is
the lowest with this method, whereas IDW and UK are not
appropriate. For other two criteria (EF and D), there are only
3 months in which MLRK seems to predict monthly precipi-
tation better. Nevertheless, EDK generally provides the best
results. Note that, with a log-transformation of data, EDK is
much better and becomes the best method for any criterion
and month.

4.2 Predictors chosen for EDK

Table 5 lists the predictors used in EDK for the differ-
ent months. The selected predictors differ from 1 month
to another. The descriptive variable zxe1 is the one most
often used to predict mean precipitation (9 out of 13 for the
Matern variogram), followed by dist_coast and zsmooth5.
Note that z90m is never used; in addition, the choice of
the function to fit the variogram is introduced only from
Section 4.5 below.

The number of predictors varies between one and three
leading to a model in which the predictors are not strongly
correlated. Using the AICc criterion limits this number
(see Fig. 6) while minimizing the RMSE should involve

3The residuals, after taking into account the different trends, were used
instead of the target variable to estimate variograms

choosing eight predictors for annual precipitation, only two
are necessary with the AICc criterion. Note, that for PCRK
and PLSK, the optimal number of eigenvectors ranges from
4 to 8 depending on the month.

Note that the complexity of the model (characterized by
2p in Eq. 10) has a different weight for the total AIC
depending on the observation range (which heavily impacts
the RMSE) of the target variable. Nevertheless, the num-
ber of predictors is the highest for February, the month in
which the RMSE is the lowest. This comes from using the
logarithm of the RM S E which reduces the scale effect.

4.3 Predicting performance according to the size
of the training set

Here, we want to test the performance of mapping meth-
ods to predict the mean annual precipitation according to
the available data. The repeated random sub sampling val-
idation was performed for the seven methods tested with
different sizes of training set (n — oM

For PCRK (resp. PLSK), the number of eigenvectors was
fixed at five (resp. four) (the optimum number according
to the LOO procedure). For EDK and MLRK, their mod-
els (predictors) were fixed at the beginning (defined by the
LOO procedure). Only the variograms or coefficients were
re-estimated for each random split.

Figure 7 illustrates the skill scores of the seven methods
according to the size of the training set to predict the mean
annual precipitation. For each method, the performance
decreases with the size of the training set, as expected. Nev-
ertheless, some methods seem to be more sensitive to the

4n = 35 and the size of the validation set is p with p=1..20.
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number of available data. For example, the performance of
IDW degrades only slightly, whereas MLRK, from a critical
value, becomes the worst method. So, applying this method
which showed good performances with the LOO procedure
seems to be questionable, probably because the number of
stations is not much greater than the number of predic-
tors. The behavior of PCRK and PLSK is very similar while
z90mK seems to be more robust than EDK. EDK appears to
be the best method for a training set greater than 20, then
PLSK becomes better.

4.4 Regionalization of the mean annual and monthly
precipitation

Predictors are known on the whole territory at a 90 m res-
olution. So, EDK can be performed in order to map the
mean monthly (or annual) precipitation at the same reso-
lution in Martinique. These maps are illustrated in Fig. 8
(for annual, February and September) and show the highest
amounts of precipitation are located in the regions located
at the highest altitude. These amounts are questionable
because of the gap between maximum DEM and station
altitude (see Table 1). Indeed, the predicted precipitations
are extrapolated by EDK to regions with a higher altitude
than the highest altitude station (510 m). A historical sta-
tion, which was located at an elevation of 1010 m (resp.
965 m) according to metadata (resp. DEM), documented
the amount of annual precipitation during 5 complete years
(1962-1966). The observed mean annual precipitation at
this high altitude station was 4642 versus 5015 mm from
the predicted map. This gap of 10 % is relatively small but
it cannot validate the extrapolation of precipitation. It only
shows that the predicted values at high altitude seem to be
of the same order of magnitude as what can expected in
reality.
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4.5 Sensitivity of the choice of the function to fit
the variogram

Until now, in kriging, only Matern model with the Stein
representation was used to fit the variogram because this
model is the most appropriate according to observation. In
order to study the sensitivity of the method to this choice,
the same procedure (selecting predictors by the proposed
method, estimating skill scores, mapping) was performed
by imposing the exponential model. For most months (9
out of 13), the selected predictors are the same for both
models (see Table 5). According to the LOO-procedure,
the performances are similar: RMSE = 219.5 with an
exponential model versus 223.3 with a Matern model for
the mean annual precipitation (and log-transformation) or
EF = 0.88 with exponential model versus 0.89 with the
Matern model for the mean precipitation in February (and
log-transformation). Even if the selected predictors are not
the same between the two models, the performances remain
similar (RM SE = 23 versus 26 for September). The impact
of the model choice on the predicted maps is illustrated
in Fig. 9. When the predictors are identical for both mod-
els, the gap between the two models does not exceed 10 %
(see Fig. 9a, b) whereas this gap rises to 20 % when the
predictors differ between the two models (see Fig. 9c).

5 Discussion

The choice of interpolation method depends on data type,
area of interest, and the spatial scale used. Here, we focused
on the mean monthly and annual precipitation in a small
island with a complex topography and great spatial varia-
tion. Several spatial methods which are widely used to inter-
polate mean climate data were tested via cross-validation.
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Fig. 8 Mean annual and monthly (February and September) precipitation during 1991-2010 provided by EDK
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Fig. 9 Sensitivity of the choice of variogram on the mean annual and monthly (February and September) precipitation: Delta (in percentage)
between the maps provided by EDK with a Exponential variogram and with the Matern variogram

The principal novelty of the study resides in the predictor
selection in EDK. In the literature, the external drifts are
often chosen according to a a priori knowledge. Selecting
predictors according to the proposed method improves the
predictive performance of EDK: EF = 0.91 versus EF=0.78
if elevation is the only predictor for the mean annual pre-
cipitation (estimated by the LOO-procedure). The gain is
similar for all criteria, not only RMSE which is the cri-
terion used to select predictors. The proposed procedure
achieves to an accurate prediction of mean precipitation
with only one, two, or three covariates. Besides, the cho-
sen predictors are quite stable for each pluviometric regime.
For example, the months during the dry season (February to
April) are characterized by the similar predictors: zsmooth5
and zxe1 even if the selection procedure for these months
was performed independently, whereas in the wet season
(June to October), dist.coast is chosen for each month.
This indicates that there is a climatological coherence in
the choice of predictors. Lastly, EDK seems to outperform
regression methods such as MLRK, PCRK, or PLSK. Over-
all, the results for mean annual precipitation are notably
good when compared to results reported by other studies
(Hong et al. 2005; Sun et al. 2015). Moreover, the proposed
method to select predictors, performances, and the resulting
maps seems to be little influenced by the choice of the func-
tion to fit the variogram. The methods used in this paper
have also been tested on Guadeloupe (a very similar island
to Martinique) leading to similar results: EDK was the most
accurate method according to the LOO-procedure and the
chosen predictors were coherent and not numerous. Clearly,
this method seems to be a great opportunity to improve the
accuracy of interpolations in such islands.

Applying this method to a larger territory with a large
number of observations may not be straightforward: the
computation is more time-consuming than with other meth-
ods since a LOO-procedure must be performed for each
predictor to select the best one. Nevertheless, it has been
used in France to map the parameters of a rainfall gen-
erator (Carreau et al. 2013) with about 2000 rain gauge
stations. Observations were split into four climatic zones
(Cantet et al. 2011) in which the method was performed
independently with a reasonable CPU-time. For regions
with a (relatively) complex topography such as “Mediter-
ranean” and “Highland”, EDK clearly provides the most
accurate prediction according to a repeated random sub-
sampling validation (as in Section 4.3 above) whereas, in
flatter regions, the gain of EDK is less pronounced.

6 Conclusion

In this paper, several spatial interpolation techniques were
applied to map the annual and monthly mean precipita-
tion in a small complex topography territory. In our case,
if physiographical variables are considered in spatial inter-
polation, the prediction performances are improved. The
cross validation shows that methods which incorporate pre-
dictors (MLRK, PCRK, PLSK, z90mK, and EDK) clearly
outperform methods which consider only coordinates (IDW
and UK). This result can be explained by the variable of
interest which is a long time scale precipitation estimated
over several years. Regression methods (MLRK, PCRK,
and PLSK) seem to produce more accurate estimates than
kriging with only elevation as drift. However, according to
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the LOO-procedure, if the predictors selected by the pro-
posed procedure are incorporated in kriging, then EDK
gives the best prediction. Note that the choice of the func-
tion used to fit the variogram has no significant impact
on the selected predictors, performances or resulting maps
of EDK. Nevertheless, the fact that the proposed method
is influenced by the size of the observed sample (more
than PLSK but less than MLRK) means that the precau-
tionary principle must be applied. Further investigation is
needed to completely validate this method. An alternative
method might be to reinterpret distance in IDW (which is
the method that is the least influenced the sampling) as in
Abhrens (2006).
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